예제 #1
0
          if rebin is not None:
            hist.rebin(rebin)

          # exclusion, so we don't need to plot it
          if hist.title in plots_path.get('exclude', []): continue
          if group.get('stack it', False):
            # overwrite with solid when stacking
            hist.fillstyle = 'solid'
            stackHists.append(hist)
          else:
            soloHists.append(hist)


        hstack = HistStack(name=h.path)
        # for some reason, this causes noticable slowdowns
        hstack.drawstyle = 'hist'
        map(hstack.Add, stackHists[::-1])

        # this is where we would set various parameters of the min, max and so on?
        # need to set things like min, max, change to log, etc for hstack and soloHists
        normalizeTo = plots_path.get('normalize', plots_config.get('normalize', None))
        if normalizeTo is not None:
          dataScale = 0.
          if "unity" in normalizeTo:
            for hist in hstack:
              if (hist.integral() != 0):
                hist.scale(1.0/hist.integral())
            for hist in soloHists:
              if (hist.integral() != 0):
                hist.scale(1.0/hist.integral())
          elif "stack" in normalizeTo:
예제 #2
0
                                           plots_config.get('rebin', None))
                    if rebin is not None:
                        hist.rebin(rebin)

                    # exclusion, so we don't need to plot it
                    if hist.title in plots_path.get('exclude', []): continue
                    if group.get('stack it', False):
                        # overwrite with solid when stacking
                        hist.fillstyle = 'solid'
                        stackHists.append(hist)
                    else:
                        soloHists.append(hist)

                hstack = HistStack(name=h.path)
                # for some reason, this causes noticable slowdowns
                hstack.drawstyle = 'hist'
                map(hstack.Add, stackHists[::-1])

                # this is where we would set various parameters of the min, max and so on?
                # need to set things like min, max, change to log, etc for hstack and soloHists
                normalizeTo = plots_path.get(
                    'normalize', plots_config.get('normalize', None))
                if normalizeTo is not None:
                    dataScale = 0.
                    if normalizeTo not in [hist.title for hist in soloHists]:
                        raise ValueError(
                            "Could not find %s as a solo hist for normalizing to."
                            % normalizeTo)
                    for hist in soloHists:
                        if hist.title == normalizeTo:
                            dataScale = hist.integral()
예제 #3
0
          if rebin is not None:
            hist.rebin(rebin)

          # exclusion, so we don't need to plot it
          if hist.title in plots_path.get('exclude', []): continue
          if group.get('stack it', False):
            # overwrite with solid when stacking
            hist.fillstyle = 'solid'
            stackHists.append(hist)
          else:
            soloHists.append(hist)


        hstack = HistStack(name=h.path)
        # for some reason, this causes noticable slowdowns
        hstack.drawstyle = 'hist'
        map(hstack.Add, stackHists)

        # this is where we would set various parameters of the min, max and so on?
        # need to set things like min, max, change to log, etc for hstack and soloHists
        normalizeTo = plots_path.get('normalize', plots_config.get('normalize', None))
        if normalizeTo is not None:
          dataScale = 0.
          if normalizeTo not in [hist.title for hist in soloHists]: raise ValueError("Could not find %s as a solo hist for normalizing to." % normalizeTo)
          for hist in soloHists:
            if hist.title == normalizeTo: dataScale = hist.integral()
          mcScale = 0.
          for hist in hstack:
            mcScale += hist.integral()
          normalizeFactor = dataScale/mcScale
          for hist in hstack:
예제 #4
0
def stack(x, *args, **kwargs):

    ## parse arguments
    _data = kwargs.pop('data', None)
    _bkgs = kwargs.pop('bkgs', None)
    _sigs = kwargs.pop('sigs', None)
    _treename = kwargs.pop('treename', None)
    _datasearchpath = kwargs.pop('datasearchpath', None)
    _datadrivensearchpath = kwargs.pop('datadrivensearchpath', None)
    _bkgsearchpath = kwargs.pop('bkgsearchpath', None)
    _sigsearchpath = kwargs.pop('sigsearchpath', None)
    _lumi = kwargs.pop('lumi', None)

    global data
    global bkgs
    global sigs
    global treename
    global datasearchpath
    global datadrivensearchpath
    global bkgsearchpath
    global sigsearchpath
    global lumi

    data = _data or data
    bkgs = _bkgs or bkgs
    sigs = _sigs or sigs
    treename = _treename or treename
    datasearchpath = _datasearchpath or datasearchpath
    datadrivensearchpath = _datadrivensearchpath or datadrivensearchpath
    bkgsearchpath = _bkgsearchpath or bkgsearchpath
    sigsearchpath = _sigsearchpath or sigsearchpath
    if _lumi:
        lumi = float(_lumi)

    xtitle = kwargs.pop('xtitle', '')
    ytitle = kwargs.pop('ytitle', '')
    logx = bool(kwargs.pop('logx', False))
    logy = bool(kwargs.pop('logy', False))
    blind = kwargs.pop('blind', None)
    has_blinded_data = False

    ## save stuff to bookkeep and return
    stuff = dict()
    stuff['x'] = x

    ## get data histogram
    h_data = None
    if data:
        sp = datasearchpath  # HACK: just data to True!
        newx = '%s::%s::%s' % (sp, treename, x)
        h_data = ipyhep.tree.project(newx, *args, **kwargs)
        if h_data:
            stuff['h_data'] = h_data

    ## blind the data?
    if h_data and not blind is None:
        if isinstance(blind, tuple):
            blind1, blind2 = blind
            nbins = h_data.GetNbinsX()
            for i_bin in xrange(1, nbins +
                                2):  # skip underflow (but not overflow)
                xval1 = h_data.GetXaxis().GetBinLowEdge(i_bin)
                xval2 = h_data.GetXaxis().GetBinUpEdge(i_bin)
                if xval1 >= blind1 and xval2 <= blind2:
                    h_data.SetBinContent(i_bin, 0.0)
                    h_data.SetBinError(i_bin, 0.0)
                    has_blinded_data = True
        else:
            nbins = h_data.GetNbinsX()
            for i_bin in xrange(1, nbins +
                                2):  # skip underflow (but not overflow)
                xval = h_data.GetXaxis().GetBinLowEdge(i_bin)
                if xval >= blind:
                    h_data.SetBinContent(i_bin, 0.0)
                    h_data.SetBinError(i_bin, 0.0)
                    has_blinded_data = True

    ## get background histograms
    h_bkgs = list()
    n_bkgs = list()
    if bkgs:
        for bkg in bkgs:
            if isinstance(bkg, list):
                h_subtotal = None
                for dsid in bkg:
                    assert isinstance(dsid, str)
                    h_bkg = None
                    if dsid.isdigit():
                        ## mc backgrounds
                        sp = bkgsearchpath % int(dsid)
                        newx = '%s::%s::%s' % (sp, treename, x)
                        h_bkg = ipyhep.tree.project(newx, *args, **kwargs)
                    else:
                        ## data-driven backgrounds
                        assert dsid == 'fakes' or dsid == 'efakes'
                        sp = datadrivensearchpath % dsid
                        newx = '%s::%s::%s' % (sp, treename, x)
                        h_bkg = ipyhep.tree.project(newx, *args, **kwargs)
                    if h_bkg:
                        if h_subtotal:
                            h_subtotal.Add(h_bkg)
                        else:
                            h_subtotal = h_bkg.Clone()
                if h_subtotal:
                    h_bkgs.append(h_subtotal)
                    dsid = bkg[0]
                    n_bkgs.append(dsid)
            else:
                dsid = bkg
                assert isinstance(dsid, str)
                h_bkg = None
                if dsid.isdigit():
                    ## mc backgrounds
                    sp = bkgsearchpath % int(dsid)
                    newx = '%s::%s::%s' % (sp, treename, x)
                    h_bkg = ipyhep.tree.project(newx, *args, **kwargs)
                else:
                    ## data-driven backgrounds
                    assert dsid == 'fakes' or dsid == 'efakes'
                    sp = datadrivensearchpath % dsid
                    newx = '%s::%s::%s' % (sp, treename, x)
                    h_bkg = ipyhep.tree.project(newx, *args, **kwargs)
                if h_bkg:
                    h_bkgs.append(h_bkg)
                    n_bkgs.append(dsid)
        if h_bkgs:
            stuff['h_bkgs'] = h_bkgs

    ## get signal histograms
    h_sigs = list()
    n_sigs = list()
    if sigs:
        for dsid in sigs:
            sp = sigsearchpath % int(dsid)
            newx = '%s::%s::%s' % (sp, treename, x)
            h_sig = ipyhep.tree.project(newx, *args, **kwargs)
            if h_sig:
                h_sigs.append(h_sig)
                n_sigs.append(dsid)
        if h_sigs:
            stuff['h_sigs'] = h_sigs

    assert h_sigs

    ## style data
    if h_data:
        h_data.title = 'Data'
        h_data.linecolor = ipyhep.style.black
        h_data.linewidth = 2
        h_data.markercolor = ipyhep.style.black
        h_data.markerstyle = 20
        h_data.markersize = 1.2
        h_data.fillstyle = ipyhep.style.fill_hollow
        h_data.drawstyle = 'PE'
        h_data.legendstyle = 'LP'

    ## scale and style background histograms
    if h_bkgs:
        assert len(h_bkgs) == len(n_bkgs), '%s\n%s' % (h_bkgs, n_bkgs)

        for h, dsid in zip(h_bkgs, n_bkgs):
            sf = ipyhep.sampleops.get_sf(dsid)
            if dsid.isdigit():
                sf *= lumi / __ntuple_lumi
            h.Scale(sf)

            h.title = ipyhep.sampleops.get_label(dsid)
            h.linecolor = ipyhep.style.black
            h.linewidth = 1
            h.markercolor = ipyhep.sampleops.get_color(dsid)
            h.fillcolor = ipyhep.sampleops.get_color(dsid)
            h.fillstyle = ipyhep.style.fill_solid
            h.legendstyle = 'F'

    ## calculate stat error on total background
    h_bkg_total = None
    if h_bkgs:
        for h_bkg in h_bkgs:
            if h_bkg_total:
                h_bkg_total.Add(h_bkg)
            else:
                h_bkg_total = h_bkg.Clone()
        stuff['h_bkg_total'] = h_bkg_total

    ## style h_bkg_total
    if h_bkg_total:
        h_bkg_total.title = 'stat. uncert.'
        h_bkg_total.linecolor = ipyhep.style.black
        h_bkg_total.linewidth = 1
        h_bkg_total.markerstyle = 0
        h_bkg_total.fillcolor = ipyhep.style.dark_gray
        h_bkg_total.fillstyle = ipyhep.style.fill_lines
        h_bkg_total.drawstyle = 'E2'
        h_bkg_total.legendstyle = 'LF'

    ## scale and style signal histograms
    if h_sigs:
        assert len(h_sigs) == len(n_sigs)
        for h, dsid in zip(h_sigs, n_sigs):
            sf = ipyhep.sampleops.get_sf(dsid)
            sf *= lumi / __ntuple_lumi
            h.Scale(sf)

            h.title = ipyhep.sampleops.get_label(dsid)
            h.linecolor = ipyhep.sampleops.get_color(dsid)
            h.linewidth = 3
            h.fillstyle = ipyhep.style.fill_hollow
            h.markerstyle = 0
            h.drawstyle = 'HIST'
            h.legendstyle = 'L'

    ## build list of all_hists
    all_hists = list()
    main_hists = list()
    if h_data:
        all_hists.append(h_data)
        main_hists.append(h_data)
    if h_bkgs:
        all_hists.extend(h_bkgs)
        main_hists.extend(h_bkgs)
    if h_bkg_total:
        all_hists.append(h_bkg_total)
        main_hists.append(h_bkg_total)
    if h_sigs:
        all_hists.extend(h_sigs)

    ## get statistics
    if all_hists:
        stats_list = list()
        for h in all_hists:
            stats_list.extend(get_stats(h))
        html = convert_table_to_html(convert_stats_to_table(stats_list))
        stuff['html'] = html

    ## renormalize for bin widths
    bins = kwargs.pop('bins', None)
    if bins and isinstance(bins, list):
        for h in all_hists:
            renormalize_for_bin_widths(h, bins)

    ## stack background histograms
    if h_bkgs:
        assert len(h_bkgs) == len(n_bkgs), '%s\n%s' % (h_bkgs, n_bkgs)

        h_bkgs.reverse()
        n_bkgs.reverse()

        hstack = HistStack()
        for h in h_bkgs:
            hstack.Add(h)
        hstack.title = 'stack sum'
        hstack.drawstyle = 'HIST'
        stuff['stack'] = hstack

        h_bkgs.reverse()
        n_bkgs.reverse()

#    ## convert data to TGraphAsymmErrors
#    g_data = None
#    if h_data:
#        if __use_poissonize:
#            g_data = poissonize.GetPoissonizedGraph(h_data)
#        else:
#            g_data = ROOT.TGraphAsymmErrors()
#            i_g = 0
#            nbins = h_data.GetNbinsX()
#            for i_bin in xrange(1, nbins+1): # skip underflow/overflow
#                c = h_data.GetBinContent(i_bin)
#                e = h_data.GetBinError(i_bin)
#                if c != 0.0:
#                    g_data.SetPoint(i_g, h_data.GetBinCenter(i_bin), c)
#                    g_ratio.SetPointError(i_g,
#                            h_data.GetBinWidth(i_bin)/2.,
#                            h_data.GetBinWidth(i_bin)/2.,
#                            e,
#                            e)
#                i_g += 1

## build list of objects to draw
    objects = list()
    if h_bkgs:
        objects.append(stuff['stack'])
        objects.append(stuff['h_bkg_total'])
    if h_sigs:
        objects.extend(h_sigs)
    if h_data:
        objects.append(h_data)

    ## set xlimits and ylimits
    ypadding = 0.21
    logy_crop_value = 7e-3
    xmin, xmax, ymin, ymax = 0.0, 1.0, 0.0, 1.0
    if objects:
        xmin, xmax, ymin, ymax = get_limits(objects,
                                            logx=logx,
                                            logy=logy,
                                            ypadding=ypadding,
                                            logy_crop_value=logy_crop_value)
    if logy:
        ymin = 7e-3
    else:
        ymin = 0.0
    xlimits = (xmin, xmax)
    ylimits = (ymin, ymax)
    stuff['xlimits'] = xlimits
    stuff['ylimits'] = ylimits

    ## remove xtitle for do_ratio
    _xtitle = xtitle
    if h_data and h_bkg_total and kwargs.get('do_ratio'):
        _xtitle = ''

    ## make canvas
    canvas = Canvas(800, 600)
    stuff['canvas'] = canvas

    ## draw the objects
    if objects:
        canvas.cd()
        draw(objects,
             pad=canvas,
             xtitle=_xtitle,
             ytitle=ytitle,
             xlimits=xlimits,
             ylimits=ylimits)

    ## set log x/y, for some reason doesn't work before draw
    if logx or logy:
        if logx:
            canvas.SetLogx()
        if logy:
            canvas.SetLogy()
        canvas.Update()

    ## draw blind_line
    if has_blinded_data:
        if isinstance(blind, tuple):
            blind_list = list(blind)
        else:
            blind_list = [blind]
        blind_lines = list()
        for bl in blind_list:
            line_y1 = ymin
            line_y2 = ymax
            blind_line = ROOT.TLine(bl, line_y1, bl, line_y2)
            blind_line.SetLineColor(ROOT.kGray + 2)
            blind_line.SetLineStyle(7)
            blind_line.SetLineWidth(2)
            blind_line.Draw()
            blind_lines.append(blind_line)
        stuff['blind_lines'] = blind_lines
        canvas.Update()

    ## legend
    lefty = True
    if h_bkg_total:
        lefty = is_left_sided(h_bkg_total)
    elif h_data:
        lefty = is_left_sided(h_data)
    elif h_sigs:
        lefty = is_left_sided(h_sigs[0])

    if main_hists:
        header = '%.1f fb^{-1}, 13 TeV' % (lumi / 1000.0)
        if lefty:
            legend = Legend(main_hists,
                            pad=canvas,
                            header=header,
                            textsize=16,
                            topmargin=0.03,
                            leftmargin=0.60,
                            rightmargin=0.02,
                            entrysep=0.01,
                            entryheight=0.04)
        else:
            legend = Legend(main_hists,
                            pad=canvas,
                            header=header,
                            textsize=16,
                            topmargin=0.03,
                            leftmargin=0.03,
                            rightmargin=0.59,
                            entrysep=0.01,
                            entryheight=0.04)
        legend.Draw()
        stuff['legend'] = legend

    if h_sigs:
        #        header = 'ATLAS Internal'
        header = ''
        if lefty:
            legend2 = Legend(h_sigs,
                             pad=canvas,
                             header=header,
                             textsize=16,
                             topmargin=0.03,
                             leftmargin=0.37,
                             rightmargin=0.23,
                             entrysep=0.01,
                             entryheight=0.04)
        else:
            legend2 = Legend(h_sigs,
                             pad=canvas,
                             header=header,
                             textsize=16,
                             topmargin=0.03,
                             leftmargin=0.20,
                             rightmargin=0.40,
                             entrysep=0.01,
                             entryheight=0.04)
        legend2.Draw()
        stuff['legend2'] = legend2

    ## do_ratio
    if h_data and h_bkg_total and kwargs.get('do_ratio'):

        ## top canvas
        top_canvas = stuff.pop('canvas')
        stuff['top_canvas'] = top_canvas

        ## make SM/SM with error band: h_ratio_band
        i_sfratio = int(kwargs.get('sfratio', -1))
        if i_sfratio < 0:  # ratio plot of Data/Model
            h_ratio_band = h_bkg_total.Clone()
            nbins = h_ratio_band.GetNbinsX()
            for i_bin in xrange(nbins + 2):
                h_ratio_band.SetBinContent(i_bin, 1.0)
                c = h_bkg_total.GetBinContent(i_bin)
                e = h_bkg_total.GetBinError(i_bin) / c if c > 0.0 else 0.0
                h_ratio_band.SetBinError(i_bin, e)
            stuff['h_ratio_band'] = h_ratio_band
        else:  # ratio plot of Scale Factor for ith background
            hi = h_bkgs[i_sfratio]
            h_ratio_band = hi.Clone()
            nbins = h_ratio_band.GetNbinsX()
            for i_bin in xrange(nbins + 2):
                h_ratio_band.SetBinContent(i_bin, 1.0)
                c = hi.GetBinContent(i_bin)
                e = hi.GetBinError(i_bin) / c if c > 0.0 else 0.0
                h_ratio_band.SetBinError(i_bin, e)
            stuff['h_ratio_band'] = h_ratio_band

        ## make data/(SM) h_ratio
        if i_sfratio < 0:
            h_ratio = h_data.Clone()
            h_ratio.Divide(h_data, h_bkg_total, 1.0, 1.0)
            stuff['h_ratio'] = h_ratio
        else:
            ## SF1 = 1.0 + (data - MCtot) / MC1
            sfname = kwargs.get('sfname')
            sffile = kwargs.get('sffile')
            if not sfname:
                sfname = 'h_sf'
            hi = h_bkgs[i_sfratio]
            h_numer = h_data.Clone()
            h_numer.Add(h_bkg_total, -1.0)
            ## do the division
            h_ratio = h_data.Clone(sfname)
            h_ratio.Divide(h_numer, hi, 1.0, 1.0)
            ## add the 1.0
            nbins = h_ratio.GetNbinsX()
            for i_bin in xrange(nbins + 2):
                c = h_ratio.GetBinContent(i_bin)
                h_ratio.SetBinContent(i_bin, c + 1.0)
                h_ratio_band.SetBinContent(i_bin, c + 1.0)
            ## ignore bins with no data for SF
            for i_bin in xrange(nbins + 2):
                c = h_data.GetBinContent(i_bin)
                if c <= 0:
                    h_ratio.SetBinContent(i_bin, 0.0)
                    h_ratio.SetBinError(i_bin, 0.0)
                    h_ratio_band.SetBinError(i_bin, 0.0)
            stuff['h_ratio'] = h_ratio
            if sffile:
                f_out = ipyhep.file.write(h_ratio, sffile)
#                f_out.Close()

## convert ratio to a TGraphErrors so that Draw('E0')
## shows error bars for points off the pad
        g_ratio = ROOT.TGraphErrors()
        i_g = 0
        for i_bin in xrange(1, nbins + 1):  # skip underflow/overflow
            ratio_content = h_ratio.GetBinContent(i_bin)
            if ratio_content != 0.0:
                g_ratio.SetPoint(i_g, h_ratio.GetBinCenter(i_bin),
                                 ratio_content)
                g_ratio.SetPointError(i_g,
                                      h_ratio.GetBinWidth(i_bin) / 2.,
                                      h_ratio.GetBinError(i_bin))
                i_g += 1
            else:
                h_ratio.SetBinError(i_bin, 0.0)
        stuff['g_ratio'] = g_ratio

        ## style ratio
        h_ratio_band.title = 'bkg uncert.'
        if i_sfratio < 0:
            h_ratio_band.linecolor = ipyhep.style.yellow
        else:
            h_ratio_band.linecolor = ipyhep.style.light_gray
        h_ratio_band.linewidth = 0
        h_ratio_band.markerstyle = 0
        if i_sfratio < 0:
            h_ratio_band.fillcolor = ipyhep.style.yellow
        else:
            h_ratio_band.linecolor = ipyhep.style.light_gray
        h_ratio_band.fillstyle = ipyhep.style.fill_solid
        h_ratio_band.drawstyle = 'E2'
        h_ratio_band.legendstyle = 'F'
        h_ratio.title = 'ratio'
        h_ratio.linecolor = ipyhep.style.black
        h_ratio.linewidth = 2
        h_ratio.markercolor = ipyhep.style.black
        h_ratio.markerstyle = 20
        h_ratio.markersize = 1.2
        h_ratio.fillstyle = ipyhep.style.fill_hollow
        h_ratio.drawstyle = 'PE'
        h_ratio.legendstyle = 'LP'

        ## bottom canvas
        bottom_canvas = Canvas(800, 600)
        bottom_canvas.cd()
        stuff['bottom_canvas'] = bottom_canvas

        ## set ratio ylimits
        ratio_min = kwargs.get('ratio_min', -0.2)
        ratio_max = kwargs.get('ratio_max', 2.2)
        ratio_ylimits = (ratio_min, ratio_max)

        ## draw ratio band
        if i_sfratio < 0:
            _ytitle = 'Data / Model'
        else:
            hi = h_bkgs[i_sfratio]
            _ytitle = 'SF(%s)' % hi.title
        draw([h_ratio_band],
             pad=bottom_canvas,
             xtitle=xtitle,
             ytitle=_ytitle,
             xlimits=xlimits,
             ylimits=ratio_ylimits)

        ## set log x/y, for some reason doesn't work before draw?
        if logx:
            bottom_canvas.SetLogx()
            bottom_canvas.Update()

        ### make horiz lines in ratio plot every 0.5:
        line_ys = [
            y / 10.0
            for y in range(10 *
                           int(round(ratio_min)), 10 * int(round(ratio_max)) +
                           5, 5)
        ]
        line_x1 = canvas.GetUxmin()
        line_x2 = canvas.GetUxmax()
        line_xwidth = abs(line_x2 - line_x1)
        lines = []
        for line_y in line_ys:
            line = ROOT.TLine(line_x1 + 0.02 * line_xwidth, line_y,
                              line_x2 - 0.02 * line_xwidth, line_y)
            line.SetLineWidth(1)
            line.SetLineStyle(7)
            if line_y == 1.0:
                line.SetLineColor(ROOT.kGray + 2)
            else:
                line.SetLineColor(ROOT.kGray + 0)
            line.Draw()
            lines.append(line)
        stuff['lines'] = lines

        ## draw blind_line
        if has_blinded_data:
            if isinstance(blind, tuple):
                blind_list = list(blind)
            else:
                blind_list = [blind]
            blind_lines = list()
            for bl in blind_list:
                line_y1 = ymin
                line_y2 = ymax
                blind_line = ROOT.TLine(bl, line_y1, bl, line_y2)
                blind_line.SetLineColor(ROOT.kGray + 2)
                blind_line.SetLineStyle(7)
                blind_line.SetLineWidth(2)
                blind_line.Draw()
                blind_lines.append(blind_line)
            stuff['blind_lines2'] = blind_lines
            canvas.Update()

        ## draw ratio
        g_ratio.Draw('PE0')
        #        h_ratio.GetYaxis().SetRangeUser(ratio_min, ratio_max)
        #        h_ratio.Draw('PE,SAME')

        ## shared canvas
        shared_canvas = Canvas(800, 800)
        shared_plot = plot_shared_axis(top_canvas,
                                       bottom_canvas,
                                       canvas=shared_canvas,
                                       split=0.35,
                                       axissep=0.01)
        stuff['canvas'] = shared_canvas
        canvas = shared_canvas

    ## save figures
    save = kwargs.get('save')

    if save is None:  # NOTE: save can be False to skip saving
        save = ['pdf', 'png']

    if save:
        ipyhep.file.save_figures(canvas, x, save)

    global results
    results = stuff
    return stuff
예제 #5
0
          if rebin is not None:
            hist.rebin(rebin)

          # exclusion, so we don't need to plot it
          if hist.title in plots_path.get('exclude', []): continue
          if group.get('stack it', False):
            # overwrite with solid when stacking
            hist.fillstyle = 'solid'
            stackHists.append(hist)
          else:
            soloHists.append(hist)


        hstack = HistStack(name=h.path)
        # for some reason, this causes noticable slowdowns
        hstack.drawstyle = 'hist'
        map(hstack.Add, stackHists[::-1])

        # this is where we would set various parameters of the min, max and so on?
        # need to set things like min, max, change to log, etc for hstack and soloHists
        normalizeTo = plots_path.get('normalize', plots_config.get('normalize', None))
        if normalizeTo is not None:
          dataScale = 0.
          if normalizeTo not in [hist.title for hist in soloHists]: raise ValueError("Could not find %s as a solo hist for normalizing to." % normalizeTo)
          for hist in soloHists:
            if hist.title == normalizeTo: dataScale = hist.integral()
          mcScale = 0.
          for hist in hstack:
            mcScale += hist.integral()
          if mcScale != 0.:
            normalizeFactor = dataScale/mcScale