if rebin is not None: hist.rebin(rebin) # exclusion, so we don't need to plot it if hist.title in plots_path.get('exclude', []): continue if group.get('stack it', False): # overwrite with solid when stacking hist.fillstyle = 'solid' stackHists.append(hist) else: soloHists.append(hist) hstack = HistStack(name=h.path) # for some reason, this causes noticable slowdowns hstack.drawstyle = 'hist' map(hstack.Add, stackHists[::-1]) # this is where we would set various parameters of the min, max and so on? # need to set things like min, max, change to log, etc for hstack and soloHists normalizeTo = plots_path.get('normalize', plots_config.get('normalize', None)) if normalizeTo is not None: dataScale = 0. if "unity" in normalizeTo: for hist in hstack: if (hist.integral() != 0): hist.scale(1.0/hist.integral()) for hist in soloHists: if (hist.integral() != 0): hist.scale(1.0/hist.integral()) elif "stack" in normalizeTo:
plots_config.get('rebin', None)) if rebin is not None: hist.rebin(rebin) # exclusion, so we don't need to plot it if hist.title in plots_path.get('exclude', []): continue if group.get('stack it', False): # overwrite with solid when stacking hist.fillstyle = 'solid' stackHists.append(hist) else: soloHists.append(hist) hstack = HistStack(name=h.path) # for some reason, this causes noticable slowdowns hstack.drawstyle = 'hist' map(hstack.Add, stackHists[::-1]) # this is where we would set various parameters of the min, max and so on? # need to set things like min, max, change to log, etc for hstack and soloHists normalizeTo = plots_path.get( 'normalize', plots_config.get('normalize', None)) if normalizeTo is not None: dataScale = 0. if normalizeTo not in [hist.title for hist in soloHists]: raise ValueError( "Could not find %s as a solo hist for normalizing to." % normalizeTo) for hist in soloHists: if hist.title == normalizeTo: dataScale = hist.integral()
if rebin is not None: hist.rebin(rebin) # exclusion, so we don't need to plot it if hist.title in plots_path.get('exclude', []): continue if group.get('stack it', False): # overwrite with solid when stacking hist.fillstyle = 'solid' stackHists.append(hist) else: soloHists.append(hist) hstack = HistStack(name=h.path) # for some reason, this causes noticable slowdowns hstack.drawstyle = 'hist' map(hstack.Add, stackHists) # this is where we would set various parameters of the min, max and so on? # need to set things like min, max, change to log, etc for hstack and soloHists normalizeTo = plots_path.get('normalize', plots_config.get('normalize', None)) if normalizeTo is not None: dataScale = 0. if normalizeTo not in [hist.title for hist in soloHists]: raise ValueError("Could not find %s as a solo hist for normalizing to." % normalizeTo) for hist in soloHists: if hist.title == normalizeTo: dataScale = hist.integral() mcScale = 0. for hist in hstack: mcScale += hist.integral() normalizeFactor = dataScale/mcScale for hist in hstack:
def stack(x, *args, **kwargs): ## parse arguments _data = kwargs.pop('data', None) _bkgs = kwargs.pop('bkgs', None) _sigs = kwargs.pop('sigs', None) _treename = kwargs.pop('treename', None) _datasearchpath = kwargs.pop('datasearchpath', None) _datadrivensearchpath = kwargs.pop('datadrivensearchpath', None) _bkgsearchpath = kwargs.pop('bkgsearchpath', None) _sigsearchpath = kwargs.pop('sigsearchpath', None) _lumi = kwargs.pop('lumi', None) global data global bkgs global sigs global treename global datasearchpath global datadrivensearchpath global bkgsearchpath global sigsearchpath global lumi data = _data or data bkgs = _bkgs or bkgs sigs = _sigs or sigs treename = _treename or treename datasearchpath = _datasearchpath or datasearchpath datadrivensearchpath = _datadrivensearchpath or datadrivensearchpath bkgsearchpath = _bkgsearchpath or bkgsearchpath sigsearchpath = _sigsearchpath or sigsearchpath if _lumi: lumi = float(_lumi) xtitle = kwargs.pop('xtitle', '') ytitle = kwargs.pop('ytitle', '') logx = bool(kwargs.pop('logx', False)) logy = bool(kwargs.pop('logy', False)) blind = kwargs.pop('blind', None) has_blinded_data = False ## save stuff to bookkeep and return stuff = dict() stuff['x'] = x ## get data histogram h_data = None if data: sp = datasearchpath # HACK: just data to True! newx = '%s::%s::%s' % (sp, treename, x) h_data = ipyhep.tree.project(newx, *args, **kwargs) if h_data: stuff['h_data'] = h_data ## blind the data? if h_data and not blind is None: if isinstance(blind, tuple): blind1, blind2 = blind nbins = h_data.GetNbinsX() for i_bin in xrange(1, nbins + 2): # skip underflow (but not overflow) xval1 = h_data.GetXaxis().GetBinLowEdge(i_bin) xval2 = h_data.GetXaxis().GetBinUpEdge(i_bin) if xval1 >= blind1 and xval2 <= blind2: h_data.SetBinContent(i_bin, 0.0) h_data.SetBinError(i_bin, 0.0) has_blinded_data = True else: nbins = h_data.GetNbinsX() for i_bin in xrange(1, nbins + 2): # skip underflow (but not overflow) xval = h_data.GetXaxis().GetBinLowEdge(i_bin) if xval >= blind: h_data.SetBinContent(i_bin, 0.0) h_data.SetBinError(i_bin, 0.0) has_blinded_data = True ## get background histograms h_bkgs = list() n_bkgs = list() if bkgs: for bkg in bkgs: if isinstance(bkg, list): h_subtotal = None for dsid in bkg: assert isinstance(dsid, str) h_bkg = None if dsid.isdigit(): ## mc backgrounds sp = bkgsearchpath % int(dsid) newx = '%s::%s::%s' % (sp, treename, x) h_bkg = ipyhep.tree.project(newx, *args, **kwargs) else: ## data-driven backgrounds assert dsid == 'fakes' or dsid == 'efakes' sp = datadrivensearchpath % dsid newx = '%s::%s::%s' % (sp, treename, x) h_bkg = ipyhep.tree.project(newx, *args, **kwargs) if h_bkg: if h_subtotal: h_subtotal.Add(h_bkg) else: h_subtotal = h_bkg.Clone() if h_subtotal: h_bkgs.append(h_subtotal) dsid = bkg[0] n_bkgs.append(dsid) else: dsid = bkg assert isinstance(dsid, str) h_bkg = None if dsid.isdigit(): ## mc backgrounds sp = bkgsearchpath % int(dsid) newx = '%s::%s::%s' % (sp, treename, x) h_bkg = ipyhep.tree.project(newx, *args, **kwargs) else: ## data-driven backgrounds assert dsid == 'fakes' or dsid == 'efakes' sp = datadrivensearchpath % dsid newx = '%s::%s::%s' % (sp, treename, x) h_bkg = ipyhep.tree.project(newx, *args, **kwargs) if h_bkg: h_bkgs.append(h_bkg) n_bkgs.append(dsid) if h_bkgs: stuff['h_bkgs'] = h_bkgs ## get signal histograms h_sigs = list() n_sigs = list() if sigs: for dsid in sigs: sp = sigsearchpath % int(dsid) newx = '%s::%s::%s' % (sp, treename, x) h_sig = ipyhep.tree.project(newx, *args, **kwargs) if h_sig: h_sigs.append(h_sig) n_sigs.append(dsid) if h_sigs: stuff['h_sigs'] = h_sigs assert h_sigs ## style data if h_data: h_data.title = 'Data' h_data.linecolor = ipyhep.style.black h_data.linewidth = 2 h_data.markercolor = ipyhep.style.black h_data.markerstyle = 20 h_data.markersize = 1.2 h_data.fillstyle = ipyhep.style.fill_hollow h_data.drawstyle = 'PE' h_data.legendstyle = 'LP' ## scale and style background histograms if h_bkgs: assert len(h_bkgs) == len(n_bkgs), '%s\n%s' % (h_bkgs, n_bkgs) for h, dsid in zip(h_bkgs, n_bkgs): sf = ipyhep.sampleops.get_sf(dsid) if dsid.isdigit(): sf *= lumi / __ntuple_lumi h.Scale(sf) h.title = ipyhep.sampleops.get_label(dsid) h.linecolor = ipyhep.style.black h.linewidth = 1 h.markercolor = ipyhep.sampleops.get_color(dsid) h.fillcolor = ipyhep.sampleops.get_color(dsid) h.fillstyle = ipyhep.style.fill_solid h.legendstyle = 'F' ## calculate stat error on total background h_bkg_total = None if h_bkgs: for h_bkg in h_bkgs: if h_bkg_total: h_bkg_total.Add(h_bkg) else: h_bkg_total = h_bkg.Clone() stuff['h_bkg_total'] = h_bkg_total ## style h_bkg_total if h_bkg_total: h_bkg_total.title = 'stat. uncert.' h_bkg_total.linecolor = ipyhep.style.black h_bkg_total.linewidth = 1 h_bkg_total.markerstyle = 0 h_bkg_total.fillcolor = ipyhep.style.dark_gray h_bkg_total.fillstyle = ipyhep.style.fill_lines h_bkg_total.drawstyle = 'E2' h_bkg_total.legendstyle = 'LF' ## scale and style signal histograms if h_sigs: assert len(h_sigs) == len(n_sigs) for h, dsid in zip(h_sigs, n_sigs): sf = ipyhep.sampleops.get_sf(dsid) sf *= lumi / __ntuple_lumi h.Scale(sf) h.title = ipyhep.sampleops.get_label(dsid) h.linecolor = ipyhep.sampleops.get_color(dsid) h.linewidth = 3 h.fillstyle = ipyhep.style.fill_hollow h.markerstyle = 0 h.drawstyle = 'HIST' h.legendstyle = 'L' ## build list of all_hists all_hists = list() main_hists = list() if h_data: all_hists.append(h_data) main_hists.append(h_data) if h_bkgs: all_hists.extend(h_bkgs) main_hists.extend(h_bkgs) if h_bkg_total: all_hists.append(h_bkg_total) main_hists.append(h_bkg_total) if h_sigs: all_hists.extend(h_sigs) ## get statistics if all_hists: stats_list = list() for h in all_hists: stats_list.extend(get_stats(h)) html = convert_table_to_html(convert_stats_to_table(stats_list)) stuff['html'] = html ## renormalize for bin widths bins = kwargs.pop('bins', None) if bins and isinstance(bins, list): for h in all_hists: renormalize_for_bin_widths(h, bins) ## stack background histograms if h_bkgs: assert len(h_bkgs) == len(n_bkgs), '%s\n%s' % (h_bkgs, n_bkgs) h_bkgs.reverse() n_bkgs.reverse() hstack = HistStack() for h in h_bkgs: hstack.Add(h) hstack.title = 'stack sum' hstack.drawstyle = 'HIST' stuff['stack'] = hstack h_bkgs.reverse() n_bkgs.reverse() # ## convert data to TGraphAsymmErrors # g_data = None # if h_data: # if __use_poissonize: # g_data = poissonize.GetPoissonizedGraph(h_data) # else: # g_data = ROOT.TGraphAsymmErrors() # i_g = 0 # nbins = h_data.GetNbinsX() # for i_bin in xrange(1, nbins+1): # skip underflow/overflow # c = h_data.GetBinContent(i_bin) # e = h_data.GetBinError(i_bin) # if c != 0.0: # g_data.SetPoint(i_g, h_data.GetBinCenter(i_bin), c) # g_ratio.SetPointError(i_g, # h_data.GetBinWidth(i_bin)/2., # h_data.GetBinWidth(i_bin)/2., # e, # e) # i_g += 1 ## build list of objects to draw objects = list() if h_bkgs: objects.append(stuff['stack']) objects.append(stuff['h_bkg_total']) if h_sigs: objects.extend(h_sigs) if h_data: objects.append(h_data) ## set xlimits and ylimits ypadding = 0.21 logy_crop_value = 7e-3 xmin, xmax, ymin, ymax = 0.0, 1.0, 0.0, 1.0 if objects: xmin, xmax, ymin, ymax = get_limits(objects, logx=logx, logy=logy, ypadding=ypadding, logy_crop_value=logy_crop_value) if logy: ymin = 7e-3 else: ymin = 0.0 xlimits = (xmin, xmax) ylimits = (ymin, ymax) stuff['xlimits'] = xlimits stuff['ylimits'] = ylimits ## remove xtitle for do_ratio _xtitle = xtitle if h_data and h_bkg_total and kwargs.get('do_ratio'): _xtitle = '' ## make canvas canvas = Canvas(800, 600) stuff['canvas'] = canvas ## draw the objects if objects: canvas.cd() draw(objects, pad=canvas, xtitle=_xtitle, ytitle=ytitle, xlimits=xlimits, ylimits=ylimits) ## set log x/y, for some reason doesn't work before draw if logx or logy: if logx: canvas.SetLogx() if logy: canvas.SetLogy() canvas.Update() ## draw blind_line if has_blinded_data: if isinstance(blind, tuple): blind_list = list(blind) else: blind_list = [blind] blind_lines = list() for bl in blind_list: line_y1 = ymin line_y2 = ymax blind_line = ROOT.TLine(bl, line_y1, bl, line_y2) blind_line.SetLineColor(ROOT.kGray + 2) blind_line.SetLineStyle(7) blind_line.SetLineWidth(2) blind_line.Draw() blind_lines.append(blind_line) stuff['blind_lines'] = blind_lines canvas.Update() ## legend lefty = True if h_bkg_total: lefty = is_left_sided(h_bkg_total) elif h_data: lefty = is_left_sided(h_data) elif h_sigs: lefty = is_left_sided(h_sigs[0]) if main_hists: header = '%.1f fb^{-1}, 13 TeV' % (lumi / 1000.0) if lefty: legend = Legend(main_hists, pad=canvas, header=header, textsize=16, topmargin=0.03, leftmargin=0.60, rightmargin=0.02, entrysep=0.01, entryheight=0.04) else: legend = Legend(main_hists, pad=canvas, header=header, textsize=16, topmargin=0.03, leftmargin=0.03, rightmargin=0.59, entrysep=0.01, entryheight=0.04) legend.Draw() stuff['legend'] = legend if h_sigs: # header = 'ATLAS Internal' header = '' if lefty: legend2 = Legend(h_sigs, pad=canvas, header=header, textsize=16, topmargin=0.03, leftmargin=0.37, rightmargin=0.23, entrysep=0.01, entryheight=0.04) else: legend2 = Legend(h_sigs, pad=canvas, header=header, textsize=16, topmargin=0.03, leftmargin=0.20, rightmargin=0.40, entrysep=0.01, entryheight=0.04) legend2.Draw() stuff['legend2'] = legend2 ## do_ratio if h_data and h_bkg_total and kwargs.get('do_ratio'): ## top canvas top_canvas = stuff.pop('canvas') stuff['top_canvas'] = top_canvas ## make SM/SM with error band: h_ratio_band i_sfratio = int(kwargs.get('sfratio', -1)) if i_sfratio < 0: # ratio plot of Data/Model h_ratio_band = h_bkg_total.Clone() nbins = h_ratio_band.GetNbinsX() for i_bin in xrange(nbins + 2): h_ratio_band.SetBinContent(i_bin, 1.0) c = h_bkg_total.GetBinContent(i_bin) e = h_bkg_total.GetBinError(i_bin) / c if c > 0.0 else 0.0 h_ratio_band.SetBinError(i_bin, e) stuff['h_ratio_band'] = h_ratio_band else: # ratio plot of Scale Factor for ith background hi = h_bkgs[i_sfratio] h_ratio_band = hi.Clone() nbins = h_ratio_band.GetNbinsX() for i_bin in xrange(nbins + 2): h_ratio_band.SetBinContent(i_bin, 1.0) c = hi.GetBinContent(i_bin) e = hi.GetBinError(i_bin) / c if c > 0.0 else 0.0 h_ratio_band.SetBinError(i_bin, e) stuff['h_ratio_band'] = h_ratio_band ## make data/(SM) h_ratio if i_sfratio < 0: h_ratio = h_data.Clone() h_ratio.Divide(h_data, h_bkg_total, 1.0, 1.0) stuff['h_ratio'] = h_ratio else: ## SF1 = 1.0 + (data - MCtot) / MC1 sfname = kwargs.get('sfname') sffile = kwargs.get('sffile') if not sfname: sfname = 'h_sf' hi = h_bkgs[i_sfratio] h_numer = h_data.Clone() h_numer.Add(h_bkg_total, -1.0) ## do the division h_ratio = h_data.Clone(sfname) h_ratio.Divide(h_numer, hi, 1.0, 1.0) ## add the 1.0 nbins = h_ratio.GetNbinsX() for i_bin in xrange(nbins + 2): c = h_ratio.GetBinContent(i_bin) h_ratio.SetBinContent(i_bin, c + 1.0) h_ratio_band.SetBinContent(i_bin, c + 1.0) ## ignore bins with no data for SF for i_bin in xrange(nbins + 2): c = h_data.GetBinContent(i_bin) if c <= 0: h_ratio.SetBinContent(i_bin, 0.0) h_ratio.SetBinError(i_bin, 0.0) h_ratio_band.SetBinError(i_bin, 0.0) stuff['h_ratio'] = h_ratio if sffile: f_out = ipyhep.file.write(h_ratio, sffile) # f_out.Close() ## convert ratio to a TGraphErrors so that Draw('E0') ## shows error bars for points off the pad g_ratio = ROOT.TGraphErrors() i_g = 0 for i_bin in xrange(1, nbins + 1): # skip underflow/overflow ratio_content = h_ratio.GetBinContent(i_bin) if ratio_content != 0.0: g_ratio.SetPoint(i_g, h_ratio.GetBinCenter(i_bin), ratio_content) g_ratio.SetPointError(i_g, h_ratio.GetBinWidth(i_bin) / 2., h_ratio.GetBinError(i_bin)) i_g += 1 else: h_ratio.SetBinError(i_bin, 0.0) stuff['g_ratio'] = g_ratio ## style ratio h_ratio_band.title = 'bkg uncert.' if i_sfratio < 0: h_ratio_band.linecolor = ipyhep.style.yellow else: h_ratio_band.linecolor = ipyhep.style.light_gray h_ratio_band.linewidth = 0 h_ratio_band.markerstyle = 0 if i_sfratio < 0: h_ratio_band.fillcolor = ipyhep.style.yellow else: h_ratio_band.linecolor = ipyhep.style.light_gray h_ratio_band.fillstyle = ipyhep.style.fill_solid h_ratio_band.drawstyle = 'E2' h_ratio_band.legendstyle = 'F' h_ratio.title = 'ratio' h_ratio.linecolor = ipyhep.style.black h_ratio.linewidth = 2 h_ratio.markercolor = ipyhep.style.black h_ratio.markerstyle = 20 h_ratio.markersize = 1.2 h_ratio.fillstyle = ipyhep.style.fill_hollow h_ratio.drawstyle = 'PE' h_ratio.legendstyle = 'LP' ## bottom canvas bottom_canvas = Canvas(800, 600) bottom_canvas.cd() stuff['bottom_canvas'] = bottom_canvas ## set ratio ylimits ratio_min = kwargs.get('ratio_min', -0.2) ratio_max = kwargs.get('ratio_max', 2.2) ratio_ylimits = (ratio_min, ratio_max) ## draw ratio band if i_sfratio < 0: _ytitle = 'Data / Model' else: hi = h_bkgs[i_sfratio] _ytitle = 'SF(%s)' % hi.title draw([h_ratio_band], pad=bottom_canvas, xtitle=xtitle, ytitle=_ytitle, xlimits=xlimits, ylimits=ratio_ylimits) ## set log x/y, for some reason doesn't work before draw? if logx: bottom_canvas.SetLogx() bottom_canvas.Update() ### make horiz lines in ratio plot every 0.5: line_ys = [ y / 10.0 for y in range(10 * int(round(ratio_min)), 10 * int(round(ratio_max)) + 5, 5) ] line_x1 = canvas.GetUxmin() line_x2 = canvas.GetUxmax() line_xwidth = abs(line_x2 - line_x1) lines = [] for line_y in line_ys: line = ROOT.TLine(line_x1 + 0.02 * line_xwidth, line_y, line_x2 - 0.02 * line_xwidth, line_y) line.SetLineWidth(1) line.SetLineStyle(7) if line_y == 1.0: line.SetLineColor(ROOT.kGray + 2) else: line.SetLineColor(ROOT.kGray + 0) line.Draw() lines.append(line) stuff['lines'] = lines ## draw blind_line if has_blinded_data: if isinstance(blind, tuple): blind_list = list(blind) else: blind_list = [blind] blind_lines = list() for bl in blind_list: line_y1 = ymin line_y2 = ymax blind_line = ROOT.TLine(bl, line_y1, bl, line_y2) blind_line.SetLineColor(ROOT.kGray + 2) blind_line.SetLineStyle(7) blind_line.SetLineWidth(2) blind_line.Draw() blind_lines.append(blind_line) stuff['blind_lines2'] = blind_lines canvas.Update() ## draw ratio g_ratio.Draw('PE0') # h_ratio.GetYaxis().SetRangeUser(ratio_min, ratio_max) # h_ratio.Draw('PE,SAME') ## shared canvas shared_canvas = Canvas(800, 800) shared_plot = plot_shared_axis(top_canvas, bottom_canvas, canvas=shared_canvas, split=0.35, axissep=0.01) stuff['canvas'] = shared_canvas canvas = shared_canvas ## save figures save = kwargs.get('save') if save is None: # NOTE: save can be False to skip saving save = ['pdf', 'png'] if save: ipyhep.file.save_figures(canvas, x, save) global results results = stuff return stuff
if rebin is not None: hist.rebin(rebin) # exclusion, so we don't need to plot it if hist.title in plots_path.get('exclude', []): continue if group.get('stack it', False): # overwrite with solid when stacking hist.fillstyle = 'solid' stackHists.append(hist) else: soloHists.append(hist) hstack = HistStack(name=h.path) # for some reason, this causes noticable slowdowns hstack.drawstyle = 'hist' map(hstack.Add, stackHists[::-1]) # this is where we would set various parameters of the min, max and so on? # need to set things like min, max, change to log, etc for hstack and soloHists normalizeTo = plots_path.get('normalize', plots_config.get('normalize', None)) if normalizeTo is not None: dataScale = 0. if normalizeTo not in [hist.title for hist in soloHists]: raise ValueError("Could not find %s as a solo hist for normalizing to." % normalizeTo) for hist in soloHists: if hist.title == normalizeTo: dataScale = hist.integral() mcScale = 0. for hist in hstack: mcScale += hist.integral() if mcScale != 0.: normalizeFactor = dataScale/mcScale