예제 #1
0
    def evaluate_gradient(cls):
        m = loadnpy('m_new')
        f = problem.func(m)
        g = problem.grad(m)

        savetxt('f_new', f)
        savenpy('g_new', g)

        if PAR.OPTIMIZE in ['SRVM']:
            optimize.update_SRVM()
예제 #2
0
 def evaluate_gradient(cls):
     m = loadnpy('m_new')
     f = problem.func(m)
     g = problem.grad(m)
     savetxt('f_new', f)
     savenpy('g_new', g)
예제 #3
0
 def evaluate_function(cls):
     m = loadnpy('m_try')
     f = problem.func(m)
     savetxt('f_try', f)
 def evaluate_gradient(cls):
     m = loadnpy('m_new')
     f = problem.func(m)
     g = problem.grad(m)
     savetxt('f_new',f)
     savenpy('g_new',g)
 def evaluate_function(cls):
     m = loadnpy('m_try')
     f = problem.func(m)
     savetxt('f_try',f)