def define_jobs_context(self, context): boot_root = self.get_boot_root() data_central = self.get_data_central() GlobalConfig.global_load_dir('default') recipe_agentlearn_by_parallel_concurrent(context, data_central, Exp23.explogs_learn, n=8, only_agents=['exp23_diffeof', 'exp23_diffeo_fast']) recipe_agentlearn_by_parallel(context, data_central, Exp23.explogs_learn, only_agents=['stats2']) from diffeo2dds_learn.programs.devel.save_video import video_visualize_diffeo_stream1_robot for c, id_robot in iterate_context_names(context, Exp23.robots): out = os.path.join(context.get_output_dir(), 'videos', '%s-diffeo_stream1.mp4' % id_robot) c.comp_config(video_visualize_diffeo_stream1_robot, id_robot=id_robot, boot_root=boot_root, out=out) for id_robot in Exp23.robots: recipe_episodeready_by_convert2(context, boot_root, id_robot) jobs_publish_learning_agents_robots(context, boot_root, Exp23.agents, Exp23.robots)
def define_jobs_context(self, context): rm = context.get_report_manager() rm.set_html_resources_prefix('jbds-nav') logs = set(self.get_explogs_by_tag('navigation')) logs = list(logs) assert len(logs) >= 4 data_central = self.get_data_central() recipe_episodeready_by_convert2(context, data_central.get_boot_root()) recipe_navigation_map1(context, data_central) for c, id_explog in iterate_context_explogs(context, logs): explog = get_conftools_explogs().instance(id_explog) # Get the map that we need annotation_navigation = explog.get_annotations()['navigation'] id_explog_map = annotation_navigation['map'] id_robot = annotation_navigation['robot'] # if not 'params' in annotation_navigation: # self.error('incomplete %r' % id_explog) # continue navigation_params = annotation_navigation['params'] nmap = c.get_resource(RP_NAVIGATION_MAP, id_episode=id_explog_map, id_robot=id_robot) out_base = os.path.join(c.get_output_dir(), '%s' % id_explog) c.comp_config(reconstruct_servo_state, id_explog, id_robot, nmap, out_base=out_base, navigation_params=navigation_params, job_id='reconstruct') extra_dep = [c.get_resource(RM_EPISODE_READY, id_robot=id_robot, id_episode=id_explog)] nmap_dist = c.comp_config(nmap_distances, data_central, id_episode=id_explog, id_robot=id_robot, nmap=nmap, extra_dep=extra_dep) report_keys = dict(id_robot=id_robot, id_episode=id_explog, id_episode_map=id_explog_map) r = c.comp(report_nmap_distances, nmap, nmap_dist) c.add_report(r, 'nmap_distances', **report_keys) ep = c.get_resource(RM_EPISODE_READY, id_episode=id_explog, id_robot=id_robot) poses = c.comp_config(poses_from_episode, data_central=data_central, id_robot=id_robot, id_episode=id_explog, extra_dep=[ep]) ep0 = c.get_resource(RM_EPISODE_READY, id_episode=id_explog_map, id_robot=id_robot) poses0 = c.comp_config(poses_from_episode, data_central=data_central, id_robot=id_robot, id_episode=id_explog_map, extra_dep=[ep0]) r = c.comp(report_trajectory, poses, poses0) c.add_report(r, 'trajectory', **report_keys)
def jobs_learn_real(context, data_central, real_robots, explogs_learn): for id_robot in real_robots: recipe_agentlearn_by_parallel(context, data_central, only_robots=[id_robot], episodes=explogs_learn) boot_root = data_central.get_boot_root() for id_robot in real_robots: recipe_episodeready_by_convert2(context, boot_root, id_robot)
def define_jobs_context(self, context): boot_config = get_boot_config() boot_config.agents.instance(Exp20.agents[0]) boot_root = self.get_boot_root() data_central = self.get_data_central() recipe_episodeready_by_convert2(context, boot_root, id_robot=Exp20.id_robot) recipe_agentlearn_by_parallel(context, data_central, Exp20.explogs_learn) jobs_publish_learning(context, Exp20.agents, id_robot=Exp20.id_robot)
def define_jobs_context(self, context): boot_root = self.get_boot_root() data_central = self.get_data_central() recipe_agentlearn_by_parallel(context, data_central, Exp21.explogs_learn) for id_robot in Exp21.robots: recipe_episodeready_by_convert2(context, boot_root, id_robot) jobs_publish_learning_agents_robots(context, boot_root, Exp21.agents, Exp21.robots)
def define_jobs_context(self, context): boot_root = self.get_boot_root() data_central = self.get_data_central() GlobalConfig.global_load_dir('default') recipe_agentlearn_by_parallel_concurrent_reps(context, data_central, Exp32.explogs_learn, n=8, max_reps=10) for id_robot in Exp32.robots: recipe_episodeready_by_convert2(context, boot_root, id_robot) jobs_publish_learning_agents_robots(context, boot_root, Exp32.agents, Exp32.robots)
def define_jobs_context(self, context): boot_root = self.get_boot_root() data_central = self.get_data_central() GlobalConfig.global_load_dir("default") recipe_agentlearn_by_parallel_concurrent_reps( context, data_central, Exp27.explogs_learn, n=8, max_reps=20, only_agents=["exp23_diffeof"] ) recipe_agentlearn_by_parallel(context, data_central, Exp27.explogs_learn, only_agents=["stats2", "cmdstats"]) for id_robot in Exp27.robots: recipe_episodeready_by_convert2(context, boot_root, id_robot) jobs_publish_learning_agents_robots(context, boot_root, Exp27.agents, Exp27.robots)
def define_jobs_context(self, context): from pkg_resources import resource_filename # @UnresolvedImport config_dir = resource_filename("yc1304.uzhturtle", "config") GlobalConfig.global_load_dir(config_dir) GlobalConfig.global_load_dir("${DATASET_UZHTURTLE}") rm = context.get_report_manager() rm.set_html_resources_prefix("uzh-turtle-plots") data_central = self.get_data_central() id_robot = "uzhturtle_un1_cf1_third" recipe_episodeready_by_convert2(context, boot_root=self.get_boot_root()) logs = list(self.get_explogs_by_tag("uzhturtle")) for c, id_explog in iterate_context_explogs(context, logs): jobs_turtleplot(c, data_central, id_robot, id_episode=id_explog)
def define_jobs_context(self, context): boot_root = self.get_boot_root() data_central = self.get_data_central() GlobalConfig.global_load_dir('default') recipe_agentlearn_by_parallel(context, data_central, Exp29.explogs_learn) for id_robot in Exp29.robots: recipe_episodeready_by_convert2(context, boot_root, id_robot) combinations = iterate_context_names_pair(context, Exp29.nmaps, Exp29.robots) for c, id_episode, id_robot in combinations: jobs_navigation_map(c, outdir=context.get_output_dir(), data_central=data_central, id_robot=id_robot, id_episode=id_episode)
def define_jobs_context(self, context): boot_root = self.get_boot_root() data_central = self.get_data_central() agents = Exp31.agents robots = Exp31.robots explogs_learn = Exp31.explogs_learn explogs_test = Exp31.explogs_test recipe_agentlearn_by_parallel(context, data_central, explogs_learn) for id_robot in robots: recipe_episodeready_by_convert2(context, boot_root, id_robot) jobs_servo_field_agents(context, id_robot=id_robot, agents=agents, episodes=explogs_test) jobs_publish_learning_agents_robots(context, boot_root, agents, robots)
def define_jobs_context(self, context): boot_root = self.get_boot_root() data_central = self.get_data_central() GlobalConfig.global_load_dir('default') recipe_agentlearn_by_parallel_concurrent(context, data_central, \ Exp24.explogs_learn, n=8, only_agents=['exp23_diffeof', 'exp23_diffeo_fast']) recipe_agentlearn_by_parallel(context, data_central, Exp24.explogs_learn, only_agents=['stats2']) for id_robot in Exp24.robots: recipe_episodeready_by_convert2(context, boot_root, id_robot) jobs_publish_learning_agents_robots(context, boot_root, Exp24.agents, Exp24.robots)
def define_jobs_context(self, context): boot_root = self.get_boot_root() data_central = self.get_data_central() # for vehicles GlobalConfig.global_load_dir('${B11_SRC}/bvapps/bdse1') recipe_episodeready_by_convert2(context, boot_root) recipe_episodeready_by_simulation_tranches(context, data_central, explorer=Exp42.explorer, episodes=Exp42.simulated_episodes, max_episode_len=30, episodes_per_tranche=50) for c in Exp42.combinations: recipe_agentlearn_by_parallel(context, data_central, c['episodes'], only_robots=[c['id_robot']], intermediate_reports=False, episodes_per_tranche=50) jobs_publish_learning_agents_robots(context, boot_root, Exp42.agents, Exp42.robots)