예제 #1
0
def main():
    # initialize EGM interface instance
    egm = rpi_abb_irc5.EGM()

    # initialize a robot instance
    abb_robot = abb_irb6640_180_255_robot()

    # desired force
    #Fd = 1000

    # desired velocity in y
    #vdy = -0.5

    # feedback gain
    Kp = 0.0002
    Kd = 0.0008
    Ki = 0.0004

    # time step
    delta_t = 0.004

    # initial configuration in degree
    init = [-91.85, 2.53, 38.20, 0.00, 49.27, -1.85]

    n = 2000

    # quadprog to solve for joint velocity
    quadprog = qp.QuadProg(abb_robot)

    # force sensor interface
    try:
        if (len(sys.argv) < 2):
            raise Exception('IP address of ATI Net F/T sensor required')
        host = sys.argv[1]
        netft = rpi_ati_net_ft.NET_FT(host)
        netft.set_tare_from_ft()

        netft.start_streaming()
    except KeyboardInterrupt:
        pass

    ####### trapezoidal desired force in z #######
    tt = np.linspace(0, 4 * np.pi, n)
    desired_f = np.zeros((1, n))
    vdy = np.zeros((1, n))

    # form trap force and trap motion
    for i in range(n):
        if tt[i] >= 0 and tt[i] < np.pi:
            desired_f[0, i] = 50 + 302 * tt[i]
            vdy[0, i] = -0.2 * tt[i]
        elif tt[i] >= np.pi and tt[i] < 3 * np.pi:
            desired_f[0, i] = 50 + 302 * np.pi
            vdy[0, i] = -0.2 * np.pi
        else:
            desired_f[0, i] = 50 + 302 * np.pi - 302 * (tt[i] - 3 * np.pi)
            vdy[0, i] = -0.2 * np.pi + 0.2 * (tt[i] - 3 * np.pi)
    #plt.plot(vdy[0, :])
    #plt.show()

    ######## change here ########
    #pos = 0
    #acce = 0
    #v_l_pre = 0
    #########

    # output force
    force_out = np.zeros((6, n))

    # pos of eef
    eef_pos = np.zeros((3, n))
    eef_orien = np.zeros((4, n))

    # timestamp
    tim = np.zeros((1, n))

    # referece height of coupon that achieves desired force
    z_ref = 0.89226
    x_ref = 0
    y_ref = -1.35626

    # determine if robot has reached the initial configuration init
    tag = True
    while tag:
        res, state = egm.receive_from_robot(.1)
        if res:
            #print sum(np.rad2deg(state.joint_angles))- sum(init)
            if np.fabs(sum(np.rad2deg(state.joint_angles)) - sum(init)) < 1e-3:
                tag = False

    time.sleep(1)
    print '--------start force control--------'

    ### drain the force sensor buffer ###
    for i in range(1000):
        flag, ft = netft.read_ft_streaming(.1)

    ### drain the EGM buffer ###
    for i in range(1000):
        res, state = egm.receive_from_robot(.1)

    flag, ft = netft.read_ft_streaming(.1)
    F0 = ft[5]
    print F0
    time.sleep(2)

    cnt = 0
    while cnt < n:
        # receive EGM feedback
        res, state = egm.receive_from_robot(.1)

        if not res:
            continue

# forward kinematics
        pose = rox.fwdkin(abb_robot, state.joint_angles)
        R = pose.R
        flag, ft = netft.read_ft_streaming(.1)

        # map torque/force from sensor frame to base frame
        T_b = np.matmul(R, ft[0:3])
        F_b = np.matmul(R, ft[3:None])
        F = F_b[2]  # first three torques and then three forces

        Fd0 = 50
        # do not start motion in y until robot barely touches coupon (50 N)
        if F < Fd0 - 0.1 and cnt == 0:
            z = pose.p[2]
            # account for the robot base and length of tool
            z = z + 0.026 - 0.18 + 0.00353
            # will shake if gain too large, here use 0.0002
            v_z = Kp * 10 * (F - Fd0)
            v_l = np.array([0, 0, v_z])
        else:
            # deadzone for Fx
            if abs(F_b[0]) < 30:
                F_x = 0

            # deadzone for Fy
            if abs(F_b[1]) < 30:
                F_y = 0

            v_x = Kp / 2 * (F_x - 0)
            v_y = vdy[0, cnt] + Kp / 2 * (F_y - 0)
            z = pose.p[2]

            #print desired_f[0, cnt]
            # account for the robot base and length of tool
            z = z + 0.026 - 0.18 + 0.00353
            v_z = Kp * (F - desired_f[0, cnt])
            v_l = np.array([v_x, v_y, v_z])

            force_out[:, cnt] = np.concatenate((T_b, F_b), axis=0)

            eef_pos[:, cnt] = pose.p

            quat = rox.R2q(R)
            eef_orien[:, cnt] = quat
            tim[0, cnt] = time.time()

            cnt += 1

        print F

        #### change here ####
        #pos = pos + v_l[2]*delta_t
        #acce = (v_l[2]-v_l_pre)/delta_t

        # formalize entire twist
        spatial_velocity_command = np.array([0, 0, 0, v_l[0], v_l[1], v_l[2]])

        # emergency stop if force too large
        if abs(F) > 2000:
            spatial_velocity_command = np.array([0, 0, 0, 0, 0, 0])
            print "force too large, stop..."

        # solve for joint velocity
        # Jacobian inverse
        #J = rox.robotjacobian(abb_robot, state.joint_angles)
        #joints_vel = np.linalg.pinv(J).dot(spatial_velocity_command)

        # QP
        joints_vel = quadprog.compute_joint_vel_cmd_qp(
            state.joint_angles, spatial_velocity_command)

        # commanded joint position setpoint to EGM
        q_c = state.joint_angles + joints_vel * delta_t

        egm.send_to_robot(q_c)

        ####### change here ########
        #v_l_pre = v_l[2]

        #if t_new - t_pre < delta_t:
        #    time.sleep(delta_t - t_new + t_pre)

        if cnt == n:
            csv_dat = np.hstack((desired_f.T, vdy.T, force_out.T, eef_pos.T,
                                 eef_orien.T, tim.T))
            np.savetxt(
                'trap_force_trap_motion_020520.csv',
                csv_dat,
                fmt='%6.5f',
                delimiter=',')  #, header='desired joint, optimal input')
            print "done"
예제 #2
0
파일: main.py 프로젝트: djivani/quadprog
def main():
    #Init the joystick
    pygame.init()
    pygame.joystick.init()

    joy = pygame.joystick.Joystick(0)
    joy.init()
    clock = pygame.time.Clock()

    egm = rpi_abb_irc5.EGM()

    OpenRAVE_obj = OpenRAVEObject()

    # Initialize Robot Parameters
    ex, ey, ez, n, P, q_ver, H, ttype, dq_bounds = robotParams()

    # Initialize Control Parameters
    # initial joint angles
    """ """
    #q = np.zeros((6, 1))
    q = np.array([0, 0, 0, 0, np.pi / 2, 0]).reshape(6, 1)

    R, pos = fwdkin(q, ttype, H, P, n)

    orien = Quaternion(matrix=R)
    orien = np.array([orien[0], orien[1], orien[2], orien[3]]).reshape(1, 4)

    pos_v = np.zeros((3, 1))
    ang_v = np.array([1, 0, 0, 0])
    dq = np.zeros((int(n), 1))

    # joint limits
    lower_limit = np.transpose(
        np.array([
            -170 * np.pi / 180, -65 * np.pi / 180, -np.pi, -300 * np.pi / 180,
            -120 * np.pi / 180, -2 * np.pi
        ]))
    upper_limit = np.transpose(
        np.array([
            170 * np.pi / 180, 85 * np.pi / 180, 70 * np.pi / 180,
            300 * np.pi / 180, 120 * np.pi / 180, 2 * np.pi
        ]))

    # inequality constraints
    h = np.zeros((15, 1))
    sigma = np.zeros((13, 1))
    dhdq = np.vstack((np.hstack((np.eye(6), np.zeros((6, 1)), np.zeros(
        (6, 1)))), np.hstack((-np.eye(6), np.zeros((6, 1)), np.zeros(
            (6, 1)))), np.zeros((1, 8))))

    # velocities
    w_t = np.zeros((3, 1))
    v_t = np.zeros((3, 1))

    # keyboard controls
    # define position and angle step
    inc_pos_v = 0.01  # m/s
    inc_ang_v = 0.5 * np.pi / 180  # rad/s

    # optimization params
    er = 0.05
    ep = 0.05
    epsilon = 0  # legacy param for newton iters

    # parameters for inequality constraints
    c = 0.5
    eta = 0.1
    epsilon_in = 0.15
    E = 0.005

    Ke = 1

    # create a handle of these parameters for interactive modifications
    obj = ControlParams(ex, ey, ez, n, P, H,
                        ttype, dq_bounds, q, dq, pos, orien, pos_v,
                        ang_v.reshape(1, 4), w_t, v_t, epsilon, inc_pos_v,
                        inc_ang_v, 0, er, ep, 0)

    dt = 0
    counter = 0

    while not obj.params['controls']['stop']:

        # Loop reading the joysticks
        for event in pygame.event.get():
            pass

        if counter != 0:
            toc = timeit.default_timer()
            dt = toc - tic

        tic = timeit.default_timer()

        counter = counter + 1

        if counter != 0:
            obj.params['controls']['q'] = obj.params['controls'][
                'q'] + obj.params['controls']['dq'] * dt * 0.1

            res, state = egm.receive_from_robot(0.01)

            if res:
                a = np.array(state.joint_angles)
                a = a * 180 / np.pi
                print "Joints: " + str(a)
                egm.send_to_robot([
                    float(x) * 180 / np.pi for x in obj.params['controls']['q']
                ])
                print "Target Joints: " + str([
                    float(x) * 180 / np.pi for x in obj.params['controls']['q']
                ])

            pp, RR = fwdkin_alljoints(obj.params['controls']['q'], ttype,
                                      obj.params['defi']['H'],
                                      obj.params['defi']['P'],
                                      obj.params['defi']['n'])

            # parameters for qp
            obj.params['controls']['pos'] = pp[:, -1]

            orien_tmp = Quaternion(matrix=RR[:, :, -1])
            obj.params['controls']['orien'] = np.array(
                [orien_tmp[0], orien_tmp[1], orien_tmp[2],
                 orien_tmp[3]]).reshape(1, 4)

            stop, Closest_Pt, Closest_Pt_env = OpenRAVE_obj.CollisionReport(
                obj.params['controls']['q'][0], obj.params['controls']['q'][1],
                obj.params['controls']['q'][2], obj.params['controls']['q'][3],
                obj.params['controls']['q'][4], obj.params['controls']['q'][5])

            # check self-collision
            if (stop):
                print 'robot is about to self-collide, robot stopped.'
                obj.params['controls']['pos_v'] = np.array([0, 0,
                                                            0]).reshape(3, 1)
                obj.params['controls']['ang_v'] = np.array([1, 0, 0,
                                                            0]).reshape(1, 4)

            J2C_Joint = Joint2Collision(Closest_Pt, pp)

            J_eef = getJacobian(obj.params['controls']['q'],
                                obj.params['defi']['ttype'],
                                obj.params['defi']['H'],
                                obj.params['defi']['P'],
                                obj.params['defi']['n'])

            v_tmp = Closest_Pt - obj.params['controls']['pos']

            v_tmp2 = (pp[:, -1] - pp[:, -3])
            p_norm2 = norm(v_tmp2)
            v_tmp2 = v_tmp2 / p_norm2

            # determine if the closest point is on the panel
            if (norm(v_tmp) < 1.5
                    and np.arccos(np.inner(v_tmp, v_tmp2) / norm(v_tmp)) *
                    180 / np.pi < 95):
                print '---the closest point is on the panel---'
                J2C_Joint = 6
                J = getJacobian3(obj.params['controls']['q'],
                                 obj.params['defi']['ttype'],
                                 obj.params['defi']['H'],
                                 obj.params['defi']['P'],
                                 obj.params['defi']['n'], Closest_Pt,
                                 J2C_Joint)
                #J,p_0_tmp = getJacobian2(obj.params['controls']['q'], obj.params['defi']['ttype'], obj.params['defi']['H'], obj.params['defi']['P'], obj.params['defi']['n'],Closest_Pt,J2C_Joint)

            #if (J2C_Joint < 4):
            else:
                J, p_0_tmp = getJacobian2(obj.params['controls']['q'],
                                          obj.params['defi']['ttype'],
                                          obj.params['defi']['H'],
                                          obj.params['defi']['P'],
                                          obj.params['defi']['n'], Closest_Pt,
                                          J2C_Joint)

            #else:
            #   J = getJacobian3(obj.params['controls']['q'], obj.params['defi']['ttype'], obj.params['defi']['H'], obj.params['defi']['P'], obj.params['defi']['n'], Closest_Pt,J2C_Joint)

            x = joy.get_axis(0)
            if (abs(x) < .2):
                x = 0
            else:
                x = (abs(x) - .2) / .8 * cmp(x, 0)

            # control of linear velocity
            b1 = joy.get_button(0)
            b2 = joy.get_button(1)
            b3 = joy.get_button(2)

            # control of angular velocity
            b4 = joy.get_button(3)
            b5 = joy.get_button(4)
            b6 = joy.get_button(5)

            # emergency stop
            b9 = joy.get_button(8)

            if (b9 == 1):
                print 'robot stopped'
                obj.params['controls']['pos_v'] = np.array([0, 0,
                                                            0]).reshape(3, 1)
                obj.params['controls']['ang_v'] = np.array([1, 0, 0,
                                                            0]).reshape(1, 4)

            button = [x, b1, b2, b3, b4, b5, b6]
            func_xbox(button, obj)

            # update joint velocities
            axang = quat2axang(obj.params['controls']['ang_v'])

            # desired rotational velocity
            vr = axang[3] * axang[0:3]

            # desired linear velocity
            V_desired = obj.params['controls']['pos_v']

            Q = getqp_H(obj.params['controls']['dq'], J_eef, vr.reshape(3, 1),
                        obj.params['controls']['pos_v'],
                        obj.params['opt']['er'], obj.params['opt']['ep'])

            # make sure Q is symmetric
            Q = 0.5 * (Q + Q.T)

            f = getqp_f(obj.params['controls']['dq'], obj.params['opt']['er'],
                        obj.params['opt']['ep'])

            Q = matrix(Q, tc='d')
            f = matrix(f, tc='d')

            # bounds for qp
            if obj.params['opt']['upper_dq_bounds']:
                bound = obj.params['defi']['dq_bounds'][1, :]
            else:
                bound = obj.params['defi']['dq_bounds'][0, :]

            LB = np.vstack((-0.1 * bound.reshape(6, 1), 0, 0))
            UB = np.vstack((0.1 * bound.reshape(6, 1), 1, 1))
            LB = matrix(LB, tc='d')
            UB = matrix(UB, tc='d')

            # inequality constrains A and b
            h[0:6] = obj.params['controls']['q'] - lower_limit.reshape(6, 1)
            h[6:12] = upper_limit.reshape(6, 1) - obj.params['controls']['q']

            dx = Closest_Pt_env[0] - Closest_Pt[0]
            dy = Closest_Pt_env[1] - Closest_Pt[1]
            dz = Closest_Pt_env[2] - Closest_Pt[2]
            """ """
            dist = np.sqrt(dx**2 + dy**2 + dz**2)

            # derivative of dist w.r.t time
            der = np.array([
                dx * (dx**2 + dy**2 + dz**2)**(-0.5),
                dy * (dx**2 + dy**2 + dz**2)**(-0.5),
                dz * (dx**2 + dy**2 + dz**2)**(-0.5)
            ])
            """ """
            h[12] = dist - 0.05
            """ """ """ """
            #dhdq[12, 0:6] = np.dot(-der.reshape(1, 3), J_eef2[3:6,:])
            dhdq[12, 0:6] = np.dot(-der[None, :], J[3:6, :])

            sigma[0:12] = inequality_bound(h[0:12], c, eta, epsilon_in, E)
            sigma[12] = inequality_bound(h[12], c, eta, epsilon_in, E)

            A = -dhdq
            b = -sigma

            A = matrix([
                matrix(A, tc='d'),
                matrix(np.eye(8), tc='d'),
                matrix(-np.eye(8), tc='d')
            ])

            b = matrix([matrix(b, tc='d'), UB, -LB])
            """ """

            solvers.options['show_progress'] = False

            sol = solvers.qp(Q, f, A, b)
            dq_sln = sol['x']

            b7 = joy.get_button(6)
            b8 = joy.get_button(7)

            # set desired eef position and orientation
            if (b7 == 1 and b8 == 1):
                x_des = pp[:, -1]
                R_des = RR[:, :, -1]
                print 'desired position set'
                print 'desired position set'

            # it seems that the equality constraints works better when close to the obstacle
            # equality constraints for maintaining end-effector position (pure rotation)
            if (b7 == 1):
                print 'pure rotational movement'
                A_eq_pos = np.hstack((J_eef[3:6, :], np.zeros((3, 2))))
                b_eq_pos = 0.05 * Ke * (x_des - pp[:, -1])

                A_eq_pos = matrix(A_eq_pos, tc='d')
                b_eq_pos = matrix(b_eq_pos, (3, 1))

                dq_sln = solvers.qp(Q, f, A, b, A_eq_pos, b_eq_pos)['x']

            # equality constraints for maintaining end-effector orientation (pure translation)
            if (b8 == 1):
                print 'pure translational movement'
                A_eq = np.hstack((J_eef[0:3, :], np.zeros((3, 2))))
                w_skew = logm(np.dot(RR[:, :, -1], R_des.T))
                w = np.array([w_skew[2, 1], w_skew[0, 2], w_skew[1, 0]])
                b_eq = -0.05 * Ke * w

                A_eq = matrix(A_eq, tc='d')
                b_eq = matrix(b_eq, (3, 1))

                dq_sln = solvers.qp(Q, f, A, b, A_eq, b_eq)['x']

            if len(dq_sln) < obj.params['defi']['n']:
                obj.params['controls']['dq'] = np.zeros((6, 1))
                V_scaled = 0
                print 'No Solution'
            else:
                obj.params['controls']['dq'] = dq_sln[
                    0:int(obj.params['defi']['n'])]
                V_scaled = dq_sln[-1] * V_desired
                vr_scaled = dq_sln[-2] * vr.reshape(3, 1)

            V_linear = np.dot(J_eef[3:6, :], obj.params['controls']['dq'])
            V_rot = np.dot(J_eef[0:3, :], obj.params['controls']['dq'])

            print '------Scaled desired linear velocity------'
            print V_scaled

            print '------Real linear velocity by solving quadratic programming------'
            print V_linear

            print '------Scaled desired angular velocity------'
            print vr_scaled

            print '------Real angular velocity by solving quadratic programming------'
            print V_rot

    pygame.quit()
예제 #3
0
def main():
    # initialize EGM interface instance
    egm = rpi_abb_irc5.EGM()

    # initialize a robot instance
    abb_robot = abb_irb6640_180_255_robot()

    # desired force
    Fd = -1000

    # desired velocity in x
    vdx = 1

    # spring constant
    k = 50000

    # position of object in z
    pos_obj = 1.5

    # feedback gain
    Kp = 0.005
    Kd = 0.2
    Ki = 0.001

    # time step
    delta_t = 0.004 * 4

    # initial configuration in degree
    init = [0, 0, 0, 0, 90, 0]

    # quadprog to solve for joint velocity
    quadprog = qp.QuadProg(abb_robot)

    # determine if robot has reached the initial configuration init
    tag = True
    while tag:
        res, state = egm.receive_from_robot(.1)
        if res:
            #print np.fabs(sum(state.joint_angles) - sum(b))
            if np.fabs(sum(state.joint_angles) - sum(init)) < 1e-2:
                tag = False

    time.sleep(0.5)
    print '--------start force control--------'

    pose = rox.fwdkin(abb_robot, np.deg2rad(state.joint_angles))

    while pose.p[0] < 2:
        # receive EGM feedback
        res, state = egm.receive_from_robot(.1)

        if not res:
            continue

# forward kinematics to calculate current position of eef
        pose = rox.fwdkin(abb_robot, np.deg2rad(state.joint_angles))

        if pose.p[2] >= pos_obj:
            F = 0
            v_l = np.array([0, 0, -Kp * (F - Fd)])
        else:
            F = k * (pose.p[2] - pos_obj)
            v_l = np.array([vdx, 0, -Kp * (F - Fd)])

        print F

        # formalize entire twist
        spatial_velocity_command = np.array([0, 0, 0, v_l[0], v_l[1], v_l[2]])

        # solve for joint velocity
        # Jacobian inverse
        #J = rox.robotjacobian(abb_robot, np.deg2rad(state.joint_angles))
        #joints_vel = np.linalg.pinv(J).dot(spatial_velocity_command)

        # QP
        joints_vel = quadprog.compute_joint_vel_cmd_qp(
            np.deg2rad(state.joint_angles), spatial_velocity_command)

        # commanded joint position setpoint to EGM
        q_c = np.deg2rad(state.joint_angles) + joints_vel * delta_t

        egm.send_to_robot(q_c)
        egm.send_to_robot(q_c)
        # joint angle at previous time step
        #q_pre = q_new
        #t_pre = t_new

        ######### change here ########
        q_hat = q_hat + qhat_dot * delta_t

    err = out - out_pre
    err_flip2 = np.fliplr(err)

    return err_flip2


# initialize EGM interface instance
egm = rpi_abb_irc5.EGM()

# initialize a robot instance
abb_robot = abb_irb6640_180_255_robot()

# desired force
Fdz = 1000

# desired velocity in y
vdy = -1

# spring constant N/m (the real one is 2.4378e7)
k = 2.4378e5

# position of object in z (m)
pos_obj = 1.05
예제 #5
0
def track(camera):
    # EVENT LISTENER
    octave.addpath('/home/Shuyang/Downloads/update/Velocity_Control_Constrained_ABB_OpenRAVE')

    egm=rpi_abb_irc5.EGM()

# Initialize Robot Parameters
    
    [ex,ey,ez,n,P,q_nouse,H,ttype,dq_bounds] = octave.feval('robotParams', nout=9)

# Initialize Control Parameters
# initial joint angles
    q = np.zeros((6, 1))
    [R,pos] = octave.feval('fwdkin', q,ttype,H,P,n, nout=2)
    dq = np.zeros((int(n),1))
    
    # velocities
    w_t = np.zeros((3, 1))
    v_t = np.zeros((3, 1))
    
    # create a handle of these parameters for interactive modifications
    obj = ControlParams(ex,ey,ez,n,P,H,ttype,dq_bounds,q,dq,pos,orien,pos_v,ang_v[None, :],w_t,v_t,epsilon,view_port,axes_lim,inc_pos_v,inc_ang_v,0,er,ep,0)

    dt = 0
    counter = 0
       
    req_exit = []
    StateVector = []
    listener = threading.Thread(target=input_thread, args=(req_exit,))
    listener.start()
    tag_index = 0
    Roc = np.array([[0.4860,-0.1868,-0.8537], [0.0583,   -0.9678,    0.2450], [-0.8720,   -0.1688,   -0.4595]])    
    Poc = np.array([[3579.5], [-826.5], [1416.7]])

    # Kalman Filter Parameters
    Phi = np.matrix('1 0 0 1 0 0; 0 1 0 0 1 0; 0 0 1 0 0 1; 0 0 0 1 0 0; 0 0 0 0 1 0; 0 0 0 0 0 1')
    R = np.eye(3,3)*1000 
    Q = np.eye(6)*1000
    H = np.eye(3,6)
    Cov = np.eye(6,6)*1500

    while not req_exit:
        if counter != 0:
        	end = time.time()
        	dt = end-start
            
        start = time.time()
        counter = counter + 1
        
        if counter != 0:               
            J_eef = octave.feval('getJacobian', obj.params['controls']['q'], obj.params['defi']['ttype'], obj.params['defi']['H'], obj.params['defi']['P'], obj.params['defi']['n'])
            
            data = []
            
            # Search if the camera module fails to find the tag for 30 consecutive frames
            for x in range(0,30):
            	data = camera.get_all_poses()[tag_index]
            	if data != []:
            	    break;

        	# SEARCH TERMINATED DUE TO BREAK SIGNAL
            if data == []:
            	print "No data."
            	return
        
			# Follow tag while it is in view
            else:                
            	Z = data[0] 
            	
            	# Kalman Filter: Initialization 
            	if StateVector == []:
            		StateVector = np.concatenate( (Z,np.array([[10],[10],[10]])),axis =0 )	    
    	        	# Kalman Filter: Prediction
            		StateVector = np.matmul(Phi, StateVector)
            		Cov = np.matmul(np.matmul(Phi, Cov),np.transpose(Phi)) + Q
            	
            		# Kalman Filter: Update
            		K = np.matmul(np.matmul(Cov, np.transpose(H)),np.linalg.inv(np.matmul(H,np.matmul(Cov, np.transpose(H))) +R))
            		StateVector = StateVector + np.matmul(K,(Z-np.matmul(H,StateVector)))
            		Cov = (np.eye(6,6)-K*H)*Cov        
            		Z_est = np.array(StateVector[:3]) 
            
            		Poa = np.matmul(Roc, Z_est) + Poc
            		Poa = Coordinate_mapping(Poa)
            		print "Poa:", np.transpose(Poa)
            		obj.params['controls']['dq'] = np.linalg.inv(J_eef[3:6, :])*(Poa - obj.params['controls']['q'])
            		
            		# desired joint velocity
            		obj.params['controls']['q'] = obj.params['controls']['q'] + obj.params['controls']['dq']*dt
            		res, state = egm.receive_from_robot(0.01)
      
            		if res:
		                a = np.array(state.joint_angles)
        		        a = a * 180 / np.pi
        		        print "Joints: " + str(a)
        		        egm.send_to_robot([float(x)*180/np.pi for x in obj.params['controls']['q']])
        		        print "Target Joints: " + str([float(x)*90/np.pi for x in obj.params['controls']['q']])