예제 #1
0
    def get_batch(self):
        # slice roidb
        cur_from = self.cur
        cur_to = min(cur_from + self.batch_size, self.size)
        roidb = [self.roidb[self.index[i]] for i in range(cur_from, cur_to)]

        # decide multi device slice
        work_load_list = self.work_load_list
        ctx = self.ctx
        if work_load_list is None:
            work_load_list = [1] * len(ctx)
        assert isinstance(work_load_list, list) and len(work_load_list) == len(ctx), \
            "Invalid settings for work load. "
        slices = _split_input_slice(self.batch_size, work_load_list)

        # get testing data for multigpu
        data_list = []
        label_list = []
        for islice in slices:
            iroidb = [roidb[i] for i in range(islice.start, islice.stop)]
            data, label = get_rpn_batch(iroidb, self.cfg)
            data_list.append(data)
            label_list.append(label)

        # pad data first and then assign anchor (read label)
        data_tensor = tensor_vstack([batch['data'] for batch in data_list])
        for data, data_pad in zip(data_list, data_tensor):
            data['data'] = data_pad[np.newaxis, :]

        new_label_list = []
        for data, label in zip(data_list, label_list):
            # infer label shape
            data_shape = {k: v.shape for k, v in data.items()}
            del data_shape['im_info']
            _, feat_shape, _ = self.feat_sym.infer_shape(**data_shape)
            feat_shape = [int(i) for i in feat_shape[0]]

            # add gt_boxes to data for e2e
            data['gt_boxes'] = label['gt_boxes'][np.newaxis, :, :]

            # assign anchor for label
            label = assign_anchor(feat_shape, label['gt_boxes'], data['im_info'], self.cfg,
                                  self.feat_stride, self.anchor_scales,
                                  self.anchor_ratios, self.allowed_border,
                                  self.normalize_target, self.bbox_mean, self.bbox_std)
            new_label_list.append(label)

        all_data = dict()
        for key in self.data_name:
            all_data[key] = tensor_vstack([batch[key] for batch in data_list])

        all_label = dict()
        for key in self.label_name:
            pad = -1 if key == 'label' else 0
            all_label[key] = tensor_vstack([batch[key] for batch in new_label_list], pad=pad)

        self.data = [mx.nd.array(all_data[key]) for key in self.data_name]
        self.label = [mx.nd.array(all_label[key]) for key in self.label_name]
예제 #2
0
    def get_batch(self):
        # slice roidb
        cur_from = self.cur
        cur_to = min(cur_from + self.batch_size, self.size)
        roidb = [self.roidb[self.index[i]] for i in range(cur_from, cur_to)]

        # decide multi device slice
        work_load_list = self.work_load_list
        ctx = self.ctx
        if work_load_list is None:
            work_load_list = [1] * len(ctx)
        assert isinstance(work_load_list, list) and len(work_load_list) == len(ctx), \
            "Invalid settings for work load. "
        slices = _split_input_slice(self.batch_size, work_load_list)

        # get testing data for multigpu
        data_list = []
        label_list = []
        for islice in slices:
            iroidb = [roidb[i] for i in range(islice.start, islice.stop)]
            data, label = get_rpn_batch(iroidb, self.cfg)
            data_list.append(data)
            label_list.append(label)

        # pad data first and then assign anchor (read label)
        data_tensor = tensor_vstack([batch['data'] for batch in data_list])
        for data, data_pad in zip(data_list, data_tensor):
            data['data'] = data_pad[np.newaxis, :]

        new_label_list = []
        for data, label in zip(data_list, label_list):
            # infer label shape
            data_shape = {k: v.shape for k, v in data.items()}
            del data_shape['im_info']
            _, feat_shape, _ = self.feat_sym.infer_shape(**data_shape)
            feat_shape = [int(i) for i in feat_shape[0]]

            # add gt_boxes to data for e2e
            data['gt_boxes'] = label['gt_boxes'][np.newaxis, :, :]

            # assign anchor for label
            label = assign_anchor(feat_shape, label['gt_boxes'], data['im_info'], self.cfg,
                                  self.feat_stride, self.anchor_scales,
                                  self.anchor_ratios, self.allowed_border)
            new_label_list.append(label)

        all_data = dict()
        for key in self.data_name:
            all_data[key] = tensor_vstack([batch[key] for batch in data_list])

        all_label = dict()
        for key in self.label_name:
            pad = -1 if key == 'label' else 0
            all_label[key] = tensor_vstack([batch[key] for batch in new_label_list], pad=pad)

        self.data = [mx.nd.array(all_data[key]) for key in self.data_name]
        self.label = [mx.nd.array(all_label[key]) for key in self.label_name]
예제 #3
0
 def infer_shape(self):
     _, feat_shape, _ = self.feat_sym.infer_shape(
         data=self.max_data_shapes['data'])
     im_info = [self.max_h, self.max_w, 1.0]
     label = assign_anchor(feat_shape[0], np.zeros((0, 5)), im_info,
                           self.cfg, self.allowed_border)
     label = [label[k] for k in self.label_names]
     label_shapes = [
         tuple([self.batch_size] + list(v.shape[1:])) for v in label
     ]
     self._provide_label = zip(self.label_names, label_shapes)
     self._provide_data = [(k, self.max_data_shapes[k])
                           for k in self.data_names]
예제 #4
0
 def infer_shape(self, max_data_shape=None, max_label_shape=None):
     """ Return maximum data and label shape for single gpu """
     if max_data_shape is None:
         max_data_shape = []
     if max_label_shape is None:
         max_label_shape = []
     max_shapes = dict(max_data_shape + max_label_shape)
     input_batch_size = max_shapes['data'][0]
     im_info = [[max_shapes['data'][2], max_shapes['data'][3], 1.0]]
     _, feat_shape, _ = self.feat_sym.infer_shape(**max_shapes)
     label = assign_anchor(feat_shape[0], np.zeros((0, 5)), im_info, self.cfg,
                           self.feat_stride, self.anchor_scales, self.anchor_ratios, self.allowed_border)
     label = [label[k] for k in self.label_name]
     label_shape = [(k, tuple([input_batch_size] + list(v.shape[1:]))) for k, v in zip(self.label_name, label)]
     return max_data_shape, label_shape
 def infer_shape(self, max_data_shape=None, max_label_shape=None):
     """ Return maximum data and label shape for single gpu """
     if max_data_shape is None:
         max_data_shape = []
     if max_label_shape is None:
         max_label_shape = []
     max_shapes = dict(max_data_shape + max_label_shape)
     input_batch_size = max_shapes['data'][0]
     im_info = [[max_shapes['data'][2], max_shapes['data'][3], 1.0]]
     _, feat_shape, _ = self.feat_sym.infer_shape(**max_shapes)
     label = assign_anchor(feat_shape[0], np.zeros((0, 5)), im_info, self.cfg,
                           self.feat_stride, self.anchor_scales, self.anchor_ratios, self.allowed_border)
     label = [label[k] for k in self.label_name]
     label_shape = [(k, tuple([input_batch_size] + list(v.shape[1:]))) for k, v in zip(self.label_name, label)]
     return max_data_shape, label_shape
예제 #6
0
    def parfetch(self, iroidb):
        # get testing data for multigpu
        data, label = get_rpn_batch(iroidb, self.cfg)
        data_shape = {k: v.shape for k, v in data.items()}
        del data_shape['im_info']
        _, feat_shape, _ = self.feat_sym.infer_shape(**data_shape)
        feat_shape = [int(i) for i in feat_shape[0]]

        # add gt_boxes to data for e2e
        data['gt_boxes'] = label['gt_boxes'][np.newaxis, :, :]

        # assign anchor for label
        label = assign_anchor(feat_shape, label['gt_boxes'], data['im_info'],
                              self.cfg, self.feat_stride, self.anchor_scales,
                              self.anchor_ratios, self.allowed_border)
        return {'data': data, 'label': label}
    def parfetch(self, iroidb):
        # get testing data for multigpu
        data, label = get_rpn_batch(iroidb, self.cfg)
        data_shape = {k: v.shape for k, v in data.items()}
        del data_shape['im_info']
        _, feat_shape, _ = self.feat_sym.infer_shape(**data_shape)
        feat_shape = [int(i) for i in feat_shape[0]]

        # add gt_boxes to data for e2e
        data['gt_boxes'] = label['gt_boxes'][np.newaxis, :, :]

        # assign anchor for label
        label = assign_anchor(feat_shape, label['gt_boxes'], data['im_info'], self.cfg,
                              self.feat_stride, self.anchor_scales,
                              self.anchor_ratios, self.allowed_border)
        return {'data': data, 'label': label}
예제 #8
0
    def parfetch(self, iroidb):
        # get testing data for multigpu
        data, label = get_rpn_pair_mv_batch(iroidb, self.cfg)

        #for k, v in data.items():
        #    print(k, v)
        data_shape = {k: v.shape for k, v in data.items()}
        #print(data_shape)
        del data_shape['im_info']
        del data_shape['data']

        data_shape1 = copy.deepcopy(data_shape)
        del data_shape1['eq_flag']
        del data_shape1['motion_vector']
        _, feat_shape, _ = self.feat_conv_3x3_relu.infer_shape(**data_shape1)
        #print('feat_shape: ', feat_shape)

        #print('shape: ', data['motion_vector'].shape)
        #print("size: ", int(feat_shape[0][2]), int(feat_shape[0][3]))
        data['motion_vector'] = data['motion_vector'].astype('float64')
        data['motion_vector'] = cv2.resize(
            data['motion_vector'],
            (int(feat_shape[0][3]), int(feat_shape[0][2])),
            interpolation=cv2.INTER_AREA)
        #print('data[\'motion_vector\'].shape: ', data['motion_vector'].shape)
        data['motion_vector'] = transform(data['motion_vector'], [0, 0])
        #print('data[\'motion_vector\'].shape: ', data['motion_vector'].shape)
        #print("data['motion_vector']: ", data['motion_vector'])
        #data['motion_vector'] = cv2.resize(data['motion_vector'], (36, 63))
        data_shape = {k: v.shape for k, v in data.items()}
        #print(data_shape)
        del data_shape['im_info']
        del data_shape['data']

        _, feat_shape, _ = self.feat_sym.infer_shape(**data_shape)
        feat_shape = [int(i) for i in feat_shape[0]]

        # add gt_boxes to data for e2e
        data['gt_boxes'] = label['gt_boxes'][np.newaxis, :, :]

        # assign anchor for label
        label = assign_anchor(feat_shape, label['gt_boxes'], data['im_info'],
                              self.cfg, self.feat_stride, self.anchor_scales,
                              self.anchor_ratios, self.allowed_border,
                              self.normalize_target, self.bbox_mean,
                              self.bbox_std)
        return {'data': data, 'label': label}
예제 #9
0
    def parfetch_offline_memory_fromrec(self, iroidb):
        # get testing data for multigpu
        data, label = get_rpn_triple_batch_fromrec_offline(
            iroidb, self.cfg, self.video_index_dict, self.rec)
        data_shape = {k: v.shape for k, v in data.items()}
        del data_shape['im_info']
        _, feat_shape, _ = self.feat_sym.infer_shape(**data_shape)
        feat_shape = [int(i) for i in feat_shape[0]]

        # add gt_boxes to data for e2e
        data['gt_boxes'] = label['gt_boxes'][np.newaxis, :, :]

        # assign anchor for label
        label = assign_anchor(feat_shape, label['gt_boxes'], data['im_info'],
                              self.cfg, self.feat_stride, self.anchor_scales,
                              self.anchor_ratios, self.allowed_border,
                              self.normalize_target, self.bbox_mean,
                              self.bbox_std)
        return {'data': data, 'label': label}
예제 #10
0
    def parfetch(self, iroidb):
        # get testing data for multigpu
        data, label = get_rpn_pair_batch(iroidb, self.cfg)
        data_shape = {k: v.shape for k, v in data.items()}
        del data_shape['im_info']
        _, feat_shape, _ = self.feat_sym.infer_shape(**data_shape)
        feat_shape = [int(i) for i in feat_shape[0]]

        # add gt_boxes to data for e2e
        data['gt_boxes'] = label['gt_boxes'][np.newaxis, :, :]

        # assign anchor for label
        label = assign_anchor(feat_shape, label['gt_boxes'], data['im_info'], self.cfg,
                              self.feat_stride, self.anchor_scales,
                              self.anchor_ratios, self.allowed_border,
                              self.normalize_target, self.bbox_mean, self.bbox_std)
        # feat_height, feat_width = feat_shape[-2:]
        # gt_boxes = np.copy(data['gt_boxes']) / self.feat_stride
        # gt_boxes = np.around(gt_boxes).astype(np.int)
        # gt_boxes[..., 0] = np.maximum(gt_boxes[..., 0], 0)
        # gt_boxes[..., 1] = np.maximum(gt_boxes[..., 1], 0)
        # gt_boxes[..., 2] = np.minimum(gt_boxes[..., 2], feat_width)
        # gt_boxes[..., 3] = np.minimum(gt_boxes[..., 3], feat_height)
        # feat_weight = np.zeros([feat_shape[0], feat_shape[-2], feat_shape[-1]])
        # i = 0
        #
        # def setWeights(gt_box):
        #     x1, y1, x2, y2, _ = gt_box
        #     feat_weight[i, y1:y2, x1:x2] = 1
        #
        # # only support the one image
        # for index in range(feat_shape[0]):
        #     i = index
        #     list(map(setWeights, gt_boxes[index]))
        # # feat_weight = np.tile(np.expand_dims(feat_weight, axis=1), (1, 1024, 1, 1))
        # label['wrap_feat_weight'] = feat_weight

        return {'data': data, 'label': label}
예제 #11
0
파일: loader.py 프로젝트: wangshy31/tmp
    def parfetch(self, iroidb):
        # get testing data for multigpu
        data, label = get_rpn_triple_batch(iroidb, self.cfg)
        data_shape = {k: v.shape for k, v in data.items()}
        del data_shape['im_info']
        _, feat_shape, _ = self.feat_sym.infer_shape(**data_shape)
        feat_shape = [int(i) for i in feat_shape[0]]

        # add gt_boxes to data for e2e
        data['gt_boxes'] = label['gt_boxes'][np.newaxis, :, :]
        data['occluded'] = label['occluded']
        data['delta_bef_gt'] = label['delta_bef_gt']
        data['delta_aft_gt'] = label['delta_aft_gt']
        # assign anchor for label
        label = assign_anchor(feat_shape, label['gt_boxes'], data['im_info'],
                              self.cfg, self.feat_stride, self.anchor_scales,
                              self.anchor_ratios, self.allowed_border,
                              self.normalize_target, self.bbox_mean,
                              self.bbox_std)
        #print '###################################begin parfetch##########################'
        #print 'data[gt_boxes]', data['gt_boxes']
        #print 'data[delta_bef]', data['delta_bef']
        #print 'data[delta_aft]', data['delta_aft']
        return {'data': data, 'label': label}
예제 #12
0
def get_rpn_batch(roidb,
                  target_scale,
                  sym,
                  cfg,
                  data_buf,
                  allowed_border=0,
                  max_gts=100,
                  kps_dim=0,
                  stride=32):
    """
    allowed_border:

    max_gts:
        max number of groundtruths
    kps_dim:
        when trainning with keypoints, set kps_dim >0
    """
    num_images = len(roidb)
    assert num_images > 0, 'empty list !'

    # get images
    t0 = time.time()  ###
    target_size, max_size = target_scale
    imgs, roidb = get_image(roidb, target_size, max_size)
    max_h = max([img.shape[0] for img in imgs])
    max_w = max([img.shape[1] for img in imgs])
    stride = float(stride)
    max_h = int(np.ceil(max_h / stride) * stride)
    max_w = int(np.ceil(max_w / stride) * stride)
    t1 = time.time()  ###

    # assign anchor labels
    anchor_labels = []
    _, feat_shape, _ = sym.infer_shape(data=(num_images, 3, max_h, max_w))
    for i in range(num_images):
        if roidb[i]['gt_classes'].size > 0:
            assert np.sum(roidb[i]['gt_classes'] ==
                          0) == 0, 'should not have background boxes!'
        gt_boxes = roidb[i]['boxes']
        im_info = [max_h, max_w, roidb[i]['im_info'][2]]
        # assign anchors
        anchor_labels.append(
            assign_anchor(feat_shape[0], gt_boxes, im_info, cfg,
                          allowed_border))
    t2 = time.time()  ###

    # shapes
    shapes = {
        'data': (num_images, 3, max_h, max_w),
        'im_info': (num_images, 3),
        'gt_boxes': (num_images, max_gts, 5),
        'label':
        tuple([num_images] + list(anchor_labels[0]['label'].shape[1:])),
        'bbox_target':
        tuple([num_images] + list(anchor_labels[0]['bbox_target'].shape[1:])),
        'bbox_weight':
        tuple([num_images] + list(anchor_labels[0]['bbox_weight'].shape[1:])),
    }
    if kps_dim > 0:
        shapes['gt_kps'] = ((num_images, max_gts, kps_dim))

    # reshape buffers
    batch = dict()
    for k in data_buf:
        s = shapes[k]
        c = np.prod(s)
        batch[k] = np.frombuffer(data_buf[k], dtype=np.float32,
                                 count=c).reshape(s)
        batch[k].fill(0)

    # transform image data and gt labels
    bgr_means = cfg.network.PIXEL_MEANS
    for i, img in enumerate(imgs):
        h, w = img.shape[:2]
        for j in range(3):
            batch['data'][i, j, :h, :w] = img[:, :, 2 - j] - bgr_means[2 - j]
        batch['im_info'][i, :] = [max_h, max_w, roidb[i]['im_info'][2]]
        num_gt = roidb[i]['boxes'].shape[0]
        batch['gt_boxes'][i, :num_gt, :4] = roidb[i]['boxes']
        batch['gt_boxes'][i, :num_gt, 4] = roidb[i]['gt_classes']
        if kps_dim > 0:
            batch['gt_kps'][i, :num_gt] = roidb[i]['keypoints']
        batch['label'][i] = anchor_labels[i]['label']
        batch['bbox_target'][i] = anchor_labels[i]['bbox_target']
        batch['bbox_weight'][i] = anchor_labels[i]['bbox_weight']
    t3 = time.time()  ###

    #print 't_image=%.3f\tt_assign=%.3f\tt_trans=%.3f\tt_all=%.3f' % (t1-t0, t2-t1, t3-t2, t3-t0) ###
    return shapes