def calculateOrbitalRadiusOperator( measurement1, measurement2 ): ''' To solve the radius of a circular orbit, we need Newton's gravitational constant and two of the following three items: G = Newton's gravitational constant m = planetary mass (i.e., mass of the thing being orbited) T = orbital period v = orbital velocity ---- radius in terms of period and mass r = cbrt( T^2*G*m/4*pi^2 ) ---- radius in terms of velocity and mass r = G*m/v^2 ---- radius in terms of velocity and period r = v*T/2*pi ''' validUnitTypes = [ [ 'mass', 'time' ], [ 'velocity', 'time' ], [ 'mass', 'velocity' ], ] arguments = matchUnitTypes( [ measurement1, measurement2 ], validUnitTypes ) if not arguments: raise ValueError( '\'orbital_radius\' requires specific measurement types (see help)' ) if 'mass' in arguments: mass = arguments[ 'mass' ] if 'time' in arguments: bPeriod = True period = arguments[ 'time' ] else: bPeriod = False velocity = arguments[ 'velocity' ] else: # period and velocity period = arguments[ 'time' ] velocity = arguments[ 'velocity' ] radius = divide( multiply( velocity, period ), fmul( 2, pi ) ) return radius.convert( 'meter' ) if bPeriod: # period and mass term = divide( getProduct( [ getPower( period, 2 ), getConstant( 'newton_constant' ), mass ] ), fmul( 4, power( pi, 2 ) ) ) radius = getRoot( term, 3 ) else: # velocity and mass radius = divide( multiply( getConstant( 'newton_constant' ), mass ), getPower( velocity, 2 ) ) return radius.convert( 'meter' )
def calculateOrbitalRadius( measurement1, measurement2 ): ''' To solve the radius of a circular orbit, we need Newton's gravitational constant and two of the following three items: G = Newton's gravitational constant m = planetary mass (i.e., mass of the thing being orbited) T = orbital period v = orbital velocity ---- radius in terms of period and mass r = cbrt( T^2*G*m/4*pi^2 ) ---- radius in terms of velocity and mass r = G*m/v^2 ---- radius in terms of velocity and period r = v*T/2*pi ''' validUnitTypes = [ [ 'mass', 'time' ], [ 'velocity', 'time' ], [ 'mass', 'velocity' ], ] arguments = matchUnitTypes( [ measurement1, measurement2 ], validUnitTypes ) if not arguments: raise ValueError( '\'orbital_radius\' requires specific measurement types (see help)' ) if 'mass' in arguments: mass = arguments[ 'mass' ] if 'time' in arguments: bPeriod = True period = arguments[ 'time' ] else: bPeriod = False velocity = arguments[ 'velocity' ] else: # period and velocity period = arguments[ 'time' ] velocity = arguments[ 'velocity' ] radius = divide( multiply( velocity, period ), fmul( 2, pi ) ) return radius.convert( 'meter' ) if bPeriod: # period and mass term = divide( getProduct( [ getPower( period, 2 ), getConstant( 'newton_constant' ), mass ] ), fmul( 4, power( pi, 2 ) ) ) radius = getRoot( term, 3 ) else: # velocity and mass radius = divide( multiply( getConstant( 'newton_constant' ), mass ), getPower( velocity, 2 ) ) return radius.convert( 'meter' )
def calculateDistance( measurement1, measurement2 ): validUnitTypes = [ [ 'length', 'time' ], [ 'velocity', 'time' ], [ 'acceleration', 'time' ], [ 'jerk', 'time' ], [ 'jounce', 'time' ] ] arguments = matchUnitTypes( [ measurement1, measurement2 ], validUnitTypes ) if not arguments: raise ValueError( '\'distance\' requires specific measurement types (see help)' ) time = arguments[ 'time' ] if 'length' in arguments: distance = arguments[ 'length' ] elif 'acceleration' in arguments: # acceleration and time distance = getProduct( [ fdiv( 1, 2 ), arguments[ 'acceleration' ], time, time ] ) elif 'jerk' in arguments: # jerk and time distance = calculateDistance( getProduct( [ fdiv( 1, 2 ), arguments[ 'jerk' ], time ] ), time ) elif 'jounce' in arguments: # jounce and time distance = calculateDistance( getProduct( [ fdiv( 1, 2 ), arguments[ 'jounce' ], time ] ), time ) else: # velocity and time distance = multiply( arguments[ 'velocity' ], time ) return distance.convert( 'meter' )
def getTetrahedronSurfaceArea( n ): if not isinstance( n, RPNMeasurement ): return getTetrahedronSurfaceArea( RPNMeasurement( real( n ), 'meter' ) ) if n.getDimensions( ) != { 'length' : 1 }: raise ValueError( '\'tetrahedron_area\' argument must be a length' ) return multiply( sqrt( 3 ), getPower( n, 2 ) )
def getDodecahedronVolume( n ): if not isinstance( n, RPNMeasurement ): return getDodecahedronVolume( RPNMeasurement( real( n ), 'meter' ) ) if n.getDimensions( ) != { 'length' : 1 }: raise ValueError( '\'dodecahedron_volume\' argument must be a length' ) return divide( multiply( fadd( 15, fmul( 7, sqrt( 5 ) ) ), getPower( n, 3 ) ), 4 ).convert( 'meter^3' )
def getOctahedronVolume( n ): if not isinstance( n, RPNMeasurement ): return getOctahedronVolume( RPNMeasurement( real( n ), 'meter' ) ) if n.getDimensions( ) != { 'length' : 1 }: raise ValueError( '\'octahedron_volume\' argument must be a length' ) return divide( multiply( sqrt( 2 ), getPower( n, 3 ) ), 3 )
def calculateOrbitalVelocity( measurement1, measurement2 ): ''' To solve the velocity of a circular orbit, we need Newton's gravitational constant and two of the following three items: G = Newton's gravitational constant m = planetary mass (i.e., mass of the thing being orbited) r = orbit radius (the distance from the center of mass) T = orbital period ---- velocity in terms of mass and radius v = sqrt( G*m/r ) ---- velocity in terms of radius and period v = 2*pi*r/T ---- velocity in terms of mass and period v = ( 2*pi*cbrt( T^2*G*m/4*pi^2 ) ) / T ''' validUnitTypes = [ [ 'mass', 'time' ], [ 'length', 'time' ], [ 'mass', 'length' ], ] arguments = matchUnitTypes( [ measurement1, measurement2 ], validUnitTypes ) if not arguments: raise ValueError( '\'orbital_velocity\' requires specific measurement types (see help)' ) if 'mass' in arguments: mass = arguments[ 'mass' ] if 'length' in arguments: bRadius = True radius = arguments[ 'length' ] else: bRadius = False period = arguments[ 'time' ] else: # radius and period radius = arguments[ 'length' ] period = arguments[ 'time' ] velocity = divide( getProduct( [ 2, pi, radius ] ), period ) return velocity.convert( 'meter/second' ) if bRadius: # mass and radius velocity = getRoot( divide( multiply( getConstant( 'newton_constant' ), mass ), radius ), 2 ) else: # mass and period term = divide( getProduct( [ period, period, getConstant( 'newton_constant' ), mass ] ), getProduct( [ 4, pi, pi ] ) ) velocity = divide( getProduct( [ 2, pi, getRoot( term, 3 ) ] ), period ) return velocity.convert( 'meter/second' )
def calculateOrbitalVelocityOperator( measurement1, measurement2 ): ''' To solve the velocity of a circular orbit, we need Newton's gravitational constant and two of the following three items: G = Newton's gravitational constant m = planetary mass (i.e., mass of the thing being orbited) r = orbit radius (the distance from the center of mass) T = orbital period ---- velocity in terms of mass and radius v = sqrt( G*m/r ) ---- velocity in terms of radius and period v = 2*pi*r/T ---- velocity in terms of mass and period v = ( 2*pi*cbrt( T^2*G*m/4*pi^2 ) ) / T ''' validUnitTypes = [ [ 'mass', 'time' ], [ 'length', 'time' ], [ 'mass', 'length' ], ] arguments = matchUnitTypes( [ measurement1, measurement2 ], validUnitTypes ) if not arguments: raise ValueError( '\'orbital_velocity\' requires specific measurement types (see help)' ) if 'mass' in arguments: mass = arguments[ 'mass' ] if 'length' in arguments: bRadius = True radius = arguments[ 'length' ] else: bRadius = False period = arguments[ 'time' ] else: # radius and period radius = arguments[ 'length' ] period = arguments[ 'time' ] velocity = divide( getProduct( [ 2, pi, radius ] ), period ) return velocity.convert( 'meter/second' ) if bRadius: # mass and radius velocity = getRoot( divide( multiply( getConstant( 'newton_constant' ), mass ), radius ), 2 ) else: # mass and period term = divide( getProduct( [ period, period, getConstant( 'newton_constant' ), mass ] ), getProduct( [ 4, pi, pi ] ) ) velocity = divide( getProduct( [ 2, pi, getRoot( term, 3 ) ] ), period ) return velocity.convert( 'meter/second' )
def calculateOrbitalPeriodOperator( measurement1, measurement2 ): ''' To solve the period of a circular orbit, we need Newton's gravitational constant and two of the following three items: G = Newton's gravitational constant m = planetary mass (i.e., mass of the thing being orbited) r = orbit radius (the distance from the center of mass) v = orbital velocity ---- period in terms of radius and mass T = 2*pi*sqrt( r^3/G*m ) ---- period in terms of radius and velocity T = 2*pi*r/v ---- period in terms of mass and velocity T = 2*pi*G*m/v^3 ''' validUnitTypes = [ [ 'mass', 'length' ], [ 'velocity', 'length' ], [ 'mass', 'velocity' ], ] arguments = matchUnitTypes( [ measurement1, measurement2 ], validUnitTypes ) if not arguments: raise ValueError( '\'orbital_period\' requires specific measurement types (see help)' ) if 'mass' in arguments: mass = arguments[ 'mass' ] if 'length' in arguments: bRadius = True radius = arguments[ 'length' ] else: bRadius = False velocity = arguments[ 'velocity' ] else: # radius and velocity radius = arguments[ 'length' ] velocity = arguments[ 'velocity' ] period = divide( getProduct( [ 2, pi, radius ] ), velocity ) return period.convert( 'second' ) if bRadius: # radius and mass term = divide( getPower( radius, 3 ), multiply( getConstant( 'newton_constant' ), mass ) ) period = getProduct( [ 2, pi, getRoot( term, 2 ) ] ) else: # velocity and mass period = divide( getProduct( [ 2, pi, getConstant( 'newton_constant' ), mass ] ), getPower( velocity, 3 ) ) return period.convert( 'second' )
def calculateOrbitalPeriod( measurement1, measurement2 ): ''' To solve the period of a circular orbit, we need Newton's gravitational constant and two of the following three items: G = Newton's gravitational constant m = planetary mass (i.e., mass of the thing being orbited) r = orbit radius (the distance from the center of mass) v = orbital velocity ---- period in terms of radius and mass T = 2*pi*sqrt( r^3/G*m ) ---- period in terms of radius and velocity T = 2*pi*r/v ---- period in terms of mass and velocity T = 2*pi*G*m/v^3 ''' validUnitTypes = [ [ 'mass', 'length' ], [ 'velocity', 'length' ], [ 'mass', 'velocity' ], ] arguments = matchUnitTypes( [ measurement1, measurement2 ], validUnitTypes ) if not arguments: raise ValueError( '\'orbital_period\' requires specific measurement types (see help)' ) if 'mass' in arguments: mass = arguments[ 'mass' ] if 'length' in arguments: bRadius = True radius = arguments[ 'length' ] else: bRadius = False velocity = arguments[ 'velocity' ] else: # radius and velocity radius = arguments[ 'length' ] velocity = arguments[ 'velocity' ] period = divide( getProduct( [ 2, pi, radius ] ), velocity ) return period.convert( 'second' ) if bRadius: # radius and mass term = divide( getPower( radius, 3 ), multiply( getConstant( 'newton_constant' ), mass ) ) period = getProduct( [ 2, pi, getRoot( term, 2 ) ] ) else: # velocity and mass period = divide( getProduct( [ 2, pi, getConstant( 'newton_constant' ), mass ] ), getPower( velocity, 3 ) ) return period.convert( 'second' )
def calculateAccelerationOperator( measurement1, measurement2 ): validUnitTypes = [ [ 'velocity', 'length' ], [ 'velocity', 'time' ], [ 'length', 'time' ], [ 'acceleration', 'time' ], [ 'acceleration', 'length' ], ] arguments = matchUnitTypes( [ measurement1, measurement2 ], validUnitTypes ) if 'acceleration' in arguments: acceleration = arguments[ 'acceleration' ] elif 'velocity' in arguments: if 'length' in arguments: acceleration = divide( getPower( arguments[ 'velocity' ], 2 ), multiply( arguments[ 'length' ], 2 ) ) else: acceleration = divide( arguments[ 'velocity' ], arguments[ 'time' ] ) elif 'length' in arguments and 'time' in arguments: acceleration = multiply( 2, divide( arguments[ 'length' ], getPower( arguments[ 'time' ], 2 ) ) ) return acceleration.convert( 'meter/second^2' )
def getRegularPolygonArea( n, k ): if real( n ) < 3: raise ValueError( 'the number of sides of the polygon cannot be less than 3,' ) if not isinstance( k, RPNMeasurement ): return getRegularPolygonArea( n, RPNMeasurement( real( k ), 'meter' ) ) dimensions = k.getDimensions( ) if dimensions != { 'length' : 1 }: raise ValueError( '\'polygon_area\' argument 2 must be a length' ) return multiply( fdiv( n, fmul( 4, tan( fdiv( pi, n ) ) ) ), getPower( k, 2 ) ).convert( 'meter^2' )
def calculateAcceleration( measurement1, measurement2 ): validUnitTypes = [ [ 'velocity', 'length' ], [ 'velocity', 'time' ], [ 'length', 'time' ], [ 'acceleration', 'time' ], [ 'acceleration', 'length' ], ] arguments = matchUnitTypes( [ measurement1, measurement2 ], validUnitTypes ) if 'acceleration' in arguments: acceleration = arguments[ 'acceleration' ] elif 'velocity' in arguments: if 'length' in arguments: acceleration = divide( getPower( arguments[ 'velocity' ], 2 ), multiply( arguments[ 'length' ], 2 ) ) else: acceleration = divide( arguments[ 'velocity' ], arguments[ 'time' ] ) elif 'length' in arguments and 'time' in arguments: acceleration = multiply( 2, divide( arguments[ 'length' ], getPower( arguments[ 'time' ], 2 ) ) ) return acceleration.convert( 'meter/second^2' )
def calculateSurfaceGravity( measurement1, measurement2 ): validUnitTypes = [ [ 'mass', 'density' ], [ 'mass', 'length' ], [ 'mass', 'volume' ], [ 'density', 'length' ], [ 'density', 'volume' ], ] arguments = matchUnitTypes( [ measurement1, measurement2 ], validUnitTypes ) if not arguments: raise ValueError( '\'surface_gravity\' requires length and mass measurements' ) if 'mass' in arguments: mass = arguments[ 'mass' ] if 'length' in arguments: length = arguments[ 'length' ] elif 'density' in arguments: volume = divide( mass, arguments[ 'density' ] ) length = getKSphereRadius( volume, 3 ) else: length = getKSphereRadius( arguments[ 'volume' ], 3 ) elif 'volume' in arguments: # density, volume volume = arguments[ 'volume' ] mass = multiply( arguments[ 'density' ], volume ) length = getKSphereRadius( volume, 3 ) else: # density, length length = arguments[ 'length' ] volume = getPower( length, 3 ) mass = multiply( arguments[ 'density' ], volume ) gravity = multiply( divide( mass, getPower( length, 2 ) ), getConstant( 'newton_constant' ) ) return gravity.convert( 'meters/seconds^2' )
def calculateSurfaceGravityOperator( measurement1, measurement2 ): validUnitTypes = [ [ 'mass', 'density' ], [ 'mass', 'length' ], [ 'mass', 'volume' ], [ 'density', 'length' ], [ 'density', 'volume' ], ] arguments = matchUnitTypes( [ measurement1, measurement2 ], validUnitTypes ) if not arguments: raise ValueError( '\'surface_gravity\' requires length and mass measurements' ) if 'mass' in arguments: mass = arguments[ 'mass' ] if 'length' in arguments: length = arguments[ 'length' ] elif 'density' in arguments: volume = divide( mass, arguments[ 'density' ] ) length = getKSphereRadius( volume, 3 ) else: length = getKSphereRadius( arguments[ 'volume' ], 3 ) elif 'volume' in arguments: # density, volume volume = arguments[ 'volume' ] mass = multiply( arguments[ 'density' ], volume ) length = getKSphereRadius( volume, 3 ) else: # density, length length = arguments[ 'length' ] volume = getPower( length, 3 ) mass = multiply( arguments[ 'density' ], volume ) gravity = multiply( divide( mass, getPower( length, 2 ) ), getConstant( 'newton_constant' ) ) return gravity.convert( 'meters/seconds^2' )
def getProduct( n ): if isinstance( n, RPNGenerator ): return getProduct( list( n ) ) if isinstance( n[ 0 ], ( list, RPNGenerator ) ): return [ getProduct( arg ) for arg in n ] if not n: return 0 if len( n ) == 1: return n[ 0 ] hasUnits = False for item in n: if isinstance( item, RPNMeasurement ): hasUnits = True break if hasUnits: result = RPNMeasurement( 1 ) for item in n: if isinstance( item, list ): return [ getProduct( arg ) for arg in item ] result = multiply( result, item ) return result if not n: return 0 if isinstance( n[ 0 ], list ): return [ getProduct( item ) for item in n ] return fprod( n )
def calculateVelocity( measurement1, measurement2 ): validUnitTypes = [ [ 'length', 'time' ], [ 'acceleration', 'length' ], [ 'jerk', 'length' ], [ 'jounce', 'length' ], [ 'velocity', 'time' ], [ 'velocity', 'length' ], [ 'acceleration', 'time' ], [ 'jerk', 'time' ], [ 'jounce', 'time' ], ] arguments = matchUnitTypes( [ measurement1, measurement2 ], validUnitTypes ) if 'velocity' in arguments: velocity = arguments[ 'velocity' ] elif 'length' in arguments: if 'time' in arguments: velocity = divide( arguments[ 'length' ], arguments[ 'time' ] ) elif 'acceleration' in arguments: acceleration = arguments[ 'acceleration' ] time = getRoot( multiply( divide( arguments[ 'length' ], acceleration ), 2 ), 2 ) velocity = multiply( acceleration, time ) elif 'jerk' in arguments: jerk = arguments[ 'jerk' ] time = getRoot( multiply( divide( arguments[ 'length' ], jerk ), 6 ), 3 ) velocity = getProduct( [ jerk, time, time, fdiv( 1, 2 ) ] ) elif 'jounce' in arguments: jounce = arguments[ 'jounce' ] time = getRoot( multiply( divide( arguments[ 'length' ], jounce ), 24 ), 4 ) velocity = getProduct( [ jounce, time, time, time, fdiv( 1, 6 ) ] ) elif 'acceleration' in arguments: velocity = divide( multiply( arguments[ 'acceleration' ], arguments[ 'time' ] ), 2 ) elif 'jerk' in arguments: velocity = divide( multiply( arguments[ 'jerk' ], getPower( arguments[ 'time' ], 2 ) ), 4 ) elif 'jounce' in arguments: velocity = divide( multiply( arguments[ 'jounce' ], getPower( arguments[ 'time' ], 3 ) ), 8 ) return velocity.convert( 'meter/second' )
def calculateVelocityOperator( measurement1, measurement2 ): validUnitTypes = [ [ 'length', 'time' ], [ 'acceleration', 'length' ], [ 'jerk', 'length' ], [ 'jounce', 'length' ], [ 'velocity', 'time' ], [ 'velocity', 'length' ], [ 'acceleration', 'time' ], [ 'jerk', 'time' ], [ 'jounce', 'time' ], ] arguments = matchUnitTypes( [ measurement1, measurement2 ], validUnitTypes ) if 'velocity' in arguments: velocity = arguments[ 'velocity' ] elif 'length' in arguments: if 'time' in arguments: velocity = divide( arguments[ 'length' ], arguments[ 'time' ] ) elif 'acceleration' in arguments: acceleration = arguments[ 'acceleration' ] time = getRoot( multiply( divide( arguments[ 'length' ], acceleration ), 2 ), 2 ) velocity = multiply( acceleration, time ) elif 'jerk' in arguments: jerk = arguments[ 'jerk' ] time = getRoot( multiply( divide( arguments[ 'length' ], jerk ), 6 ), 3 ) velocity = getProduct( [ jerk, time, time, fdiv( 1, 2 ) ] ) elif 'jounce' in arguments: jounce = arguments[ 'jounce' ] time = getRoot( multiply( divide( arguments[ 'length' ], jounce ), 24 ), 4 ) velocity = getProduct( [ jounce, time, time, time, fdiv( 1, 6 ) ] ) elif 'acceleration' in arguments: velocity = divide( multiply( arguments[ 'acceleration' ], arguments[ 'time' ] ), 2 ) elif 'jerk' in arguments: velocity = divide( multiply( arguments[ 'jerk' ], getPower( arguments[ 'time' ], 2 ) ), 4 ) elif 'jounce' in arguments: velocity = divide( multiply( arguments[ 'jounce' ], getPower( arguments[ 'time' ], 3 ) ), 8 ) return velocity.convert( 'meter/second' )
def getDodecahedronVolumeOperator(n): return divide(multiply(fadd(15, fmul(7, sqrt(5))), getPower(n, 3)), 4).convert('meter^3')
def getOctahedronVolumeOperator(n): return divide(multiply(sqrt(2), getPower(n, 3)), 3)
def getRegularPolygonArea(n, k): return multiply(fdiv(n, fmul(4, tan(fdiv(pi, n)))), getPower(k, 2)).convert('meter^2')
def getTetrahedronSurfaceAreaOperator(n): return multiply(sqrt(3), getPower(n, 2))
def getCumulativeListProducts( args ): total = 1 for i in args: total = multiply( total, i ) yield total
def calculateMassEquivalence( energy ): energy.validateUnits( 'energy' ) mass = divide( energy, multiply( getConstant( 'speed_of_light' ), getConstant( 'speed_of_light' ) ) ) return mass.convert( 'kilogram' )
def calculateMassEquivalenceOperator( energy ): energy.validateUnits( 'energy' ) mass = divide( energy, multiply( getConstant( 'speed_of_light' ), getConstant( 'speed_of_light' ) ) ) return mass.convert( 'kilogram' )