예제 #1
0
except:
    import pickle
#connect echoRD Tools
pathdir = '../echoRD/'  #path to echoRD
lib_path = os.path.abspath(pathdir)
sys.path.append(lib_path)
import vG_conv as vG
from hydro_tools import plotparticles_t, hydroprofile, plotparticles_weier

# Prepare echoRD

#connect to echoRD
import run_echoRD as rE
#connect and load project
[dr, mc, mcp, pdyn, cinf, vG] = rE.loadconnect(pathdir='../',
                                               mcinif='mcini_weierbach_z01',
                                               experimental=True)
mc = mcp.mcpick_out(mc, 'weierbach_z01.pickle')

runname = 'weierbach_z01'

mc.advectref = 'Shipitalo'
mc.soilmatrix = pd.read_csv(mc.matrixbf, sep=' ')
mc.soilmatrix['m'] = np.fmax(1 - 1 / mc.soilmatrix.n, 0.1)
mc.md_macdepth = mc.md_depth[np.fmax(
    2,
    np.sum(np.ceil(mc.md_contact), axis=1).astype(int))]
mc.md_macdepth[mc.md_macdepth <= 0.] = 0.065

precTS = pd.read_csv(mc.precf, sep=',', skiprows=3)
예제 #2
0
def echoRD_job(mcinif='mcini',
               mcpick='mc.pickle3',
               runname='test',
               wdir='./',
               pathdir='../echoRD/',
               saveDT=True,
               aref='Shipitalo',
               LTEdef='instant',
               infilM='MDA',
               exfilM='Ediss',
               model_restart=False,
               parallel=False,
               hdf5pick=True,
               update_mf=False,
               update_prec=False,
               update_part=False,
               update_stochsoil=False,
               update_md_area=False,
               update_timenow=False,
               legacy_pick=False,
               column=False,
               colref=False,
               prec2D=False,
               macscale=1.,
               fsize=(7, 4),
               w_rat=[4, 0.6],
               h_rat=[1, 9]):
    '''
    This is a wrapper for running echoRD easily.
    Be warned that some definitions are implicit in this wrapper

    mcini   -- echoRD ini file of run
    mcpick  -- pickled mode setup
    runname -- name of model run
    wdir    -- working directory path
    pathdir -- path to echoRD model

    Model parameters
    aref    -- Advection reference [Shipitalo | Weiler | Zehe | geogene | geogene2 | obs]
    infilM  -- Infiltration handling [MDA | MED | rand]
    LTEdef  -- Infiltration assumption [instant | ks | random]
    exfilM  -- Exfiltration from macropores [Ediss | RWdiff]
    saveDT  -- optional modified time steps [True | int (factor) | double (static step)]

    model_restart- True: setup new model base and start running, 'only': setup new model base and run one time step, False: reload existing model base, 'joint': reload common base setup
    parallel-- flag for parallel initialisation of particles
    hdf5pick-- flag using hdf5 for pickling

    update_mf- change referenced ini moist file
    update_part- change particle size factor (mc.part_sizefac)
    update_prec- change total precip amount
    update_stochsoil- change stochsoil reference file
    legacy_pick- caompatibility to former runs with different state pickles
    column  -- True if referiing to soil column test cases
    colref  -- reference to circular column instead of 2D pane
    prec2D  -- precipitation definition over area
    macscale-- scale factor for macropore coating (if other than 1)

    fsize   -- plotting parameter canvas size
    w_rat   -- plotting parameter width ratio plot and marginals
    h_rat   -- plotting parameter height ratio marginals and plot
    '''

    import numpy as np
    import pandas as pd
    import scipy as sp
    import matplotlib
    matplotlib.use('Agg')
    import matplotlib.pyplot as plt
    import os, sys
    try:
        import cPickle as pickle
    except:
        import pickle

    try:
        import h5py
    except:
        hdf5pick = False
        print('h5py not available - falling back to pickle use.')

    #connect echoRD Tools
    lib_path = os.path.abspath(pathdir)
    sys.path.append(lib_path)
    import vG_conv as vG
    from hydro_tools import plotparticles_t, hydroprofile, plotparticles_gen  #connect to echoRD

    import run_echoRD as rE
    #connect and load project
    [dr, mc, mcp, pdyn, cinf, vG] = rE.loadconnect(pathdir='../',
                                                   mcinif=mcinif,
                                                   experimental=True)
    if (model_restart == True) | (model_restart == 'only'):
        mc = rE.preproc_echoRD(mc, dr, mcp, mcpick)
        import macropore_ini as mpo
        mpo.mac_plot(mc.macP, mc, 'macs_' + runname + '.pdf')
    else:
        mc = mcp.mcpick_out(mc, mcpick)

    mc.advectref = aref

    if update_stochsoil:
        mc.stochsoil = update_stochsoil

    try:
        if mc.stochsoil == False:
            hdf5pick = False
            print(
                'h5py not used as mc.stochsoil set False - falling back to pickle use.'
            )
    except:
        mc.stochsoil = False
        hdf5pick = False
        print(
            'h5py not used as mc.stochsoil not given - falling back to pickle use.'
        )

    precTS = pd.read_csv(mc.precf, sep=',', skiprows=3)
    mc.prects = False

    #check for generic versionings of setup:
    if update_prec:
        precTS.total = update_prec
        precTS.intense = precTS.total / (precTS.tend - precTS.tstart)

    if update_part:
        mc.part_sizefac = update_part

    if update_md_area:
        mc.md_area *= update_md_area

    if column:
        total_volume = np.pi * 0.5**3
        mc.particleV = total_volume / (mc.mgrid.vertgrid[0] *
                                       mc.mgrid.latgrid[0] *
                                       (2 * mc.part_sizefac))
        mc.prects = 'column2'
        mc.cloref = colref

        if mc.nomac == True:
            #add macropore into soilmatrix for column test
            idx = int(np.shape(mc.soilgrid)[1] / 2)
            mc.soilgrid[:, idx - 1:idx + 1] = 13

    #check for previous runs to hook into
    try:
        if model_restart == True:
            raise ValueError('I will overwrite any existing runfile.')
        #unpickle:
        if hdf5pick:
            particles = pd.read_hdf('./results/P_' + runname + '.h5', 'table')
            with h5py.File('./results/S_' + runname + '.h5', 'r') as f:
                dset = f['states'][0]
                [t, len_parts, leftover, len_drain, ix] = dset[:]
                if ix > 0:
                    ix += 1
                ix = int(ix)
                leftover = int(leftover)
        else:
            with open(''.join([wdir, '/results/Z', runname, '_Mstat.pick']),
                      'rb') as handle:
                pickle_l = pickle.load(handle)
                dummyx = pickle.loads(pickle_l)
                particles = pickle.loads(dummyx[0])
                if legacy_pick:
                    [leftover, drained, t, TSstore,
                     ix] = pickle.loads(dummyx[1])
                    dummy = np.floor(mc.t_end / mc.t_out)
                    mc.mgrid['cells'] = np.shape(TSstore)[0]
                    [thS, npart] = pdyn.gridupdate_thS(particles.lat,
                                                       particles.z, mc)
                    thetastore = np.zeros((int(dummy), mc.mgrid.vertgrid[0],
                                           mc.mgrid.latgrid[0]))
                    mc.t_end = 24. * 3600.
                    mc.t_out = 60
                else:
                    [leftover, drained, t, TSstore, thetastore, npart,
                     ix] = pickle.loads(dummyx[1])
                if ix > 0:
                    ix += 1
        print('resuming into stored run at t=' + str(t) + '...')

        if model_restart == 'joint':
            #rename runfile now
            runname = runname + str(int(np.round(macscale * 10))).zfill(2)

        # define particle size
        # WARNING: as in any model so far, we have a volume problem here.
        #          we consider all parts of the domain as static in volume at this stage.
        #          however, we will work on a revision of this soon.
        mc.gridcellA = mc.mgrid.vertfac * mc.mgrid.latfac
        mc.particleA = abs(mc.gridcellA.values) / (
            2 * mc.part_sizefac
        )  #assume average ks at about 0.5 as reference of particle size
        mc.particleD = 2. * np.sqrt(mc.particleA / np.pi)
        mc.particleV = 3. / 4. * np.pi * (mc.particleD / 2.)**3.
        mc.particleD /= np.sqrt(abs(mc.gridcellA.values))
        mc.particleV /= np.sqrt(abs(
            mc.gridcellA.values))  #assume grid size as 3rd dimension
        mc.particlemass = dr.waterdensity(np.array(20), np.array(
            -9999)) * mc.particleV  #assume 20C as reference for particle mass
        #DEBUG: a) we assume 2D=3D; b) change 20C to annual mean T?
        #initialise bins and slopes
        mc = dr.ini_bins(mc)
        mc = dr.mc_diffs(mc, np.max(np.max(mc.mxbin)))

        # estimate macropore capacity as relative share of space (as particle volume is not well-defined for the 1D-2D-3D references)
        mc.maccap = np.ceil(
            (2. * mc.md_area /
             (-mc.gridcellA.values * mc.mgrid.latgrid.values)) *
            mc.part_sizefac)
        mc.mactopfill = np.ceil(
            (2. * mc.md_area /
             (-mc.gridcellA.values * mc.mgrid.latgrid.values)) *
            mc.part_sizefac)[:, 0] * 0.  #all empty
        # assumption: the pore space is converted into particles through mc.part_sizefac. this is now reprojected to the macropore by using the areal share of the macropores
        # DEBUG: there is still some inconcistency about the areas and volumes, but it may be a valid estimate with rather few assumptions
        mc.mgrid['cells'] = len(mc.mxbin.ravel())
        if hdf5pick:
            [thS, npart] = pdyn.gridupdate_thS(particles.lat, particles.z, mc)

    except:
        if update_mf:
            mc.inimf = update_mf
        #initialise particles
        input()
        [mc, particles, npart] = dr.particle_setup(mc, paral=parallel)
        t = 0.
        ix = 0
        leftover = 0
        try:
            mc.t_out = mc.t_out
        except:
            mc.t_out = 60.
        dummy = np.floor(mc.t_end / mc.t_out)
        TSstore = np.zeros((int(dummy), mc.mgrid.cells[0], 2))
        thetastore = np.zeros(
            (int(dummy), mc.mgrid.vertgrid[0], mc.mgrid.latgrid[0]))
        drained = pd.DataFrame(np.array([]))

        if hdf5pick:
            particles.to_hdf('./results/P_' + runname + '.h5', 'table')
            with h5py.File('./results/S_' + runname + '.h5', 'w') as f:
                dset = f.create_dataset("states", (1, 5), dtype='f')
                dset[:] = [t, len(particles), leftover, len(drained), ix]

        print('starting new run...')

    #check for NaNs in lookup table for first bins and set to next filled ones:
    #DEBUG: actually this should not happen. but it did.
    for i in np.arange(np.shape(mc.D)[1]):
        idx = np.where(np.isnan(mc.D[:, i]))[0]
        mc.D[idx, i] = mc.D[np.amax(idx) + 1, i]

    #define bin assignment mode for infiltration particles
    mc.LTEdef = LTEdef  #'instant'#'ks' #'instant' #'random'
    mc.LTEmemory = mc.soilgrid.ravel() * 0.

    #macropore reference
    mc.maccon = np.where(
        mc.macconnect.ravel() > 0)[0]  #index of all connected cells
    mc.md_macdepth = np.abs(mc.md_macdepth)

    #############
    # Run Model #
    #############

    mc.LTEpercentile = 70  #new parameter

    t_end = mc.t_end
    output = mc.t_out  #mind to set also in TXstore.index definition
    dummy = np.floor(t_end / output)

    infiltmeth = infilM
    exfiltmeth = exfilM
    film = True
    clogswitch = False
    infiltscale = False

    #just store the base files
    if model_restart == 'only':
        i = 0
        plotparticles_gen(particles,
                          mc,
                          pdyn,
                          vG,
                          runname,
                          t,
                          i,
                          saving=True,
                          relative=False,
                          wdir=wdir,
                          fsize=fsize,
                          w_rat=w_rat,
                          h_rat=h_rat)
        [thS, npart] = pdyn.gridupdate_thS(particles.lat, particles.z, mc)

        if hdf5pick:
            with h5py.File(mc.stochsoil, 'r+') as f:
                dset = f["theta"]
                dset[:, :, i] = np.reshape(
                    (mc.soilmatrix.loc[mc.soilgrid.ravel() - 1, 'tr'] +
                     (mc.soilmatrix.ts - mc.soilmatrix.tr
                      )[mc.soilgrid.ravel() - 1] * thS.ravel() * 0.01).values,
                    np.shape(thS))

            particles.to_hdf('./results/P_' + runname + '.h5', 'table')

            with h5py.File('./results/S_' + runname + '.h5', 'r+') as f:
                dset = f["states"]
                dset = [t, len(particles), leftover, len(drained), ix]
            print('wrote initial states to P' + runname + 'h5 and S_' +
                  runname + '.h5')
        else:
            TSstore[i, :, :] = rE.part_store(particles, mc)
            thetastore[i, :, :] = np.reshape(
                (mc.soilmatrix.loc[mc.soilgrid.ravel() - 1, 'tr'] +
                 (mc.soilmatrix.ts - mc.soilmatrix.tr)[mc.soilgrid.ravel() - 1]
                 * thS.ravel() * 0.01).values, np.shape(thS))

            with open(''.join([wdir, '/results/Z', runname, '_Mstat.pick']),
                      'wb') as handle:
                pickle.dump(pickle.dumps([
                    pickle.dumps(particles),
                    pickle.dumps(
                        [leftover, drained, t, TSstore, thetastore, npart, i])
                ]),
                            handle,
                            protocol=2)
            print('wrote initial states to Z' + runname + '_Mstat.pick')

    else:
        if update_timenow:
            ix = int(update_timenow / mc.t_out)
            print('Time set manually to ' + str(ix * mc.t_out) + 's')
        drained = pd.DataFrame(np.array(
            []))  #new drained dataframe as it is not stored yet
        # loop through plot cycles
        for i in np.arange(dummy.astype(int))[ix:]:
            plotparticles_gen(particles,
                              mc,
                              pdyn,
                              vG,
                              runname,
                              t,
                              i,
                              saving=True,
                              relative=False,
                              wdir=wdir)
            [particles, npart, thS, leftover, drained,
             t] = rE.CAOSpy_rundx1(i * output, (i + 1) * output,
                                   mc,
                                   pdyn,
                                   cinf,
                                   precTS,
                                   particles,
                                   leftover,
                                   drained,
                                   6.,
                                   splitfac=4,
                                   prec_2D=prec2D,
                                   maccoat=macscale,
                                   saveDT=saveDT,
                                   clogswitch=clogswitch,
                                   infilt_method=infiltmeth,
                                   exfilt_method=exfiltmeth,
                                   film=film,
                                   infiltscale=infiltscale)

            if hdf5pick:
                with h5py.File(mc.stochsoil, 'r+') as f:
                    dset = f["theta"]
                    dset[:, :, i] = np.reshape(
                        (mc.soilmatrix.loc[mc.soilgrid.ravel() - 1, 'tr'] +
                         (mc.soilmatrix.ts -
                          mc.soilmatrix.tr)[mc.soilgrid.ravel() - 1] *
                         thS.ravel() * 0.01).values, np.shape(thS))

                particles.to_hdf('./results/P_' + runname + '.h5', 'table')

                with h5py.File('./results/S_' + runname + '.h5', 'r+') as f:
                    dset = f["states"]
                    dset = [t, len(particles), leftover, len(drained), ix]
            else:
                TSstore[i, :, :] = rE.part_store(particles, mc)
                thetastore[i, :, :] = np.reshape(
                    (mc.soilmatrix.loc[mc.soilgrid.ravel() - 1, 'tr'] +
                     (mc.soilmatrix.ts - mc.soilmatrix.tr
                      )[mc.soilgrid.ravel() - 1] * thS.ravel() * 0.01).values,
                    np.shape(thS))
                with open(
                        ''.join([wdir, '/results/Z', runname, '_Mstat.pick']),
                        'wb') as handle:
                    pickle.dump(pickle.dumps([
                        pickle.dumps(particles),
                        pickle.dumps([
                            leftover, drained, t, TSstore, thetastore, npart, i
                        ])
                    ]),
                                handle,
                                protocol=2)
예제 #3
0
pathdir = '../echoRD/'  #path to echoRD
#pathdir='../' #path to echoRD
lib_path = os.path.abspath(pathdir)
sys.path.append(lib_path)
import vG_conv as vG
from hydro_tools import plotparticles_t, hydroprofile, plotparticles_specht

# Read Observations
obs = pd.read_csv('brspecht.dat', delimiter='\t')
obs.index = np.arange(-0.05, -1., -0.1)

# Load echoRD setup
#connect to echoRD
import run_echoRD as rE
#connect and load project
[dr, mc, mcp, pdyn, cinf, vG] = rE.loadconnect(pathdir=pathdir,
                                               mcinif='mcini_specht4y')
#[mc,particles,npart,precTS]=mcp.echoRD_pick_out(mc,'weiherbach_testcase.pickle')
mcp.mcpick_out(mc, 'specht4y_x2.pickle')
mc.advectref = 'Shipitalo'
[mc, particles, npart] = dr.particle_setup(mc)
precTS = pd.read_csv(mc.precf, sep=',', skiprows=3)

mc.prects = False
[thS, npart] = pdyn.gridupdate_thS(particles.lat, particles.z, mc)
#[A,B]=plotparticles_t_obs(particles,obsx,thS/100.,mc,vG,store=True)

#shift sprinkling beginning
mc.advectref = 'Shipitalo'
mc.prects = False
precTS.tstart = 60
precTS.tend = 60 + 2.3 * 3600
예제 #4
0
def echoRD_job(mcinif='mcini',
               mcpick='mc.pickle3',
               runname='test',
               wdir='./',
               pathdir='../echoRD/',
               saveDT=True,
               aref='Shipitalo',
               LTEdef='instant',
               infilM='MDA',
               exfilM='Ediss',
               parallel=False,
               largepick=False):
    '''
    This is a wrapper for running echoRD easily.
    Be warned that some definitions are implicit in this wrapper

    mcini   -- echoRD ini file of run
    mcpick  -- pickled mode setup
    runname -- name of model run
    wdir    -- working directory path
    pathdir -- path to echoRD model

    Model parameters
    aref    -- Advection reference [Shipitalo | Weiler | Zehe | geogene | geogene2 | obs]
    infilM  -- Infiltration handling [MDA | MED | rand]
    LTEdef  -- Infiltration assumption [instant | ks | random]
    exfilM  -- Exfiltration from macropores [Ediss | RWdiff]
    saveDT  -- optional modified time steps [True | int (factor) | double (static step)]

    parallel-- flag for parallel initialisation of particles
    largepick- flag for pickling many particles
    '''

    import numpy as np
    import pandas as pd
    import scipy as sp
    import matplotlib
    matplotlib.use('Agg')
    import matplotlib.pyplot as plt
    import os, sys
    try:
        import cPickle as pickle
    except:
        import pickle

    #connect echoRD Tools
    lib_path = os.path.abspath(pathdir)
    sys.path.append(lib_path)
    import vG_conv as vG
    from hydro_tools import plotparticles_t, hydroprofile, plotparticles_weier

    #connect to echoRD
    import run_echoRD as rE
    #connect and load project
    [dr, mc, mcp, pdyn, cinf, vG] = rE.loadconnect(pathdir='../',
                                                   mcinif=mcinif,
                                                   experimental=True)
    mc = mcp.mcpick_out(mc, mcpick)

    mc.advectref = aref

    precTS = pd.read_csv(mc.precf, sep=',', skiprows=3)
    mc.prects = False

    #check for previous runs to hook into
    try:
        #unpickle:
        if largepick:
            with open(''.join([wdir, '/results/L', runname, '_Mstat.pick']),
                      'rb') as handle:
                pickle_l = pickle.load(handle)
                dummyx = pickle.loads(pickle_l)
                particles = pickle.loads(dummyx[0])
                [t, ix] = pickle.loads(dummyx[1])
                ix += 1
        else:
            with open(''.join([wdir, '/results/Z', runname, '_Mstat.pick']),
                      'rb') as handle:
                pickle_l = pickle.load(handle)
                dummyx = pickle.loads(pickle_l)
                particles = pickle.loads(dummyx[0])
                [leftover, drained, t, TSstore, thetastore, npart,
                 ix] = pickle.loads(dummyx[1])
                ix += 1
        print('resuming into stored run at t=' + str(t) + '...')

        # define particle size
        # WARNING: as in any model so far, we have a volume problem here.
        #          we consider all parts of the domain as static in volume at this stage.
        #          however, we will work on a revision of this soon.
        mc.gridcellA = mc.mgrid.vertfac * mc.mgrid.latfac
        mc.particleA = abs(mc.gridcellA.values) / (
            2 * mc.part_sizefac
        )  #assume average ks at about 0.5 as reference of particle size
        mc.particleD = 2. * np.sqrt(mc.particleA / np.pi)
        mc.particleV = 3. / 4. * np.pi * (mc.particleD / 2.)**3.
        mc.particleD /= np.sqrt(abs(mc.gridcellA.values))
        mc.particleV /= np.sqrt(abs(
            mc.gridcellA.values))  #assume grid size as 3rd dimension
        mc.particlemass = dr.waterdensity(np.array(20), np.array(
            -9999)) * mc.particleV  #assume 20C as reference for particle mass
        #DEBUG: a) we assume 2D=3D; b) change 20C to annual mean T?
        #initialise bins and slopes
        mc = dr.ini_bins(mc)
        mc = dr.mc_diffs(mc, np.max(np.max(mc.mxbin)))

        # estimate macropore capacity as relative share of space (as particle volume is not well-defined for the 1D-2D-3D references)
        mc.maccap = np.ceil(
            (2. * mc.md_area /
             (-mc.gridcellA.values * mc.mgrid.latgrid.values)) *
            mc.part_sizefac)
        mc.mactopfill = np.ceil(
            (2. * mc.md_area /
             (-mc.gridcellA.values * mc.mgrid.latgrid.values)) *
            mc.part_sizefac)[:, 0] * 0.  #all empty
        # assumption: the pore space is converted into particles through mc.part_sizefac. this is now reprojected to the macropore by using the areal share of the macropores
        # DEBUG: there is still some inconcistency about the areas and volumes, but it may be a valid estimate with rather few assumptions
        if largepick:
            [thS, npart] = pdyn.gridupdate_thS(particles.lat, particles.z, mc)

        mc.mgrid['cells'] = len(npart.ravel())
    except:
        #initialise particles
        [mc, particles, npart] = dr.particle_setup(mc, paral=parallel)
        t = 0.
        ix = 0
        leftover = 0
        dummy = np.floor(mc.t_end / mc.t_out)
        TSstore = np.zeros((int(dummy), mc.mgrid.cells[0], 2))
        thetastore = np.zeros(
            (int(dummy), mc.mgrid.vertgrid[0], mc.mgrid.latgrid[0]))

        print('starting new run...')

    #define bin assignment mode for infiltration particles
    mc.LTEdef = LTEdef  #'instant'#'ks' #'instant' #'random'
    mc.LTEmemory = mc.soilgrid.ravel() * 0.

    #macropore reference
    mc.maccon = np.where(
        mc.macconnect.ravel() > 0)[0]  #index of all connected cells
    mc.md_macdepth = np.abs(mc.md_macdepth)

    #############
    # Run Model #
    #############

    mc.LTEpercentile = 70  #new parameter

    t_end = mc.t_end

    infiltmeth = infilM
    exfiltmeth = exfilM
    film = True
    macscale = 1.  #scale the macropore coating
    clogswitch = False
    infiltscale = False

    drained = pd.DataFrame(np.array([]))
    output = mc.t_out  #mind to set also in TXstore.index definition

    dummy = np.floor(t_end / output)

    #loop through plot cycles
    for i in np.arange(dummy.astype(int))[ix:]:
        plotparticles_weier(particles,
                            mc,
                            pdyn,
                            vG,
                            runname,
                            t,
                            i,
                            saving=True,
                            relative=False,
                            wdir=wdir)
        [particles, npart, thS, leftover, drained,
         t] = rE.CAOSpy_rundx1(i * output, (i + 1) * output,
                               mc,
                               pdyn,
                               cinf,
                               precTS,
                               particles,
                               leftover,
                               drained,
                               6.,
                               splitfac=4,
                               prec_2D=False,
                               maccoat=macscale,
                               saveDT=saveDT,
                               clogswitch=clogswitch,
                               infilt_method=infiltmeth,
                               exfilt_method=exfiltmeth,
                               film=film,
                               infiltscale=infiltscale)
        TSstore[i, :, :] = rE.part_store(particles, mc)
        thetastore[i, :, :] = np.reshape(
            (mc.soilmatrix.loc[mc.soilgrid.ravel() - 1, 'tr'] +
             (mc.soilmatrix.ts - mc.soilmatrix.tr)[mc.soilgrid.ravel() - 1] *
             thS.ravel() * 0.01).values, np.shape(thS))

        if largepick:
            with open(''.join([wdir, '/results/L', runname, '_Mstat.pick']),
                      'wb') as handle:
                pickle.dump(pickle.dumps(
                    [pickle.dumps(particles),
                     pickle.dumps([t, i])]),
                            handle,
                            protocol=2)
        else:
            with open(''.join([wdir, '/results/Z', runname, '_Mstat.pick']),
                      'wb') as handle:
                pickle.dump(pickle.dumps([
                    pickle.dumps(particles),
                    pickle.dumps(
                        [leftover, drained, t, TSstore, thetastore, npart, i])
                ]),
                            handle,
                            protocol=2)