def _tabulate(self, counts, evacuated, minimum_needs, question, rounding, thresholds, total, no_data_warning): # noinspection PyListCreation table_body = [ question, TableRow([(tr('People in %.1f m of water') % thresholds[-1]), '%s*' % format_int(evacuated)], header=True), TableRow( tr('* Number is rounded up to the nearest %s') % rounding), TableRow(tr('Map shows the numbers of people needing evacuation'))] total_needs = evacuated_population_needs( evacuated, minimum_needs) for frequency, needs in total_needs.items(): table_body.append(TableRow( [ tr('Needs should be provided %s' % frequency), tr('Total') ], header=True)) for resource in needs: table_body.append(TableRow([ tr(resource['table name']), format_int(resource['amount'])])) table_body.append(TableRow(tr('Action Checklist:'), header=True)) table_body.append(TableRow(tr('How will warnings be disseminated?'))) table_body.append(TableRow(tr('How will we reach stranded people?'))) table_body.append(TableRow(tr('Do we have enough relief items?'))) table_body.append(TableRow(tr('If yes, where are they located and how ' 'will we distribute them?'))) table_body.append(TableRow(tr( 'If no, where can we obtain additional relief items from and how ' 'will we transport them to here?'))) # Extend impact report for on-screen display table_body.extend([ TableRow(tr('Notes'), header=True), tr('Total population: %s') % format_int(total), tr('People need evacuation if tsunami levels exceed %(eps).1f m') % {'eps': thresholds[-1]}, tr('Minimum needs are defined in BNPB regulation 7/2008'), tr('All values are rounded up to the nearest integer in order to ' 'avoid representing human lives as fractions.')]) if len(counts) > 1: table_body.append(TableRow(tr('Detailed breakdown'), header=True)) for i, val in enumerate(counts[:-1]): s = (tr('People in %(lo).1f m to %(hi).1f m of water: %(val)i') % {'lo': thresholds[i], 'hi': thresholds[i + 1], 'val': format_int(val[0])}) table_body.append(TableRow(s)) if no_data_warning: table_body.extend([ tr('The layers contained `no data`. This missing data was ' 'carried through to the impact layer.'), tr('`No data` values in the impact layer were treated as 0 ' 'when counting the affected or total population.') ]) return table_body, total_needs
def test_evacuated_population_needs(self): """Test evacuated_population_needs function.""" water = ResourceParameter() water.name = 'Water' water.unit.name = 'litre' water.unit.abbreviation = 'l' water.unit.plural = 'litres' water.frequency = 'weekly' water.maximum_allowed_value = 10 water.minimum_allowed_value = 0 water.value = 5 rice = ResourceParameter() rice.name = 'Rice' rice.unit.name = 'kilogram' rice.unit.abbreviation = 'kg' rice.unit.plural = 'kilograms' rice.frequency = 'daily' rice.maximum_allowed_value = 1 rice.minimum_allowed_value = 0 rice.value = 0.5 total_needs = evacuated_population_needs( 10, [water.serialize(), rice.serialize()] ) self.assertEqual(total_needs['weekly'][0]['name'], 'Water') self.assertEqual(total_needs['weekly'][0]['amount'], 50) self.assertEqual(total_needs['weekly'][0]['table name'], 'Water [l]') self.assertEqual(total_needs['daily'][0]['name'], 'Rice') self.assertEqual(total_needs['daily'][0]['amount'], 5) self.assertEqual(total_needs['daily'][0]['table name'], 'Rice [kg]')
def _tabulate(self, high, low, medium, minimum_needs, no_impact, question, total_impact): # Generate impact report for the pdf map table_body = [question, TableRow([tr('Total Population Affected '), '%s' % format_int(total_impact)], header=True), TableRow([tr('Population in High hazard class areas '), '%s' % format_int(high)]), TableRow([tr('Population in Medium hazard class areas '), '%s' % format_int(medium)]), TableRow([tr('Population in Low hazard class areas '), '%s' % format_int(low)]), TableRow([tr('Population Not Affected'), '%s' % format_int(no_impact)]), TableRow( tr('Table below shows the minimum needs for all ' 'evacuated people'))] total_needs = evacuated_population_needs( total_impact, minimum_needs) for frequency, needs in total_needs.items(): table_body.append(TableRow( [ tr('Needs should be provided %s' % frequency), tr('Total') ], header=True)) for resource in needs: table_body.append(TableRow([ tr(resource['table name']), format_int(resource['amount'])])) return table_body, total_needs
def _tabulate_notes(self, minimum_needs, table_body, total, total_impact, no_data_warning): # Extend impact report for on-screen display table_body.extend([ TableRow(tr('Notes'), header=True), tr('Map shows population count in high, medium, and low hazard ' 'area.'), tr('Total population: %s') % format_int(total), TableRow( tr('Table below shows the minimum needs for all ' 'affected people')) ]) if no_data_warning: table_body.extend([ tr('The layers contained `no data`. This missing data was ' 'carried through to the impact layer.'), tr('`No data` values in the impact layer were treated as 0 ' 'when counting the affected or total population.') ]) total_needs = evacuated_population_needs(total_impact, minimum_needs) for frequency, needs in total_needs.items(): table_body.append( TableRow([ tr('Needs should be provided %s' % frequency), tr('Total') ], header=True)) for resource in needs: table_body.append( TableRow([ tr(resource['table name']), format_int(resource['amount']) ])) return table_body, total_needs
def test_evacuated_population_needs(self): """Test evacuated_population_needs function.""" water = ResourceParameter() water.name = 'Water' water.unit.name = 'litre' water.unit.abbreviation = 'l' water.unit.plural = 'litres' water.frequency = 'weekly' water.maximum_allowed_value = 10 water.minimum_allowed_value = 0 water.value = 5 rice = ResourceParameter() rice.name = 'Rice' rice.unit.name = 'kilogram' rice.unit.abbreviation = 'kg' rice.unit.plural = 'kilograms' rice.frequency = 'daily' rice.maximum_allowed_value = 1 rice.minimum_allowed_value = 0 rice.value = 0.5 total_needs = evacuated_population_needs( 10, [water.serialize(), rice.serialize()]) self.assertEqual(total_needs['weekly'][0]['name'], 'Water') self.assertEqual(total_needs['weekly'][0]['amount'], 50) self.assertEqual(total_needs['weekly'][0]['table name'], 'Water [l]') self.assertEqual(total_needs['daily'][0]['name'], 'Rice') self.assertEqual(total_needs['daily'][0]['amount'], 5) self.assertEqual(total_needs['daily'][0]['table name'], 'Rice [kg]')
def total_needs(self): """Get the total minimum needs based on the total evacuated. :returns: Total minimum needs. :rtype: dict """ total_population_evacuated = self.total_evacuated return evacuated_population_needs( total_population_evacuated, self.minimum_needs)
def total_needs(self): """Get the total minimum needs based on the total evacuated. :returns: Total minimum needs. :rtype: dict """ total_population_evacuated = self.total_evacuated return evacuated_population_needs(total_population_evacuated, self.minimum_needs)
def test_default_needs(self): """default calculated needs are as expected """ minimum_needs = [ parameter.serialize() for parameter in default_minimum_needs()] # 20 Happens to be the smallest number at which integer rounding # won't make a difference to the result result = evacuated_population_needs(20, minimum_needs)['weekly'] result = OrderedDict([[r['table name'], r['amount']] for r in result]) assert (result['Rice [kg]'] == 56 and result['Drinking Water [l]'] == 350 and result['Clean Water [l]'] == 1340 and result['Family Kits'] == 4) result = evacuated_population_needs(10, minimum_needs)['single'] result = OrderedDict([[r['table name'], r['amount']] for r in result]) assert result['Toilets'] == 1
def _tabulate(self, affected_population, evacuated, minimum_needs, question, rounding, rounding_evacuated): # People Affected table_body = [ question, TableRow( [tr('People affected'), '%s*' % ( format_int(int(affected_population)))], header=True)] if self.use_affected_field: table_body.append( TableRow( tr('* People are considered to be affected if they are ' 'within the area where the value of the hazard field (' '"%s") is "%s"') % (self.parameters['affected_field'], self.parameters['affected_value']))) else: table_body.append( TableRow( tr('* People are considered to be affected if they are ' 'within any polygons.'))) table_body.append( TableRow([TableCell( tr('* Number is rounded up to the nearest %s') % rounding, col_span=2)])) # People Needing Evacuation table_body.append( TableRow([tr('People needing evacuation'), '%s*' % ( format_int(int(evacuated)))], header=True)) table_body.append(TableRow( [TableCell( tr('* Number is rounded up to the nearest %s') % rounding_evacuated, col_span=2)])) table_body.append( TableRow( [tr('Evacuation threshold'), '%s%%' % format_int( self.parameters['evacuation_percentage'])], header=True)) table_body.append( TableRow(tr('Table below shows the weekly minimum needs for all ' 'evacuated people'))) total_needs = evacuated_population_needs(evacuated, minimum_needs) for frequency, needs in total_needs.items(): table_body.append(TableRow( [ tr('Needs should be provided %s' % frequency), tr('Total') ], header=True)) for resource in needs: table_body.append(TableRow([ tr(resource['table name']), format_int(resource['amount'])])) return table_body, total_needs
def test_default_needs(self): """default calculated needs are as expected """ minimum_needs = [ parameter.serialize() for parameter in default_minimum_needs() ] # 20 Happens to be the smallest number at which integer rounding # won't make a difference to the result result = evacuated_population_needs(20, minimum_needs)['weekly'] result = OrderedDict([[r['table name'], r['amount']] for r in result]) assert (result['Rice [kg]'] == 56 and result['Drinking Water [l]'] == 350 and result['Clean Water [l]'] == 1340 and result['Family Kits'] == 4) result = evacuated_population_needs(10, minimum_needs)['single'] result = OrderedDict([[r['table name'], r['amount']] for r in result]) assert result['Toilets'] == 1
def test_arbitrary_needs(self): """custom need ratios calculated are as expected """ minimum_needs = [ parameter.serialize() for parameter in default_minimum_needs()] minimum_needs[0]['value'] = 4 minimum_needs[1]['value'] = 3 minimum_needs[2]['value'] = 2 minimum_needs[3]['value'] = 1 minimum_needs[4]['value'] = 0.2 result = evacuated_population_needs(10, minimum_needs)['weekly'] result = OrderedDict([[r['table name'], r['amount']] for r in result]) assert (result['Rice [kg]'] == 40 and result['Drinking Water [l]'] == 30 and result['Clean Water [l]'] == 20 and result['Family Kits'] == 10) result = evacuated_population_needs(10, minimum_needs)['single'] result = OrderedDict([[r['table name'], r['amount']] for r in result]) assert result['Toilets'] == 2
def test_arbitrary_needs(self): """custom need ratios calculated are as expected """ minimum_needs = [ parameter.serialize() for parameter in default_minimum_needs() ] minimum_needs[0]['value'] = 4 minimum_needs[1]['value'] = 3 minimum_needs[2]['value'] = 2 minimum_needs[3]['value'] = 1 minimum_needs[4]['value'] = 0.2 result = evacuated_population_needs(10, minimum_needs)['weekly'] result = OrderedDict([[r['table name'], r['amount']] for r in result]) assert (result['Rice [kg]'] == 40 and result['Drinking Water [l]'] == 30 and result['Clean Water [l]'] == 20 and result['Family Kits'] == 10) result = evacuated_population_needs(10, minimum_needs)['single'] result = OrderedDict([[r['table name'], r['amount']] for r in result]) assert result['Toilets'] == 2
def total_needs(self): """Get the total minimum needs based on the total evacuated. :returns: Total minimum needs. :rtype: dict """ total_population_evacuated = sum(self.affected_population.values()) self.minimum_needs = [ parameter.serialize() for parameter in filter_needs_parameters(self.parameters['minimum needs']) ] return evacuated_population_needs( total_population_evacuated, self.minimum_needs)
def total_needs(self): """Get the total minimum needs based on the total evacuated. :returns: Total minimum needs. :rtype: dict """ total_population_evacuated = sum(self.affected_population.values()) self.minimum_needs = [ parameter.serialize() for parameter in filter_needs_parameters( self.parameters['minimum needs']) ] return evacuated_population_needs(total_population_evacuated, self.minimum_needs)
def _tabulate(self, high, low, medium, minimum_needs, no_impact, question, total_impact): # Generate impact report for the pdf map table_body = [ question, TableRow([ tr('Total Population Affected '), '%s' % format_int(total_impact) ], header=True), TableRow([ tr('Population in High hazard class areas '), '%s' % format_int(high) ]), TableRow([ tr('Population in Medium hazard class areas '), '%s' % format_int(medium) ]), TableRow([ tr('Population in Low hazard class areas '), '%s' % format_int(low) ]), TableRow( [tr('Population Not Affected'), '%s' % format_int(no_impact)]), TableRow( tr('Table below shows the minimum needs for all ' 'evacuated people')) ] total_needs = evacuated_population_needs(total_impact, minimum_needs) for frequency, needs in total_needs.items(): table_body.append( TableRow([ tr('Needs should be provided %s' % frequency), tr('Total') ], header=True)) for resource in needs: table_body.append( TableRow([ tr(resource['table name']), format_int(resource['amount']) ])) return table_body, total_needs
def _tabulate_notes( self, minimum_needs, table_body, total, total_impact, no_data_warning): # Extend impact report for on-screen display table_body.extend([ TableRow(tr('Notes'), header=True), tr('Map shows population count in high, medium, and low hazard ' 'area.'), tr('Total population: %s') % format_int(total), TableRow(tr( 'Table below shows the minimum needs for all ' 'affected people'))]) if no_data_warning: table_body.extend([ tr('The layers contained `no data`. This missing data was ' 'carried through to the impact layer.'), tr('`No data` values in the impact layer were treated as 0 ' 'when counting the affected or total population.') ]) total_needs = evacuated_population_needs( total_impact, minimum_needs) for frequency, needs in total_needs.items(): table_body.append(TableRow( [ tr('Needs should be provided %s' % frequency), tr('Total') ], header=True)) for resource in needs: table_body.append(TableRow([ tr(resource['table name']), format_int(resource['amount'])])) return table_body, total_needs
def run(self, layers): """Plugin for impact of population as derived by classified hazard. Input :param layers: List of layers expected to contain * hazard_layer: Raster layer of classified hazard * exposure_layer: Raster layer of population data Counts number of people exposed to each class of the hazard Return Map of population exposed to high class Table with number of people in each class """ # The 3 classes low_t = self.parameters['low_hazard_class'] medium_t = self.parameters['medium_hazard_class'] high_t = self.parameters['high_hazard_class'] # Identify hazard and exposure layers hazard_layer = get_hazard_layer(layers) # Classified Hazard exposure_layer = get_exposure_layer(layers) # Population Raster question = get_question(hazard_layer.get_name(), exposure_layer.get_name(), self) # Extract data as numeric arrays data = hazard_layer.get_data(nan=0.0) # Class # Calculate impact as population exposed to each class population = exposure_layer.get_data(nan=0.0, scaling=True) if high_t == 0: hi = numpy.where(0, population, 0) else: hi = numpy.where(data == high_t, population, 0) if medium_t == 0: med = numpy.where(0, population, 0) else: med = numpy.where(data == medium_t, population, 0) if low_t == 0: lo = numpy.where(0, population, 0) else: lo = numpy.where(data == low_t, population, 0) if high_t == 0: impact = numpy.where((data == low_t) + (data == medium_t), population, 0) elif medium_t == 0: impact = numpy.where((data == low_t) + (data == high_t), population, 0) elif low_t == 0: impact = numpy.where((data == medium_t) + (data == high_t), population, 0) else: impact = numpy.where( (data == low_t) + (data == medium_t) + (data == high_t), population, 0) # Count totals total = int(numpy.sum(population)) high = int(numpy.sum(hi)) medium = int(numpy.sum(med)) low = int(numpy.sum(lo)) total_impact = int(numpy.sum(impact)) # Perform population rounding based on number of people no_impact = population_rounding(total - total_impact) total = population_rounding(total) total_impact = population_rounding(total_impact) high = population_rounding(high) medium = population_rounding(medium) low = population_rounding(low) minimum_needs = [ parameter.serialize() for parameter in self.parameters['minimum needs'] ] # Generate impact report for the pdf map table_body = [ question, TableRow([ tr('Total Population Affected '), '%s' % format_int(total_impact) ], header=True), TableRow([ tr('Population in High hazard class areas '), '%s' % format_int(high) ]), TableRow([ tr('Population in Medium hazard class areas '), '%s' % format_int(medium) ]), TableRow([ tr('Population in Low hazard class areas '), '%s' % format_int(low) ]), TableRow( [tr('Population Not Affected'), '%s' % format_int(no_impact)]), TableRow( tr('Table below shows the minimum needs for all ' 'evacuated people')) ] total_needs = evacuated_population_needs(total_impact, minimum_needs) for frequency, needs in total_needs.items(): table_body.append( TableRow([ tr('Needs should be provided %s' % frequency), tr('Total') ], header=True)) for resource in needs: table_body.append( TableRow([ tr(resource['table name']), format_int(resource['amount']) ])) impact_table = Table(table_body).toNewlineFreeString() table_body.append(TableRow(tr('Action Checklist:'), header=True)) table_body.append(TableRow(tr('How will warnings be disseminated?'))) table_body.append(TableRow(tr('How will we reach stranded people?'))) table_body.append(TableRow(tr('Do we have enough relief items?'))) table_body.append( TableRow( tr('If yes, where are they located and how will we distribute ' 'them?'))) table_body.append( TableRow( tr('If no, where can we obtain additional relief items from ' 'and how will we transport them to here?'))) # Extend impact report for on-screen display table_body.extend([ TableRow(tr('Notes'), header=True), tr('Map shows the numbers of people in high, medium, and low ' 'hazard class areas'), tr('Total population: %s') % format_int(total) ]) impact_summary = Table(table_body).toNewlineFreeString() # Create style colours = [ '#FFFFFF', '#38A800', '#79C900', '#CEED00', '#FFCC00', '#FF6600', '#FF0000', '#7A0000' ] classes = create_classes(impact.flat[:], len(colours)) interval_classes = humanize_class(classes) style_classes = [] for i in xrange(len(colours)): style_class = dict() if i == 1: label = create_label(interval_classes[i], 'Low') elif i == 4: label = create_label(interval_classes[i], 'Medium') elif i == 7: label = create_label(interval_classes[i], 'High') else: label = create_label(interval_classes[i]) style_class['label'] = label style_class['quantity'] = classes[i] if i == 0: transparency = 30 else: transparency = 30 style_class['transparency'] = transparency style_class['colour'] = colours[i] style_classes.append(style_class) style_info = dict(target_field=None, style_classes=style_classes, style_type='rasterStyle') # For printing map purpose map_title = tr('Population affected by each class') legend_notes = tr('Thousand separator is represented by %s' % get_thousand_separator()) legend_units = tr('(people per cell)') legend_title = tr('Number of People') # Create raster object and return raster_layer = Raster(impact, projection=hazard_layer.get_projection(), geotransform=hazard_layer.get_geotransform(), name=tr('Population which %s') % (get_function_title(self).lower()), keywords={ 'impact_summary': impact_summary, 'impact_table': impact_table, 'map_title': map_title, 'legend_notes': legend_notes, 'legend_units': legend_units, 'legend_title': legend_title, 'total_needs': total_needs }, style_info=style_info) return raster_layer
class ITBFatalityFunction(ImpactFunction): # noinspection PyUnresolvedReferences """Indonesian Earthquake Fatality Model. This model was developed by Institut Teknologi Bandung (ITB) and implemented by Dr. Hadi Ghasemi, Geoscience Australia. Reference: Indonesian Earthquake Building-Damage and Fatality Models and Post Disaster Survey Guidelines Development, Bali, 27-28 February 2012, 54pp. Algorithm: In this study, the same functional form as Allen (2009) is adopted to express fatality rate as a function of intensity (see Eq. 10 in the report). The Matlab built-in function (fminsearch) for Nelder-Mead algorithm was used to estimate the model parameters. The objective function (L2G norm) that is minimised during the optimisation is the same as the one used by Jaiswal et al. (2010). The coefficients used in the indonesian model are x=0.62275231, y=8.03314466, zeta=2.15 Allen, T. I., Wald, D. J., Earle, P. S., Marano, K. D., Hotovec, A. J., Lin, K., and Hearne, M., 2009. An Atlas of ShakeMaps and population exposure catalog for earthquake loss modeling, Bull. Earthq. Eng. 7, 701-718. Jaiswal, K., and Wald, D., 2010. An empirical model for global earthquake fatality estimation, Earthq. Spectra 26, 1017-1037. Caveats and limitations: The current model is the result of the above mentioned workshop and reflects the best available information. However, the current model has a number of issues listed below and is expected to evolve further over time. 1 - The model is based on limited number of observed fatality rates during 4 past fatal events. 2 - The model clearly over-predicts the fatality rates at intensities higher than VIII. 3 - The model only estimates the expected fatality rate for a given intensity level; however the associated uncertainty for the proposed model is not addressed. 4 - There are few known mistakes in developing the current model: - rounding MMI values to the nearest 0.5, - Implementing Finite-Fault models of candidate events, and - consistency between selected GMPEs with those in use by BMKG. These issues will be addressed by ITB team in the final report. Note: Because of these caveats, decisions should not be made solely on the information presented here and should always be verified by ground truthing and other reliable information sources. """ _metadata = ITBFatalityMetadata() def __init__(self): super(ITBFatalityFunction, self).__init__() # AG: Use the proper minimum needs, update the parameters self.parameters = add_needs_parameters(self.parameters) self.hardcoded_parameters = OrderedDict([ ('x', 0.62275231), ('y', 8.03314466), # Model coefficients # Rates of people displaced for each MMI level ('displacement_rate', { 1: 0, 2: 0, 3: 0, 4: 0, 5: 0, 6: 1.0, 7: 1.0, 8: 1.0, 9: 1.0, 10: 1.0 }), ('mmi_range', range(2, 10)), ('step', 0.5), # Threshold below which layer should be transparent ('tolerance', 0.01), ('calculate_displaced_people', True) ]) def fatality_rate(self, mmi): """ITB method to compute fatality rate. :param mmi: """ # As per email discussion with Ole, Trevor, Hadi, mmi < 4 will have # a fatality rate of 0 - Tim if mmi < 4: return 0 x = self.hardcoded_parameters['x'] y = self.hardcoded_parameters['y'] # noinspection PyUnresolvedReferences return numpy.power(10.0, x * mmi - y) def run(self, layers=None): """Indonesian Earthquake Fatality Model. Input: :param layers: List of layers expected to contain, hazard: Raster layer of MMI ground shaking exposure: Raster layer of population count """ self.validate() self.prepare(layers) displacement_rate = self.hardcoded_parameters['displacement_rate'] # Tolerance for transparency tolerance = self.hardcoded_parameters['tolerance'] # Extract input layers intensity = self.hazard population = self.exposure # Extract data grids hazard = intensity.get_data() # Ground Shaking exposure = population.get_data(scaling=True) # Population Density # Calculate people affected by each MMI level # FIXME (Ole): this range is 2-9. Should 10 be included? mmi_range = self.hardcoded_parameters['mmi_range'] number_of_exposed = {} number_of_displaced = {} number_of_fatalities = {} # Calculate fatality rates for observed Intensity values (hazard # based on ITB power model mask = numpy.zeros(hazard.shape) for mmi in mmi_range: # Identify cells where MMI is in class i and # count people affected by this shake level mmi_matches = numpy.where( (hazard > mmi - self.hardcoded_parameters['step']) * ( hazard <= mmi + self.hardcoded_parameters['step']), exposure, 0) # Calculate expected number of fatalities per level fatality_rate = self.fatality_rate(mmi) fatalities = fatality_rate * mmi_matches # Calculate expected number of displaced people per level try: displacements = displacement_rate[mmi] * mmi_matches except KeyError, e: msg = 'mmi = %i, mmi_matches = %s, Error msg: %s' % ( mmi, str(mmi_matches), str(e)) # noinspection PyExceptionInherit raise InaSAFEError(msg) # Adjust displaced people to disregard fatalities. # Set to zero if there are more fatalities than displaced. displacements = numpy.where( displacements > fatalities, displacements - fatalities, 0) # Sum up numbers for map mask += displacements # Displaced # Generate text with result for this study # This is what is used in the real time system exposure table number_of_exposed[mmi] = numpy.nansum(mmi_matches.flat) number_of_displaced[mmi] = numpy.nansum(displacements.flat) # noinspection PyUnresolvedReferences number_of_fatalities[mmi] = numpy.nansum(fatalities.flat) # Set resulting layer to NaN when less than a threshold. This is to # achieve transparency (see issue #126). mask[mask < tolerance] = numpy.nan # Total statistics total, rounding = population_rounding_full(numpy.nansum(exposure.flat)) # Compute number of fatalities fatalities = population_rounding(numpy.nansum( number_of_fatalities.values())) # As per email discussion with Ole, Trevor, Hadi, total fatalities < 50 # will be rounded down to 0 - Tim if fatalities < 50: fatalities = 0 # Compute number of people displaced due to building collapse displaced = population_rounding(numpy.nansum( number_of_displaced.values())) # Generate impact report table_body = [self.question] # Add total fatality estimate s = format_int(fatalities) table_body.append(TableRow([tr('Number of fatalities'), s], header=True)) if self.hardcoded_parameters['calculate_displaced_people']: # Add total estimate of people displaced s = format_int(displaced) table_body.append(TableRow([tr('Number of people displaced'), s], header=True)) else: displaced = 0 # Add estimate of total population in area s = format_int(int(total)) table_body.append(TableRow([tr('Total number of people'), s], header=True)) minimum_needs = [ parameter.serialize() for parameter in self.parameters['minimum needs'] ] # Generate impact report for the pdf map table_body = [ self.question, TableRow( [tr('Fatalities'), '%s' % format_int(fatalities)], header=True), TableRow( [tr('People displaced'), '%s' % format_int(displaced)], header=True), TableRow(tr('Map shows the estimation of displaced population'))] total_needs = evacuated_population_needs( displaced, minimum_needs) for frequency, needs in total_needs.items(): table_body.append(TableRow( [ tr('Needs should be provided %s' % frequency), tr('Total') ], header=True)) for resource in needs: table_body.append(TableRow([ tr(resource['table name']), format_int(resource['amount'])])) table_body.append(TableRow(tr('Provenance'), header=True)) table_body.append(TableRow(self.parameters['provenance'])) table_body.append(TableRow(tr('Action Checklist:'), header=True)) if fatalities > 0: table_body.append(tr('Are there enough victim identification ' 'units available for %s people?') % format_int(fatalities)) if displaced > 0: table_body.append(tr('Are there enough shelters and relief items ' 'available for %s people?') % format_int(displaced)) table_body.append(TableRow(tr('If yes, where are they located and ' 'how will we distribute them?'))) table_body.append(TableRow(tr('If no, where can we obtain ' 'additional relief items from and ' 'how will we transport them?'))) # Extend impact report for on-screen display table_body.extend([TableRow(tr('Notes'), header=True), tr('Total population: %s') % format_int(total), tr('People are considered to be displaced if ' 'they experience and survive a shake level' 'of more than 5 on the MMI scale '), tr('Minimum needs are defined in BNPB ' 'regulation 7/2008'), tr('The fatality calculation assumes that ' 'no fatalities occur for shake levels below 4 ' 'and fatality counts of less than 50 are ' 'disregarded.'), tr('All values are rounded up to the nearest ' 'integer in order to avoid representing human ' 'lives as fractions.')]) table_body.append(TableRow(tr('Notes'), header=True)) table_body.append(tr('Fatality model is from ' 'Institute of Teknologi Bandung 2012.')) table_body.append( tr('Population numbers rounded up to the nearest %s.') % rounding) # Result impact_summary = Table(table_body).toNewlineFreeString() impact_table = impact_summary # check for zero impact if numpy.nanmax(mask) == 0 == numpy.nanmin(mask): table_body = [ self.question, TableRow([tr('Fatalities'), '%s' % format_int(fatalities)], header=True)] my_message = Table(table_body).toNewlineFreeString() raise ZeroImpactException(my_message) # Create style colours = ['#EEFFEE', '#FFFF7F', '#E15500', '#E4001B', '#730000'] classes = create_classes(mask.flat[:], len(colours)) interval_classes = humanize_class(classes) style_classes = [] for i in xrange(len(colours)): style_class = dict() style_class['label'] = create_label(interval_classes[i]) style_class['quantity'] = classes[i] if i == 0: transparency = 100 else: transparency = 30 style_class['transparency'] = transparency style_class['colour'] = colours[i] style_classes.append(style_class) style_info = dict(target_field=None, style_classes=style_classes, style_type='rasterStyle') # For printing map purpose map_title = tr('Earthquake impact to population') legend_notes = tr('Thousand separator is represented by %s' % get_thousand_separator()) legend_units = tr('(people per cell)') legend_title = tr('Population Count') # Create raster object and return raster = Raster( mask, projection=population.get_projection(), geotransform=population.get_geotransform(), keywords={ 'impact_summary': impact_summary, 'total_population': total, 'total_fatalities': fatalities, 'fatalities_per_mmi': number_of_fatalities, 'exposed_per_mmi': number_of_exposed, 'displaced_per_mmi': number_of_displaced, 'impact_table': impact_table, 'map_title': map_title, 'legend_notes': legend_notes, 'legend_units': legend_units, 'legend_title': legend_title, 'total_needs': total_needs}, name=tr('Estimated displaced population per cell'), style_info=style_info) self._impact = raster return raster
def run(self, layers): """Plugin for impact of population as derived by categorised hazard. :param layers: List of layers expected to contain * hazard_layer: Raster layer of categorised hazard * exposure_layer: Raster layer of population data Counts number of people exposed to each category of the hazard :returns: Map of population exposed to high category Table with number of people in each category """ # The 3 category high_t = self.parameters['Categorical thresholds'][2] medium_t = self.parameters['Categorical thresholds'][1] low_t = self.parameters['Categorical thresholds'][0] # Identify hazard and exposure layers hazard_layer = get_hazard_layer(layers) # Categorised Hazard exposure_layer = get_exposure_layer(layers) # Population Raster question = get_question( hazard_layer.get_name(), exposure_layer.get_name(), self) # Extract data as numeric arrays C = hazard_layer.get_data(nan=0.0) # Category # Calculate impact as population exposed to each category P = exposure_layer.get_data(nan=0.0, scaling=True) H = numpy.where(C <= high_t, P, 0) M = numpy.where(C < medium_t, P, 0) L = numpy.where(C < low_t, P, 0) # Count totals total = int(numpy.sum(P)) high = int(numpy.sum(H)) - int(numpy.sum(M)) medium = int(numpy.sum(M)) - int(numpy.sum(L)) low = int(numpy.sum(L)) total_impact = high + medium + low # Don't show digits less than a 1000 total = population_rounding(total) total_impact = population_rounding(total_impact) high = population_rounding(high) medium = population_rounding(medium) low = population_rounding(low) minimum_needs = [ parameter.serialize() for parameter in self.parameters['minimum needs'] ] # Generate impact report for the pdf map table_body = [ question, TableRow([tr('People impacted '), '%s' % format_int(total_impact)], header=True), TableRow([tr('People in high hazard area '), '%s' % format_int(high)], header=True), TableRow([tr('People in medium hazard area '), '%s' % format_int(medium)], header=True), TableRow([tr('People in low hazard area'), '%s' % format_int(low)], header=True)] impact_table = Table(table_body).toNewlineFreeString() # Extend impact report for on-screen display table_body.extend([ TableRow(tr('Notes'), header=True), tr('Map shows population count in high or medium hazard area'), tr('Total population: %s') % format_int(total), TableRow(tr( 'Table below shows the minimum needs for all ' 'affected people'))]) total_needs = evacuated_population_needs( total_impact, minimum_needs) for frequency, needs in total_needs.items(): table_body.append(TableRow( [ tr('Needs should be provided %s' % frequency), tr('Total') ], header=True)) for resource in needs: table_body.append(TableRow([ tr(resource['table name']), format_int(resource['amount'])])) impact_summary = Table(table_body).toNewlineFreeString() map_title = tr('People in high hazard areas') # Generate 8 equidistant classes across the range of flooded population # 8 is the number of classes in the predefined flood population style # as imported # noinspection PyTypeChecker classes = numpy.linspace( numpy.nanmin(M.flat[:]), numpy.nanmax(M.flat[:]), 8) # Modify labels in existing flood style to show quantities style_classes = style_info['style_classes'] style_classes[1]['label'] = tr('Low [%i people/cell]') % classes[1] style_classes[4]['label'] = tr('Medium [%i people/cell]') % classes[4] style_classes[7]['label'] = tr('High [%i people/cell]') % classes[7] style_info['legend_title'] = tr('Population Count') # Create raster object and return raster_layer = Raster( M, projection=hazard_layer.get_projection(), geotransform=hazard_layer.get_geotransform(), name=tr('Population which %s') % ( get_function_title(self).lower()), keywords={ 'impact_summary': impact_summary, 'impact_table': impact_table, 'map_title': map_title, 'total_needs': total_needs}, style_info=style_info) return raster_layer
def run(self, layers): """Plugin for impact of population as derived by categorised hazard. Input :param layers: List of layers expected to contain * hazard_layer: Raster layer of categorised hazard * exposure_layer: Raster layer of population data Counts number of people exposed to each category of the hazard Return Map of population exposed to high category Table with number of people in each category """ # The 3 category high_t = self.parameters['high_thresholds'] medium_t = self.parameters['medium_thresholds'] low_t = self.parameters['low_thresholds'] # Identify hazard and exposure layers hazard_layer = get_hazard_layer(layers) # Categorised Hazard exposure_layer = get_exposure_layer(layers) # Population Raster question = get_question( hazard_layer.get_name(), exposure_layer.get_name(), self) # Extract data as numeric arrays data = hazard_layer.get_data(nan=0.0) # Category # Calculate impact as population exposed to each category population = exposure_layer.get_data(nan=0.0, scaling=True) if high_t == 0: hi = numpy.where(0, population, 0) else: hi = numpy.where(data == high_t, population, 0) if medium_t == 0: med = numpy.where(0, population, 0) else: med = numpy.where(data == medium_t, population, 0) if low_t == 0: lo = numpy.where(0, population, 0) else: lo = numpy.where(data == low_t, population, 0) if high_t == 0: impact = numpy.where( (data == low_t) + (data == medium_t), population, 0) elif medium_t == 0: impact = numpy.where( (data == low_t) + (data == high_t), population, 0) elif low_t == 0: impact = numpy.where( (data == medium_t) + (data == high_t), population, 0) else: impact = numpy.where( (data == low_t) + (data == medium_t) + (data == high_t), population, 0) # Count totals total = int(numpy.sum(population)) high = int(numpy.sum(hi)) medium = int(numpy.sum(med)) low = int(numpy.sum(lo)) total_impact = int(numpy.sum(impact)) # Perform population rounding based on number of people no_impact = population_rounding(total - total_impact) total = population_rounding(total) total_impact = population_rounding(total_impact) high = population_rounding(high) medium = population_rounding(medium) low = population_rounding(low) minimum_needs = [ parameter.serialize() for parameter in self.parameters['minimum needs'] ] # Generate impact report for the pdf map table_body = [question, TableRow([tr('Total Population Affected '), '%s' % format_int(total_impact)], header=True), TableRow([tr('Population in High risk areas '), '%s' % format_int(high)]), TableRow([tr('Population in Medium risk areas '), '%s' % format_int(medium)]), TableRow([tr('Population in Low risk areas '), '%s' % format_int(low)]), TableRow([tr('Population Not Affected'), '%s' % format_int(no_impact)]), TableRow(tr('Table below shows the minimum ' 'needs for all evacuated people'))] total_needs = evacuated_population_needs( total_impact, minimum_needs) for frequency, needs in total_needs.items(): table_body.append(TableRow( [ tr('Needs should be provided %s' % frequency), tr('Total') ], header=True)) for resource in needs: table_body.append(TableRow([ tr(resource['table name']), format_int(resource['amount'])])) impact_table = Table(table_body).toNewlineFreeString() table_body.append(TableRow(tr('Action Checklist:'), header=True)) table_body.append(TableRow(tr('How will warnings be disseminated?'))) table_body.append(TableRow(tr('How will we reach stranded people?'))) table_body.append(TableRow(tr('Do we have enough relief items?'))) table_body.append(TableRow(tr('If yes, where are they located and how ' 'will we distribute them?'))) table_body.append(TableRow(tr( 'If no, where can we obtain additional relief items from and how ' 'will we transport them to here?'))) # Extend impact report for on-screen display table_body.extend([ TableRow(tr('Notes'), header=True), tr('Map shows the numbers of people in high, medium and low ' 'hazard areas'), tr('Total population: %s') % format_int(total) ]) impact_summary = Table(table_body).toNewlineFreeString() # Create style colours = [ '#FFFFFF', '#38A800', '#79C900', '#CEED00', '#FFCC00', '#FF6600', '#FF0000', '#7A0000'] classes = create_classes(impact.flat[:], len(colours)) interval_classes = humanize_class(classes) style_classes = [] for i in xrange(len(colours)): style_class = dict() if i == 1: label = create_label(interval_classes[i], 'Low') elif i == 4: label = create_label(interval_classes[i], 'Medium') elif i == 7: label = create_label(interval_classes[i], 'High') else: label = create_label(interval_classes[i]) style_class['label'] = label style_class['quantity'] = classes[i] if i == 0: transparency = 30 else: transparency = 30 style_class['transparency'] = transparency style_class['colour'] = colours[i] style_classes.append(style_class) style_info = dict( target_field=None, style_classes=style_classes, style_type='rasterStyle') # For printing map purpose map_title = tr('Population affected by each category') legend_notes = tr( 'Thousand separator is represented by %s' % get_thousand_separator()) legend_units = tr('(people per cell)') legend_title = tr('Number of People') # Create raster object and return raster_layer = Raster( impact, projection=hazard_layer.get_projection(), geotransform=hazard_layer.get_geotransform(), name=tr('Population which %s') % ( get_function_title(self).lower()), keywords={ 'impact_summary': impact_summary, 'impact_table': impact_table, 'map_title': map_title, 'legend_notes': legend_notes, 'legend_units': legend_units, 'legend_title': legend_title, 'total_needs': total_needs}, style_info=style_info) return raster_layer
def run(self, layers=None): """Run volcano point population evacuation Impact Function. :param layers: List of layers expected to contain where two layers should be present. * hazard_layer: Vector point layer. * exposure_layer: Raster layer of population data on the same grid as hazard_layer Counts number of people exposed to volcano event. :returns: Map of population exposed to the volcano hazard zone. The returned dict will include a table with number of people evacuated and supplies required. :rtype: dict :raises: * Exception - When hazard layer is not vector layer * RadiiException - When radii are not valid (they need to be monotonically increasing) """ self.validate() self.prepare(layers) # Parameters radii = self.parameters['distance [km]'] name_attribute = self.parameters['volcano name attribute'] # Identify hazard and exposure layers hazard_layer = self.hazard exposure_layer = self.exposure # Input checks if not hazard_layer.is_point_data: msg = ( 'Input hazard must be a polygon or point layer. I got %s with ' 'layer type %s' % (hazard_layer.get_name(), hazard_layer.get_geometry_name())) raise Exception(msg) data_table = hazard_layer.get_data() # Use concentric circles category_title = 'Radius' category_header = tr('Distance [km]') centers = hazard_layer.get_geometry() rad_m = [x * 1000 for x in radii] # Convert to meters hazard_layer = buffer_points(centers, rad_m, category_title, data_table=data_table) # Get names of volcanoes considered if name_attribute in hazard_layer.get_attribute_names(): volcano_name_list = [] # Run through all polygons and get unique names for row in data_table: volcano_name_list.append(row[name_attribute]) volcano_names = '' for radius in volcano_name_list: volcano_names += '%s, ' % radius volcano_names = volcano_names[:-2] # Strip trailing ', ' else: volcano_names = tr('Not specified in data') # Find the target field name that has no conflict with default target attribute_names = hazard_layer.get_attribute_names() new_target_field = get_non_conflicting_attribute_name( self.target_field, attribute_names) self.target_field = new_target_field # Run interpolation function for polygon2raster interpolated_layer, covered_exposure_layer = \ assign_hazard_values_to_exposure_data( hazard_layer, exposure_layer, attribute_name=self.target_field ) # Initialise affected population per categories affected_population = {} for radius in rad_m: affected_population[radius] = 0 nan_warning = False if has_no_data(exposure_layer.get_data(nan=True)): nan_warning = True # Count affected population per polygon and total for row in interpolated_layer.get_data(): # Get population at this location population = row[self.target_field] if not numpy.isnan(population): population = float(population) # Update population count for this category category = row[category_title] affected_population[category] += population # Count totals total_population = population_rounding( int(numpy.nansum(exposure_layer.get_data()))) # Count cumulative for each zone total_affected_population = 0 cumulative_affected_population = {} for radius in rad_m: population = int(affected_population.get(radius, 0)) total_affected_population += population cumulative_affected_population[radius] = total_affected_population minimum_needs = [ parameter.serialize() for parameter in self.parameters['minimum needs'] ] # Generate impact report for the pdf map blank_cell = '' table_body = [ self.question, TableRow( [tr('Volcanoes considered'), '%s' % volcano_names, blank_cell], header=True), TableRow([ tr('People needing evacuation'), '%s' % format_int(population_rounding(total_affected_population)), blank_cell ], header=True), TableRow( [category_header, tr('Total'), tr('Cumulative')], header=True) ] for radius in rad_m: table_body.append( TableRow([ radius, format_int(population_rounding( affected_population[radius])), format_int( population_rounding( cumulative_affected_population[radius])) ])) table_body.extend([ TableRow( tr('Map shows the number of people affected in each of volcano ' 'hazard polygons.')) ]) total_needs = evacuated_population_needs(total_affected_population, minimum_needs) for frequency, needs in total_needs.items(): table_body.append( TableRow([ tr('Needs should be provided %s' % frequency), tr('Total') ], header=True)) for resource in needs: table_body.append( TableRow([ tr(resource['table name']), format_int(resource['amount']) ])) impact_table = Table(table_body).toNewlineFreeString() # Extend impact report for on-screen display table_body.extend([ TableRow(tr('Notes'), header=True), tr('Total population %s in the exposure layer') % format_int(total_population), tr('People need evacuation if they are within the ' 'volcanic hazard zones.') ]) if nan_warning: table_body.extend([ tr('The population layer contained `no data`. This missing ' 'data was carried through to the impact layer.'), tr('`No data` values in the impact layer were treated as 0 ' 'when counting the affected or total population.') ]) impact_summary = Table(table_body).toNewlineFreeString() # check for zero impact if total_affected_population == 0: table_body = [ self.question, TableRow([ tr('People needing evacuation'), '%s' % format_int(total_affected_population), blank_cell ], header=True) ] message = Table(table_body).toNewlineFreeString() raise ZeroImpactException(message) # Create style colours = [ '#FFFFFF', '#38A800', '#79C900', '#CEED00', '#FFCC00', '#FF6600', '#FF0000', '#7A0000' ] classes = create_classes(covered_exposure_layer.get_data().flat[:], len(colours)) interval_classes = humanize_class(classes) # Define style info for output polygons showing population counts style_classes = [] for i in xrange(len(colours)): style_class = dict() style_class['label'] = create_label(interval_classes[i]) if i == 1: label = create_label( interval_classes[i], tr('Low Population [%i people/cell]' % classes[i])) elif i == 4: label = create_label( interval_classes[i], tr('Medium Population [%i people/cell]' % classes[i])) elif i == 7: label = create_label( interval_classes[i], tr('High Population [%i people/cell]' % classes[i])) else: label = create_label(interval_classes[i]) if i == 0: transparency = 100 else: transparency = 0 style_class['label'] = label style_class['quantity'] = classes[i] style_class['colour'] = colours[i] style_class['transparency'] = transparency style_classes.append(style_class) # Override style info with new classes and name style_info = dict(target_field=None, style_classes=style_classes, style_type='rasterStyle') # For printing map purpose map_title = tr('People affected by the buffered point volcano') legend_notes = tr('Thousand separator is represented by %s' % get_thousand_separator()) legend_units = tr('(people per cell)') legend_title = tr('Population') # Create vector layer and return impact_layer = Raster( data=covered_exposure_layer.get_data(), projection=covered_exposure_layer.get_projection(), geotransform=covered_exposure_layer.get_geotransform(), name=tr('People affected by the buffered point volcano'), keywords={ 'impact_summary': impact_summary, 'impact_table': impact_table, 'target_field': self.target_field, 'map_title': map_title, 'legend_notes': legend_notes, 'legend_units': legend_units, 'legend_title': legend_title, 'total_needs': total_needs }, style_info=style_info) self._impact = impact_layer return impact_layer
def _tabulate(self, counts, evacuated, minimum_needs, question, rounding, thresholds, total, no_data_warning): # noinspection PyListCreation table_body = [ question, TableRow([(tr('People in %.1f m of water') % thresholds[-1]), '%s*' % format_int(evacuated)], header=True), TableRow( tr('* Number is rounded up to the nearest %s') % rounding), TableRow(tr('Map shows the numbers of people needing evacuation')) ] total_needs = evacuated_population_needs(evacuated, minimum_needs) for frequency, needs in total_needs.items(): table_body.append( TableRow([ tr('Needs should be provided %s' % frequency), tr('Total') ], header=True)) for resource in needs: table_body.append( TableRow([ tr(resource['table name']), format_int(resource['amount']) ])) table_body.append(TableRow(tr('Action Checklist:'), header=True)) table_body.append(TableRow(tr('How will warnings be disseminated?'))) table_body.append(TableRow(tr('How will we reach stranded people?'))) table_body.append(TableRow(tr('Do we have enough relief items?'))) table_body.append( TableRow( tr('If yes, where are they located and how ' 'will we distribute them?'))) table_body.append( TableRow( tr('If no, where can we obtain additional relief items from and how ' 'will we transport them to here?'))) # Extend impact report for on-screen display table_body.extend([ TableRow(tr('Notes'), header=True), tr('Total population: %s') % format_int(total), tr('People need evacuation if tsunami levels exceed %(eps).1f m') % { 'eps': thresholds[-1] }, tr('Minimum needs are defined in BNPB regulation 7/2008'), tr('All values are rounded up to the nearest integer in order to ' 'avoid representing human lives as fractions.') ]) if len(counts) > 1: table_body.append(TableRow(tr('Detailed breakdown'), header=True)) for i, val in enumerate(counts[:-1]): s = (tr('People in %(lo).1f m to %(hi).1f m of water: %(val)i') % { 'lo': thresholds[i], 'hi': thresholds[i + 1], 'val': format_int(val[0]) }) table_body.append(TableRow(s)) if no_data_warning: table_body.extend([ tr('The layers contained `no data`. This missing data was ' 'carried through to the impact layer.'), tr('`No data` values in the impact layer were treated as 0 ' 'when counting the affected or total population.') ]) return table_body, total_needs
def run(self, layers): """Plugin for impact of population as derived by categorised hazard. :param layers: List of layers expected to contain * hazard_layer: Raster layer of categorised hazard * exposure_layer: Raster layer of population data Counts number of people exposed to each category of the hazard :returns: Map of population exposed to high category Table with number of people in each category """ # The 3 category high_t = self.parameters['Categorical thresholds'][2] medium_t = self.parameters['Categorical thresholds'][1] low_t = self.parameters['Categorical thresholds'][0] # Identify hazard and exposure layers hazard_layer = get_hazard_layer(layers) # Categorised Hazard exposure_layer = get_exposure_layer(layers) # Population Raster question = get_question(hazard_layer.get_name(), exposure_layer.get_name(), self) # Extract data as numeric arrays C = hazard_layer.get_data(nan=0.0) # Category # Calculate impact as population exposed to each category P = exposure_layer.get_data(nan=0.0, scaling=True) H = numpy.where(C <= high_t, P, 0) M = numpy.where(C < medium_t, P, 0) L = numpy.where(C < low_t, P, 0) # Count totals total = int(numpy.sum(P)) high = int(numpy.sum(H)) - int(numpy.sum(M)) medium = int(numpy.sum(M)) - int(numpy.sum(L)) low = int(numpy.sum(L)) total_impact = high + medium + low # Don't show digits less than a 1000 total = population_rounding(total) total_impact = population_rounding(total_impact) high = population_rounding(high) medium = population_rounding(medium) low = population_rounding(low) minimum_needs = [ parameter.serialize() for parameter in self.parameters['minimum needs'] ] # Generate impact report for the pdf map table_body = [ question, TableRow([tr('People impacted '), '%s' % format_int(total_impact)], header=True), TableRow( [tr('People in high hazard area '), '%s' % format_int(high)], header=True), TableRow([ tr('People in medium hazard area '), '%s' % format_int(medium) ], header=True), TableRow([tr('People in low hazard area'), '%s' % format_int(low)], header=True) ] impact_table = Table(table_body).toNewlineFreeString() # Extend impact report for on-screen display table_body.extend([ TableRow(tr('Notes'), header=True), tr('Map shows population count in high or medium hazard area'), tr('Total population: %s') % format_int(total), TableRow( tr('Table below shows the minimum needs for all ' 'affected people')) ]) total_needs = evacuated_population_needs(total_impact, minimum_needs) for frequency, needs in total_needs.items(): table_body.append( TableRow([ tr('Needs should be provided %s' % frequency), tr('Total') ], header=True)) for resource in needs: table_body.append( TableRow([ tr(resource['table name']), format_int(resource['amount']) ])) impact_summary = Table(table_body).toNewlineFreeString() map_title = tr('People in high hazard areas') # Generate 8 equidistant classes across the range of flooded population # 8 is the number of classes in the predefined flood population style # as imported # noinspection PyTypeChecker classes = numpy.linspace(numpy.nanmin(M.flat[:]), numpy.nanmax(M.flat[:]), 8) # Modify labels in existing flood style to show quantities style_classes = style_info['style_classes'] style_classes[1]['label'] = tr('Low [%i people/cell]') % classes[1] style_classes[4]['label'] = tr('Medium [%i people/cell]') % classes[4] style_classes[7]['label'] = tr('High [%i people/cell]') % classes[7] style_info['legend_title'] = tr('Population Count') # Create raster object and return raster_layer = Raster(M, projection=hazard_layer.get_projection(), geotransform=hazard_layer.get_geotransform(), name=tr('Population which %s') % (get_function_title(self).lower()), keywords={ 'impact_summary': impact_summary, 'impact_table': impact_table, 'map_title': map_title, 'total_needs': total_needs }, style_info=style_info) return raster_layer
def _tabulate(self, affected_population, evacuated, minimum_needs, question, rounding, rounding_evacuated): # People Affected table_body = [ question, TableRow([ tr('People affected'), '%s*' % (format_int(int(affected_population))) ], header=True) ] if self.use_affected_field: table_body.append( TableRow( tr('* People are considered to be affected if they are ' 'within the area where the value of the hazard field (' '"%s") is "%s"') % (self.parameters['affected_field'], self.parameters['affected_value']))) else: table_body.append( TableRow( tr('* People are considered to be affected if they are ' 'within any polygons.'))) table_body.append( TableRow([ TableCell(tr('* Number is rounded up to the nearest %s') % rounding, col_span=2) ])) # People Needing Evacuation table_body.append( TableRow([ tr('People needing evacuation'), '%s*' % (format_int(int(evacuated))) ], header=True)) table_body.append( TableRow([ TableCell(tr('* Number is rounded up to the nearest %s') % rounding_evacuated, col_span=2) ])) table_body.append( TableRow([ tr('Evacuation threshold'), '%s%%' % format_int(self.parameters['evacuation_percentage']) ], header=True)) table_body.append( TableRow( tr('Table below shows the weekly minimum needs for all ' 'evacuated people'))) total_needs = evacuated_population_needs(evacuated, minimum_needs) for frequency, needs in total_needs.items(): table_body.append( TableRow([ tr('Needs should be provided %s' % frequency), tr('Total') ], header=True)) for resource in needs: table_body.append( TableRow([ tr(resource['table name']), format_int(resource['amount']) ])) return table_body, total_needs
def run(self, layers=None): """Run volcano point population evacuation Impact Function. :param layers: List of layers expected to contain where two layers should be present. * hazard_layer: Vector point layer. * exposure_layer: Raster layer of population data on the same grid as hazard_layer Counts number of people exposed to volcano event. :returns: Map of population exposed to the volcano hazard zone. The returned dict will include a table with number of people evacuated and supplies required. :rtype: dict :raises: * Exception - When hazard layer is not vector layer * RadiiException - When radii are not valid (they need to be monotonically increasing) """ self.validate() self.prepare(layers) # Parameters radii = self.parameters['distance [km]'] name_attribute = self.parameters['volcano name attribute'] # Identify hazard and exposure layers hazard_layer = self.hazard exposure_layer = self.exposure # Input checks if not hazard_layer.is_point_data: msg = ( 'Input hazard must be a polygon or point layer. I got %s with ' 'layer type %s' % (hazard_layer.get_name(), hazard_layer.get_geometry_name())) raise Exception(msg) data_table = hazard_layer.get_data() # Use concentric circles category_title = 'Radius' category_header = tr('Distance [km]') centers = hazard_layer.get_geometry() rad_m = [x * 1000 for x in radii] # Convert to meters hazard_layer = buffer_points( centers, rad_m, category_title, data_table=data_table) # Get names of volcanoes considered if name_attribute in hazard_layer.get_attribute_names(): volcano_name_list = [] # Run through all polygons and get unique names for row in data_table: volcano_name_list.append(row[name_attribute]) volcano_names = '' for radius in volcano_name_list: volcano_names += '%s, ' % radius volcano_names = volcano_names[:-2] # Strip trailing ', ' else: volcano_names = tr('Not specified in data') # Find the target field name that has no conflict with default target attribute_names = hazard_layer.get_attribute_names() new_target_field = get_non_conflicting_attribute_name( self.target_field, attribute_names) self.target_field = new_target_field # Run interpolation function for polygon2raster interpolated_layer, covered_exposure_layer = \ assign_hazard_values_to_exposure_data( hazard_layer, exposure_layer, attribute_name=self.target_field ) # Initialise affected population per categories affected_population = {} for radius in rad_m: affected_population[radius] = 0 nan_warning = False if has_no_data(exposure_layer.get_data(nan=True)): nan_warning = True # Count affected population per polygon and total for row in interpolated_layer.get_data(): # Get population at this location population = row[self.target_field] if not numpy.isnan(population): population = float(population) # Update population count for this category category = row[category_title] affected_population[category] += population # Count totals total_population = population_rounding( int(numpy.nansum(exposure_layer.get_data()))) # Count cumulative for each zone total_affected_population = 0 cumulative_affected_population = {} for radius in rad_m: population = int(affected_population.get(radius, 0)) total_affected_population += population cumulative_affected_population[radius] = total_affected_population minimum_needs = [ parameter.serialize() for parameter in self.parameters['minimum needs'] ] # Generate impact report for the pdf map blank_cell = '' table_body = [ self.question, TableRow( [tr('Volcanoes considered'), '%s' % volcano_names, blank_cell], header=True), TableRow( [tr('People needing evacuation'), '%s' % format_int( population_rounding(total_affected_population)), blank_cell], header=True), TableRow( [category_header, tr('Total'), tr('Cumulative')], header=True)] for radius in rad_m: table_body.append( TableRow( [radius, format_int( population_rounding( affected_population[radius])), format_int( population_rounding( cumulative_affected_population[radius]))])) table_body.extend([ TableRow(tr( 'Map shows the number of people affected in each of volcano ' 'hazard polygons.'))]) total_needs = evacuated_population_needs( total_affected_population, minimum_needs) for frequency, needs in total_needs.items(): table_body.append(TableRow( [ tr('Needs should be provided %s' % frequency), tr('Total') ], header=True)) for resource in needs: table_body.append(TableRow([ tr(resource['table name']), format_int(resource['amount'])])) impact_table = Table(table_body).toNewlineFreeString() # Extend impact report for on-screen display table_body.extend( [TableRow(tr('Notes'), header=True), tr('Total population %s in the exposure layer') % format_int( total_population), tr('People need evacuation if they are within the ' 'volcanic hazard zones.')]) if nan_warning: table_body.extend([ tr('The population layer contained `no data`. This missing ' 'data was carried through to the impact layer.'), tr('`No data` values in the impact layer were treated as 0 ' 'when counting the affected or total population.') ]) impact_summary = Table(table_body).toNewlineFreeString() # check for zero impact if total_affected_population == 0: table_body = [ self.question, TableRow( [tr('People needing evacuation'), '%s' % format_int(total_affected_population), blank_cell], header=True)] message = Table(table_body).toNewlineFreeString() raise ZeroImpactException(message) # Create style colours = ['#FFFFFF', '#38A800', '#79C900', '#CEED00', '#FFCC00', '#FF6600', '#FF0000', '#7A0000'] classes = create_classes( covered_exposure_layer.get_data().flat[:], len(colours)) interval_classes = humanize_class(classes) # Define style info for output polygons showing population counts style_classes = [] for i in xrange(len(colours)): style_class = dict() style_class['label'] = create_label(interval_classes[i]) if i == 1: label = create_label( interval_classes[i], tr('Low Population [%i people/cell]' % classes[i])) elif i == 4: label = create_label( interval_classes[i], tr('Medium Population [%i people/cell]' % classes[i])) elif i == 7: label = create_label( interval_classes[i], tr('High Population [%i people/cell]' % classes[i])) else: label = create_label(interval_classes[i]) if i == 0: transparency = 100 else: transparency = 0 style_class['label'] = label style_class['quantity'] = classes[i] style_class['colour'] = colours[i] style_class['transparency'] = transparency style_classes.append(style_class) # Override style info with new classes and name style_info = dict( target_field=None, style_classes=style_classes, style_type='rasterStyle') # For printing map purpose map_title = tr('People affected by the buffered point volcano') legend_notes = tr('Thousand separator is represented by %s' % get_thousand_separator()) legend_units = tr('(people per cell)') legend_title = tr('Population') # Create vector layer and return impact_layer = Raster( data=covered_exposure_layer.get_data(), projection=covered_exposure_layer.get_projection(), geotransform=covered_exposure_layer.get_geotransform(), name=tr('People affected by the buffered point volcano'), keywords={'impact_summary': impact_summary, 'impact_table': impact_table, 'target_field': self.target_field, 'map_title': map_title, 'legend_notes': legend_notes, 'legend_units': legend_units, 'legend_title': legend_title, 'total_needs': total_needs}, style_info=style_info) self._impact = impact_layer return impact_layer
def run(self, layers): """Risk plugin for volcano population evacuation. :param layers: List of layers expected to contain where two layers should be present. * hazard_layer: Vector polygon layer of volcano impact zones * exposure_layer: Raster layer of population data on the same grid as hazard_layer Counts number of people exposed to volcano event. :returns: Map of population exposed to the volcano hazard zone. The returned dict will include a table with number of people evacuated and supplies required. :rtype: dict :raises: * Exception - When hazard layer is not vector layer * RadiiException - When radii are not valid (they need to be monotonically increasing) """ # Identify hazard and exposure layers hazard_layer = get_hazard_layer(layers) # Volcano KRB exposure_layer = get_exposure_layer(layers) question = get_question( hazard_layer.get_name(), exposure_layer.get_name(), self) # Input checks if not hazard_layer.is_vector: msg = ('Input hazard %s was not a vector layer as expected ' % hazard_layer.get_name()) raise Exception(msg) msg = ('Input hazard must be a polygon or point layer. I got %s with ' 'layer type %s' % (hazard_layer.get_name(), hazard_layer.get_geometry_name())) if not (hazard_layer.is_polygon_data or hazard_layer.is_point_data): raise Exception(msg) data_table = hazard_layer.get_data() if hazard_layer.is_point_data: # Use concentric circles radii = self.parameters['distance [km]'] category_title = 'Radius' category_header = tr('Distance [km]') category_names = radii name_attribute = 'NAME' # As in e.g. the Smithsonian dataset centers = hazard_layer.get_geometry() rad_m = [x * 1000 for x in radii] # Convert to meters hazard_layer = buffer_points( centers, rad_m, category_title, data_table=data_table) else: # Use hazard map category_title = 'KRB' category_header = tr('Category') # FIXME (Ole): Change to English and use translation system category_names = ['Kawasan Rawan Bencana III', 'Kawasan Rawan Bencana II', 'Kawasan Rawan Bencana I'] name_attribute = 'GUNUNG' # As in e.g. BNPB hazard map # Get names of volcanoes considered if name_attribute in hazard_layer.get_attribute_names(): volcano_name_list = [] # Run through all polygons and get unique names for row in data_table: volcano_name_list.append(row[name_attribute]) volcano_names = '' for name in volcano_name_list: volcano_names += '%s, ' % name volcano_names = volcano_names[:-2] # Strip trailing ', ' else: volcano_names = tr('Not specified in data') # Check if category_title exists in hazard_layer if category_title not in hazard_layer.get_attribute_names(): msg = ('Hazard data %s did not contain expected ' 'attribute %s ' % (hazard_layer.get_name(), category_title)) # noinspection PyExceptionInherit raise InaSAFEError(msg) # Find the target field name that has no conflict with default target attribute_names = hazard_layer.get_attribute_names() new_target_field = get_non_conflicting_attribute_name( self.target_field, attribute_names) self.target_field = new_target_field # Run interpolation function for polygon2raster interpolated_layer = assign_hazard_values_to_exposure_data( hazard_layer, exposure_layer, attribute_name=self.target_field) # Initialise data_table of output dataset with all data_table # from input polygon and a population count of zero new_data_table = hazard_layer.get_data() categories = {} for row in new_data_table: row[self.target_field] = 0 category = row[category_title] categories[category] = 0 # Count affected population per polygon and total for row in interpolated_layer.get_data(): # Get population at this location population = float(row[self.target_field]) # Update population count for associated polygon poly_id = row['polygon_id'] new_data_table[poly_id][self.target_field] += population # Update population count for each category category = new_data_table[poly_id][category_title] categories[category] += population # Count totals total_population = population_rounding( int(numpy.sum(exposure_layer.get_data(nan=0)))) # Count number and cumulative for each zone cumulative = 0 all_categories_population = {} all_categories_cumulative = {} for name in category_names: if category_title == 'Radius': key = name * 1000 # Convert to meters else: key = name # prevent key error population = int(categories.get(key, 0)) cumulative += population # I'm not sure whether this is the best place to apply rounding? all_categories_population[name] = population_rounding(population) all_categories_cumulative[name] = population_rounding(cumulative) # Use final accumulation as total number needing evacuation evacuated = population_rounding(cumulative) minimum_needs = [ parameter.serialize() for parameter in self.parameters['minimum needs'] ] # Generate impact report for the pdf map blank_cell = '' table_body = [question, TableRow([tr('Volcanoes considered'), '%s' % volcano_names, blank_cell], header=True), TableRow([tr('People needing evacuation'), '%s' % format_int(evacuated), blank_cell], header=True), TableRow([category_header, tr('Total'), tr('Cumulative')], header=True)] for name in category_names: table_body.append( TableRow([name, format_int(all_categories_population[name]), format_int(all_categories_cumulative[name])])) table_body.extend([ TableRow(tr( 'Map shows the number of people affected in each of volcano ' 'hazard polygons.'))]) total_needs = evacuated_population_needs( evacuated, minimum_needs) for frequency, needs in total_needs.items(): table_body.append(TableRow( [ tr('Needs should be provided %s' % frequency), tr('Total') ], header=True)) for resource in needs: table_body.append(TableRow([ tr(resource['table name']), format_int(resource['amount'])])) impact_table = Table(table_body).toNewlineFreeString() # Extend impact report for on-screen display table_body.extend( [TableRow(tr('Notes'), header=True), tr('Total population %s in the exposure layer') % format_int( total_population), tr('People need evacuation if they are within the ' 'volcanic hazard zones.')]) population_counts = [x[self.target_field] for x in new_data_table] impact_summary = Table(table_body).toNewlineFreeString() # check for zero impact if numpy.nanmax(population_counts) == 0 == numpy.nanmin( population_counts): table_body = [ question, TableRow([tr('People needing evacuation'), '%s' % format_int(evacuated), blank_cell], header=True)] my_message = Table(table_body).toNewlineFreeString() raise ZeroImpactException(my_message) # Create style colours = ['#FFFFFF', '#38A800', '#79C900', '#CEED00', '#FFCC00', '#FF6600', '#FF0000', '#7A0000'] classes = create_classes(population_counts, len(colours)) interval_classes = humanize_class(classes) # Define style info for output polygons showing population counts style_classes = [] for i in xrange(len(colours)): style_class = dict() style_class['label'] = create_label(interval_classes[i]) if i == 0: transparency = 100 style_class['min'] = 0 else: transparency = 30 style_class['min'] = classes[i - 1] style_class['transparency'] = transparency style_class['colour'] = colours[i] style_class['max'] = classes[i] style_classes.append(style_class) # Override style info with new classes and name style_info = dict(target_field=self.target_field, style_classes=style_classes, style_type='graduatedSymbol') # For printing map purpose map_title = tr('People affected by volcanic hazard zone') legend_notes = tr('Thousand separator is represented by %s' % get_thousand_separator()) legend_units = tr('(people per cell)') legend_title = tr('Population') # Create vector layer and return impact_layer = Vector( data=new_data_table, projection=hazard_layer.get_projection(), geometry=hazard_layer.get_geometry(as_geometry_objects=True), name=tr('People affected by volcanic hazard zone'), keywords={'impact_summary': impact_summary, 'impact_table': impact_table, 'target_field': self.target_field, 'map_title': map_title, 'legend_notes': legend_notes, 'legend_units': legend_units, 'legend_title': legend_title, 'total_needs': total_needs}, style_info=style_info) return impact_layer
def run(self, layers): """Risk plugin for flood population evacuation. :param layers: List of layers expected to contain * hazard_layer : Vector polygon layer of flood depth * exposure_layer : Raster layer of population data on the same grid as hazard_layer Counts number of people exposed to areas identified as flood prone :returns: Map of population exposed to flooding Table with number of people evacuated and supplies required. :rtype: tuple """ # Identify hazard and exposure layers hazard_layer = get_hazard_layer(layers) # Flood inundation exposure_layer = get_exposure_layer(layers) question = get_question( hazard_layer.get_name(), exposure_layer.get_name(), self) # Check that hazard is polygon type if not hazard_layer.is_vector: message = ( 'Input hazard %s was not a vector layer as expected ' % hazard_layer.get_name()) raise Exception(message) message = ( 'Input hazard must be a polygon layer. I got %s with layer type ' '%s' % (hazard_layer.get_name(), hazard_layer.get_geometry_name())) if not hazard_layer.is_polygon_data: raise Exception(message) # Run interpolation function for polygon2raster combined = assign_hazard_values_to_exposure_data( hazard_layer, exposure_layer, attribute_name='population') # Initialise attributes of output dataset with all attributes # from input polygon and a population count of zero new_attributes = hazard_layer.get_data() category_title = 'affected' # FIXME: Should come from keywords deprecated_category_title = 'FLOODPRONE' categories = {} for attr in new_attributes: attr[self.target_field] = 0 try: title = attr[category_title] except KeyError: try: title = attr['FLOODPRONE'] categories[title] = 0 except KeyError: pass # Count affected population per polygon, per category and total affected_population = 0 for attr in combined.get_data(): affected = False if 'affected' in attr: res = attr['affected'] if res is None: x = False else: x = bool(res) affected = x elif 'FLOODPRONE' in attr: # If there isn't an 'affected' attribute, res = attr['FLOODPRONE'] if res is not None: affected = res.lower() == 'yes' elif 'Affected' in attr: # Check the default attribute assigned for points # covered by a polygon res = attr['Affected'] if res is None: x = False else: x = res affected = x else: # assume that every polygon is affected (see #816) affected = True # there is no flood related attribute # message = ('No flood related attribute found in %s. ' # 'I was looking for either "Flooded", "FLOODPRONE" ' # 'or "Affected". The latter should have been ' # 'automatically set by call to ' # 'assign_hazard_values_to_exposure_data(). ' # 'Sorry I can\'t help more.') # raise Exception(message) if affected: # Get population at this location pop = float(attr['population']) # Update population count for associated polygon poly_id = attr['polygon_id'] new_attributes[poly_id][self.target_field] += pop # Update population count for each category if len(categories) > 0: try: title = new_attributes[poly_id][category_title] except KeyError: title = new_attributes[poly_id][ deprecated_category_title] categories[title] += pop # Update total affected_population += pop # Estimate number of people in need of evacuation evacuated = ( affected_population * self.parameters['evacuation_percentage'] / 100.0) affected_population, rounding = population_rounding_full( affected_population) total = int(numpy.sum(exposure_layer.get_data(nan=0, scaling=False))) # Don't show digits less than a 1000 total = population_rounding(total) evacuated, rounding_evacuated = population_rounding_full(evacuated) minimum_needs = [ parameter.serialize() for parameter in self.parameters['minimum needs'] ] # Generate impact report for the pdf map table_body = [ question, TableRow( [tr('People affected'), '%s*' % ( format_int(int(affected_population)))], header=True), TableRow( [TableCell( tr('* Number is rounded up to the nearest %s') % ( rounding), col_span=2)]), TableRow([tr('People needing evacuation'), '%s*' % ( format_int(int(evacuated)))], header=True), TableRow( [TableCell( tr('* Number is rounded up to the nearest %s') % ( rounding_evacuated), col_span=2)]), TableRow([tr('Evacuation threshold'), '%s%%' % format_int( self.parameters['evacuation_percentage'])], header=True), TableRow(tr( 'Map shows the number of people affected in each flood prone ' 'area')), TableRow(tr( 'Table below shows the weekly minimum needs for all ' 'evacuated people'))] total_needs = evacuated_population_needs( evacuated, minimum_needs) for frequency, needs in total_needs.items(): table_body.append(TableRow( [ tr('Needs should be provided %s' % frequency), tr('Total') ], header=True)) for resource in needs: table_body.append(TableRow([ tr(resource['table name']), format_int(resource['amount'])])) impact_table = Table(table_body).toNewlineFreeString() table_body.append(TableRow(tr('Action Checklist:'), header=True)) table_body.append(TableRow(tr('How will warnings be disseminated?'))) table_body.append(TableRow(tr('How will we reach stranded people?'))) table_body.append(TableRow(tr('Do we have enough relief items?'))) table_body.append(TableRow( 'If yes, where are they located and how will we distribute ' 'them?')) table_body.append(TableRow( 'If no, where can we obtain additional relief items from and ' 'how will we transport them to here?')) # Extend impact report for on-screen display table_body.extend([ TableRow(tr('Notes'), header=True), tr('Total population: %s') % format_int(total), tr('People need evacuation if in the area identified as ' '"Flood Prone"'), tr('Minimum needs are defined in BNPB regulation 7/2008')]) impact_summary = Table(table_body).toNewlineFreeString() # Create style # Define classes for legend for flooded population counts colours = ['#FFFFFF', '#38A800', '#79C900', '#CEED00', '#FFCC00', '#FF6600', '#FF0000', '#7A0000'] population_counts = [x['population'] for x in new_attributes] classes = create_classes(population_counts, len(colours)) interval_classes = humanize_class(classes) # Define style info for output polygons showing population counts style_classes = [] for i in xrange(len(colours)): style_class = dict() style_class['label'] = create_label(interval_classes[i]) if i == 0: transparency = 0 style_class['min'] = 0 else: transparency = 0 style_class['min'] = classes[i - 1] style_class['transparency'] = transparency style_class['colour'] = colours[i] style_class['max'] = classes[i] style_classes.append(style_class) # Override style info with new classes and name style_info = dict(target_field=self.target_field, style_classes=style_classes, style_type='graduatedSymbol') # For printing map purpose map_title = tr('People affected by flood prone areas') legend_notes = tr('Thousand separator is represented by \'.\'') legend_units = tr('(people per polygon)') legend_title = tr('Population Count') # Create vector layer and return vector_layer = Vector( data=new_attributes, projection=hazard_layer.get_projection(), geometry=hazard_layer.get_geometry(), name=tr('People affected by flood prone areas'), keywords={ 'impact_summary': impact_summary, 'impact_table': impact_table, 'target_field': self.target_field, 'map_title': map_title, 'legend_notes': legend_notes, 'legend_units': legend_units, 'legend_title': legend_title, 'affected_population': affected_population, 'total_population': total, 'total_needs': total_needs}, style_info=style_info) return vector_layer
def run(self, layers): """Risk plugin for tsunami population evacuation. :param layers: List of layers expected to contain hazard_layer: Raster layer of tsunami depth exposure_layer: Raster layer of population data on the same grid as hazard_layer Counts number of people exposed to tsunami levels exceeding specified threshold. :returns: Map of population exposed to tsunami levels exceeding the threshold. Table with number of people evacuated and supplies required. :rtype: tuple """ # Identify hazard and exposure layers hazard_layer = get_hazard_layer(layers) # Tsunami inundation [m] exposure_layer = get_exposure_layer(layers) question = get_question( hazard_layer.get_name(), exposure_layer.get_name(), self) # Determine depths above which people are regarded affected [m] # Use thresholds from inundation layer if specified thresholds = self.parameters['thresholds [m]'] verify( isinstance(thresholds, list), 'Expected thresholds to be a list. Got %s' % str(thresholds)) # Extract data as numeric arrays data = hazard_layer.get_data(nan=0.0) # Depth # Calculate impact as population exposed to depths > max threshold population = exposure_layer.get_data(nan=0.0, scaling=True) # Calculate impact to intermediate thresholds counts = [] # merely initialize impact = None for i, lo in enumerate(thresholds): if i == len(thresholds) - 1: # The last threshold impact = medium = numpy.where(data >= lo, population, 0) else: # Intermediate thresholds hi = thresholds[i + 1] medium = numpy.where((data >= lo) * (data < hi), population, 0) # Count val = int(numpy.sum(medium)) # Sensible rounding val, rounding = population_rounding_full(val) counts.append([val, rounding]) # Count totals evacuated, rounding = counts[-1] total = int(numpy.sum(population)) # Don't show digits less than a 1000 total = population_rounding(total) minimum_needs = [ parameter.serialize() for parameter in self.parameters['minimum needs'] ] # Generate impact report for the pdf map # noinspection PyListCreation table_body = [ question, TableRow([(tr('People in %.1f m of water') % thresholds[-1]), '%s*' % format_int(evacuated)], header=True), TableRow( tr('* Number is rounded up to the nearest %s') % rounding), TableRow(tr('Map shows the numbers of people needing evacuation'))] total_needs = evacuated_population_needs( evacuated, minimum_needs) for frequency, needs in total_needs.items(): table_body.append(TableRow( [ tr('Needs should be provided %s' % frequency), tr('Total') ], header=True)) for resource in needs: table_body.append(TableRow([ tr(resource['table name']), format_int(resource['amount'])])) table_body.append(TableRow(tr('Action Checklist:'), header=True)) table_body.append(TableRow(tr('How will warnings be disseminated?'))) table_body.append(TableRow(tr('How will we reach stranded people?'))) table_body.append(TableRow(tr('Do we have enough relief items?'))) table_body.append(TableRow(tr('If yes, where are they located and how ' 'will we distribute them?'))) table_body.append(TableRow(tr( 'If no, where can we obtain additional relief items from and how ' 'will we transport them to here?'))) # Extend impact report for on-screen display table_body.extend([ TableRow(tr('Notes'), header=True), tr('Total population: %s') % format_int(total), tr('People need evacuation if tsunami levels exceed %(eps).1f m') % {'eps': thresholds[-1]}, tr('Minimum needs are defined in BNPB regulation 7/2008'), tr('All values are rounded up to the nearest integer in order to ' 'avoid representing human lives as fractions.')]) if len(counts) > 1: table_body.append(TableRow(tr('Detailed breakdown'), header=True)) for i, val in enumerate(counts[:-1]): s = (tr('People in %(lo).1f m to %(hi).1f m of water: %(val)i') % {'lo': thresholds[i], 'hi': thresholds[i + 1], 'val': format_int(val[0])}) table_body.append(TableRow(s)) # Result impact_summary = Table(table_body).toNewlineFreeString() impact_table = impact_summary # check for zero impact if numpy.nanmax(impact) == 0 == numpy.nanmin(impact): table_body = [ question, TableRow([(tr('People in %.1f m of water') % thresholds[-1]), '%s' % format_int(evacuated)], header=True)] my_message = Table(table_body).toNewlineFreeString() raise ZeroImpactException(my_message) # Create style colours = [ '#FFFFFF', '#38A800', '#79C900', '#CEED00', '#FFCC00', '#FF6600', '#FF0000', '#7A0000'] classes = create_classes(impact.flat[:], len(colours)) interval_classes = humanize_class(classes) style_classes = [] for i in xrange(len(colours)): style_class = dict() if i == 1: label = create_label(interval_classes[i], 'Low') elif i == 4: label = create_label(interval_classes[i], 'Medium') elif i == 7: label = create_label(interval_classes[i], 'High') else: label = create_label(interval_classes[i]) style_class['label'] = label style_class['quantity'] = classes[i] if i == 0: transparency = 100 else: transparency = 0 style_class['transparency'] = transparency style_class['colour'] = colours[i] style_classes.append(style_class) style_info = dict( target_field=None, style_classes=style_classes, style_type='rasterStyle') # For printing map purpose map_title = tr('People in need of evacuation') legend_notes = tr( 'Thousand separator is represented by %s' % get_thousand_separator()) legend_units = tr('(people per cell)') legend_title = tr('Population') # Create raster object and return raster = Raster( impact, projection=hazard_layer.get_projection(), geotransform=hazard_layer.get_geotransform(), name=tr('Population which %s') % ( get_function_title(self).lower()), keywords={ 'impact_summary': impact_summary, 'impact_table': impact_table, 'map_title': map_title, 'legend_notes': legend_notes, 'legend_units': legend_units, 'legend_title': legend_title, 'evacuated': evacuated, 'total_needs': total_needs}, style_info=style_info) return raster
def run(self, layers): """Risk plugin for tsunami population evacuation. :param layers: List of layers expected to contain hazard_layer: Raster layer of tsunami depth exposure_layer: Raster layer of population data on the same grid as hazard_layer Counts number of people exposed to tsunami levels exceeding specified threshold. :returns: Map of population exposed to tsunami levels exceeding the threshold. Table with number of people evacuated and supplies required. :rtype: tuple """ # Identify hazard and exposure layers hazard_layer = get_hazard_layer(layers) # Tsunami inundation [m] exposure_layer = get_exposure_layer(layers) question = get_question(hazard_layer.get_name(), exposure_layer.get_name(), self) # Determine depths above which people are regarded affected [m] # Use thresholds from inundation layer if specified thresholds = self.parameters['thresholds [m]'] verify(isinstance(thresholds, list), 'Expected thresholds to be a list. Got %s' % str(thresholds)) # Extract data as numeric arrays data = hazard_layer.get_data(nan=0.0) # Depth # Calculate impact as population exposed to depths > max threshold population = exposure_layer.get_data(nan=0.0, scaling=True) # Calculate impact to intermediate thresholds counts = [] # merely initialize impact = None for i, lo in enumerate(thresholds): if i == len(thresholds) - 1: # The last threshold impact = medium = numpy.where(data >= lo, population, 0) else: # Intermediate thresholds hi = thresholds[i + 1] medium = numpy.where((data >= lo) * (data < hi), population, 0) # Count val = int(numpy.sum(medium)) # Sensible rounding val, rounding = population_rounding_full(val) counts.append([val, rounding]) # Count totals evacuated, rounding = counts[-1] total = int(numpy.sum(population)) # Don't show digits less than a 1000 total = population_rounding(total) minimum_needs = [ parameter.serialize() for parameter in self.parameters['minimum needs'] ] # Generate impact report for the pdf map # noinspection PyListCreation table_body = [ question, TableRow([(tr('People in %.1f m of water') % thresholds[-1]), '%s*' % format_int(evacuated)], header=True), TableRow( tr('* Number is rounded up to the nearest %s') % rounding), TableRow(tr('Map shows the numbers of people needing evacuation')) ] total_needs = evacuated_population_needs(evacuated, minimum_needs) for frequency, needs in total_needs.items(): table_body.append( TableRow([ tr('Needs should be provided %s' % frequency), tr('Total') ], header=True)) for resource in needs: table_body.append( TableRow([ tr(resource['table name']), format_int(resource['amount']) ])) table_body.append(TableRow(tr('Action Checklist:'), header=True)) table_body.append(TableRow(tr('How will warnings be disseminated?'))) table_body.append(TableRow(tr('How will we reach stranded people?'))) table_body.append(TableRow(tr('Do we have enough relief items?'))) table_body.append( TableRow( tr('If yes, where are they located and how ' 'will we distribute them?'))) table_body.append( TableRow( tr('If no, where can we obtain additional relief items from and how ' 'will we transport them to here?'))) # Extend impact report for on-screen display table_body.extend([ TableRow(tr('Notes'), header=True), tr('Total population: %s') % format_int(total), tr('People need evacuation if tsunami levels exceed %(eps).1f m') % { 'eps': thresholds[-1] }, tr('Minimum needs are defined in BNPB regulation 7/2008'), tr('All values are rounded up to the nearest integer in order to ' 'avoid representing human lives as fractions.') ]) if len(counts) > 1: table_body.append(TableRow(tr('Detailed breakdown'), header=True)) for i, val in enumerate(counts[:-1]): s = (tr('People in %(lo).1f m to %(hi).1f m of water: %(val)i') % { 'lo': thresholds[i], 'hi': thresholds[i + 1], 'val': format_int(val[0]) }) table_body.append(TableRow(s)) # Result impact_summary = Table(table_body).toNewlineFreeString() impact_table = impact_summary # check for zero impact if numpy.nanmax(impact) == 0 == numpy.nanmin(impact): table_body = [ question, TableRow([(tr('People in %.1f m of water') % thresholds[-1]), '%s' % format_int(evacuated)], header=True) ] my_message = Table(table_body).toNewlineFreeString() raise ZeroImpactException(my_message) # Create style colours = [ '#FFFFFF', '#38A800', '#79C900', '#CEED00', '#FFCC00', '#FF6600', '#FF0000', '#7A0000' ] classes = create_classes(impact.flat[:], len(colours)) interval_classes = humanize_class(classes) style_classes = [] for i in xrange(len(colours)): style_class = dict() if i == 1: label = create_label(interval_classes[i], 'Low') elif i == 4: label = create_label(interval_classes[i], 'Medium') elif i == 7: label = create_label(interval_classes[i], 'High') else: label = create_label(interval_classes[i]) style_class['label'] = label style_class['quantity'] = classes[i] if i == 0: transparency = 100 else: transparency = 0 style_class['transparency'] = transparency style_class['colour'] = colours[i] style_classes.append(style_class) style_info = dict(target_field=None, style_classes=style_classes, style_type='rasterStyle') # For printing map purpose map_title = tr('People in need of evacuation') legend_notes = tr('Thousand separator is represented by %s' % get_thousand_separator()) legend_units = tr('(people per cell)') legend_title = tr('Population') # Create raster object and return raster = Raster(impact, projection=hazard_layer.get_projection(), geotransform=hazard_layer.get_geotransform(), name=tr('Population which %s') % (get_function_title(self).lower()), keywords={ 'impact_summary': impact_summary, 'impact_table': impact_table, 'map_title': map_title, 'legend_notes': legend_notes, 'legend_units': legend_units, 'legend_title': legend_title, 'evacuated': evacuated, 'total_needs': total_needs }, style_info=style_info) return raster
def run(self, layers): """Risk plugin for flood population evacuation. :param layers: List of layers expected to contain * hazard_layer : Vector polygon layer of flood depth * exposure_layer : Raster layer of population data on the same grid as hazard_layer Counts number of people exposed to areas identified as flood prone :returns: Map of population exposed to flooding Table with number of people evacuated and supplies required. :rtype: tuple """ # Identify hazard and exposure layers hazard_layer = get_hazard_layer(layers) # Flood inundation exposure_layer = get_exposure_layer(layers) question = get_question(hazard_layer.get_name(), exposure_layer.get_name(), self) # Check that hazard is polygon type if not hazard_layer.is_vector: message = ('Input hazard %s was not a vector layer as expected ' % hazard_layer.get_name()) raise Exception(message) message = ( 'Input hazard must be a polygon layer. I got %s with layer type ' '%s' % (hazard_layer.get_name(), hazard_layer.get_geometry_name())) if not hazard_layer.is_polygon_data: raise Exception(message) # Run interpolation function for polygon2raster P = assign_hazard_values_to_exposure_data(hazard_layer, exposure_layer, attribute_name='population') # Initialise attributes of output dataset with all attributes # from input polygon and a population count of zero new_attributes = hazard_layer.get_data() category_title = 'affected' # FIXME: Should come from keywords deprecated_category_title = 'FLOODPRONE' categories = {} for attr in new_attributes: attr[self.target_field] = 0 try: cat = attr[category_title] except KeyError: try: cat = attr['FLOODPRONE'] categories[cat] = 0 except KeyError: pass # Count affected population per polygon, per category and total affected_population = 0 for attr in P.get_data(): affected = False if 'affected' in attr: res = attr['affected'] if res is None: x = False else: x = bool(res) affected = x elif 'FLOODPRONE' in attr: # If there isn't an 'affected' attribute, res = attr['FLOODPRONE'] if res is not None: affected = res.lower() == 'yes' elif 'Affected' in attr: # Check the default attribute assigned for points # covered by a polygon res = attr['Affected'] if res is None: x = False else: x = res affected = x else: # assume that every polygon is affected (see #816) affected = True # there is no flood related attribute # message = ('No flood related attribute found in %s. ' # 'I was looking for either "Flooded", "FLOODPRONE" ' # 'or "Affected". The latter should have been ' # 'automatically set by call to ' # 'assign_hazard_values_to_exposure_data(). ' # 'Sorry I can\'t help more.') # raise Exception(message) if affected: # Get population at this location pop = float(attr['population']) # Update population count for associated polygon poly_id = attr['polygon_id'] new_attributes[poly_id][self.target_field] += pop # Update population count for each category if len(categories) > 0: try: cat = new_attributes[poly_id][category_title] except KeyError: cat = new_attributes[poly_id][ deprecated_category_title] categories[cat] += pop # Update total affected_population += pop # Estimate number of people in need of evacuation evacuated = (affected_population * self.parameters['evacuation_percentage'] / 100.0) affected_population, rounding = population_rounding_full( affected_population) total = int(numpy.sum(exposure_layer.get_data(nan=0, scaling=False))) # Don't show digits less than a 1000 total = population_rounding(total) evacuated, rounding_evacuated = population_rounding_full(evacuated) minimum_needs = [ parameter.serialize() for parameter in self.parameters['minimum needs'] ] # Generate impact report for the pdf map table_body = [ question, TableRow([ tr('People affected'), '%s*' % (format_int(int(affected_population))) ], header=True), TableRow([ TableCell(tr('* Number is rounded up to the nearest %s') % (rounding), col_span=2) ]), TableRow([ tr('People needing evacuation'), '%s*' % (format_int(int(evacuated))) ], header=True), TableRow([ TableCell(tr('* Number is rounded up to the nearest %s') % (rounding_evacuated), col_span=2) ]), TableRow([ tr('Evacuation threshold'), '%s%%' % format_int(self.parameters['evacuation_percentage']) ], header=True), TableRow( tr('Map shows the number of people affected in each flood prone ' 'area')), TableRow( tr('Table below shows the weekly minimum needs for all ' 'evacuated people')) ] total_needs = evacuated_population_needs(evacuated, minimum_needs) for frequency, needs in total_needs.items(): table_body.append( TableRow([ tr('Needs should be provided %s' % frequency), tr('Total') ], header=True)) for resource in needs: table_body.append( TableRow([ tr(resource['table name']), format_int(resource['amount']) ])) impact_table = Table(table_body).toNewlineFreeString() table_body.append(TableRow(tr('Action Checklist:'), header=True)) table_body.append(TableRow(tr('How will warnings be disseminated?'))) table_body.append(TableRow(tr('How will we reach stranded people?'))) table_body.append(TableRow(tr('Do we have enough relief items?'))) table_body.append( TableRow( tr('If yes, where are they located and how will we distribute ' 'them?'))) table_body.append( TableRow( tr('If no, where can we obtain additional relief items from and ' 'how will we transport them to here?'))) # Extend impact report for on-screen display table_body.extend([ TableRow(tr('Notes'), header=True), tr('Total population: %s') % format_int(total), tr('People need evacuation if in the area identified as ' '"Flood Prone"'), tr('Minimum needs are defined in BNPB regulation 7/2008') ]) impact_summary = Table(table_body).toNewlineFreeString() # Create style # Define classes for legend for flooded population counts colours = [ '#FFFFFF', '#38A800', '#79C900', '#CEED00', '#FFCC00', '#FF6600', '#FF0000', '#7A0000' ] population_counts = [x['population'] for x in new_attributes] classes = create_classes(population_counts, len(colours)) interval_classes = humanize_class(classes) # Define style info for output polygons showing population counts style_classes = [] for i in xrange(len(colours)): style_class = dict() style_class['label'] = create_label(interval_classes[i]) if i == 0: transparency = 0 style_class['min'] = 0 else: transparency = 0 style_class['min'] = classes[i - 1] style_class['transparency'] = transparency style_class['colour'] = colours[i] style_class['max'] = classes[i] style_classes.append(style_class) # Override style info with new classes and name style_info = dict(target_field=self.target_field, style_classes=style_classes, style_type='graduatedSymbol') # For printing map purpose map_title = tr('People affected by flood prone areas') legend_notes = tr('Thousand separator is represented by \'.\'') legend_units = tr('(people per polygon)') legend_title = tr('Population Count') # Create vector layer and return vector_layer = Vector(data=new_attributes, projection=hazard_layer.get_projection(), geometry=hazard_layer.get_geometry(), name=tr('People affected by flood prone areas'), keywords={ 'impact_summary': impact_summary, 'impact_table': impact_table, 'target_field': self.target_field, 'map_title': map_title, 'legend_notes': legend_notes, 'legend_units': legend_units, 'legend_title': legend_title, 'affected_population': affected_population, 'total_population': total, 'total_needs': total_needs }, style_info=style_info) return vector_layer
def _tabulate( self, counts, evacuated, minimum_needs, question, rounding_evacuated, thresholds, total, no_data_warning): """Create a tabulated output. :param counts: The counts breakdown. :param evacuated: The total. :param minimum_needs: The minimum needs breakdown. :param question: The impact question. :param rounding_evacuated: The rounding that was applied. :param thresholds: The thresholds that where used. :param total: The impact total. :param no_data_warning: Flag to warn about nodata in layer data. :return: """ table_body = [ question, TableRow([(tr('People in %.1f m of water') % thresholds[-1]), '%s*' % format_int(evacuated)], header=True), TableRow(tr('* Number is rounded up to the nearest %s') % ( rounding_evacuated)), TableRow(tr('Map shows the numbers of people needing evacuation')), TableRow(tr( 'Table shows the weekly minimum needs for all evacuated people' ))] total_needs = evacuated_population_needs( evacuated, minimum_needs) for frequency, needs in total_needs.items(): table_body.append(TableRow( [ tr('Needs should be provided %s' % frequency), tr('Total') ], header=True)) for resource in needs: table_body.append(TableRow([ tr(resource['table name']), format_int(resource['amount'])])) table_body.append(TableRow(tr('Action Checklist:'), header=True)) table_body.append(TableRow(tr('How will warnings be disseminated?'))) table_body.append(TableRow(tr('How will we reach stranded people?'))) table_body.append(TableRow(tr('Do we have enough relief items?'))) table_body.append(TableRow(tr('If yes, where are they located and how ' 'will we distribute them?'))) table_body.append(TableRow(tr( 'If no, where can we obtain additional relief items from and how ' 'will we transport them to here?'))) # Extend impact report for on-screen display table_body.extend([ TableRow(tr('Notes'), header=True), tr('Total population: %s') % format_int(total), tr('People need evacuation if flood levels exceed %(eps).1f m') % {'eps': thresholds[-1]}, tr('Minimum needs are defined in BNPB regulation 7/2008'), tr('All values are rounded up to the nearest integer in order to ' 'avoid representing human lives as fractions.'), tr('All affected people are assumed to be evacuated.')]) if no_data_warning: table_body.extend([ tr('The layers contained `no data`. This missing data was ' 'carried through to the impact layer.'), tr('`No data` values in the impact layer were treated as 0 ' 'when counting the affected or total population.') ]) if len(counts) > 1: table_body.append(TableRow(tr('Detailed breakdown'), header=True)) for i, val in enumerate(counts): if i == len(thresholds) - 1: # The last interval s = (tr('People in >= %(lo).1f m of water: %(val)s') % { 'lo': thresholds[i], 'val': format_int(val)}) else: s = tr( 'People in %(lo).1f m to %(hi).1f m of water: ' '%(val)s') % { 'lo': thresholds[i], 'hi': thresholds[i + 1], 'val': format_int(val)} table_body.append(TableRow(s)) return table_body, total_needs