예제 #1
0
    def test_osm2bnpb(self):
        """OSM structure types maps to BNPB vulnerability curves
        """

        # hazard_filename = '%s/Shakemap_Padang_2009.asc' % HAZDATA
        exposure_filename = ('%s/jakarta_OSM_building.shp'
                             % EXPDATA)

        # Calculate impact using API
        E = read_layer(exposure_filename)

        # Map from OSM attributes to the padang building classes
        Emap = osm2bnpb(E, target_attribute='VCLASS')

        for i, feature in enumerate(E.get_data()):
            try:
                vclass = Emap.get_data('VCLASS', i)
            except KeyError:
                # print
                # print i, Emap.get_data()[i]
                # import sys; sys.exit()
                pass

            levels = feature['building_l']
            structure = feature['building_s']
            msg = ('Unexpected VCLASS %s. '
                   'I have levels == %s and structure == %s.'
                   % (vclass, levels, structure))

            if levels is None or structure is None:
                assert vclass == 'URM', msg
                continue

            # Map string variable levels to integer
            if levels.endswith('+'):
                levels = 100

            try:
                levels = int(levels)
            except ValueError:
                # E.g. 'ILP jalan'
                assert vclass == 'URM', msg
                continue

            levels = int(levels)

            # Check the main cases
            if levels >= 4:
                assert vclass == 'RM', msg
            elif 1 <= levels < 4:
                if structure in ['reinforced_masonry', 'confined_masonry']:
                    assert vclass == 'RM', msg
                elif 'kayu' in structure or 'wood' in structure:
                    assert vclass == 'RM', msg
                else:
                    assert vclass == 'URM', msg
            else:
                assert vclass == 'URM', msg
예제 #2
0
    def test_osm2bnpb(self):
        """OSM structure types maps to BNPB vulnerability curves
        """

        # hazard_filename = '%s/Shakemap_Padang_2009.asc' % HAZDATA
        exposure_filename = ('%s/jakarta_OSM_building.shp' % EXPDATA)

        # Calculate impact using API
        E = read_layer(exposure_filename)

        # Map from OSM attributes to the padang building classes
        Emap = osm2bnpb(E, target_attribute='VCLASS')

        for i, feature in enumerate(E.get_data()):
            try:
                vclass = Emap.get_data('VCLASS', i)
            except KeyError:
                # print
                # print i, Emap.get_data()[i]
                # import sys; sys.exit()
                pass

            levels = feature['building_l']
            structure = feature['building_s']
            msg = ('Unexpected VCLASS %s. '
                   'I have levels == %s and structure == %s.' %
                   (vclass, levels, structure))

            if levels is None or structure is None:
                assert vclass == 'URM', msg
                continue

            # Map string variable levels to integer
            if levels.endswith('+'):
                levels = 100

            try:
                levels = int(levels)
            except ValueError:
                # E.g. 'ILP jalan'
                assert vclass == 'URM', msg
                continue

            levels = int(levels)

            # Check the main cases
            if levels >= 4:
                assert vclass == 'RM', msg
            elif 1 <= levels < 4:
                if structure in ['reinforced_masonry', 'confined_masonry']:
                    assert vclass == 'RM', msg
                elif 'kayu' in structure or 'wood' in structure:
                    assert vclass == 'RM', msg
                else:
                    assert vclass == 'URM', msg
            else:
                assert vclass == 'URM', msg
    def run(self, layers):
        """Risk plugin for earthquake school damage
        """

        # Extract data
        H = get_hazard_layer(layers)    # Ground shaking
        E = get_exposure_layer(layers)  # Building locations

        keywords = E.get_keywords()
        if 'datatype' in keywords:
            datatype = keywords['datatype']
            if datatype.lower() == 'osm':
                # Map from OSM attributes to the guideline classes (URM and RM)
                E = osm2bnpb(E, target_attribute=self.vclass_tag)
            elif datatype.lower() == 'sigab':
                # Map from SIGAB attributes to the guideline classes
                # (URM and RM)
                E = sigab2bnpb(E)
            else:
                E = unspecific2bnpb(E, target_attribute=self.vclass_tag)
        else:
            E = unspecific2bnpb(E, target_attribute=self.vclass_tag)

        # Interpolate hazard level to building locations
        H = assign_hazard_values_to_exposure_data(H, E,
                                             attribute_name='MMI')

        # Extract relevant numerical data
        coordinates = E.get_geometry()
        shaking = H.get_data()
        N = len(shaking)

        # List attributes to carry forward to result layer
        attributes = E.get_attribute_names()

        # Calculate building damage
        count3 = 0
        count2 = 0
        count1 = 0
        count_unknown = 0
        building_damage = []
        for i in range(N):
            mmi = float(shaking[i]['MMI'])

            building_class = E.get_data(self.vclass_tag, i)
            lo, hi = damage_parameters[building_class]

            if numpy.isnan(mmi):
                # If we don't know the shake level assign Not-a-Number
                damage = numpy.nan
                count_unknown += 1
            elif mmi < lo:
                damage = 1  # Low
                count1 += 1
            elif lo <= mmi < hi:
                damage = 2  # Medium
                count2 += 1
            elif mmi >= hi:
                damage = 3  # High
                count3 += 1
            else:
                msg = 'Undefined shakelevel %s' % str(mmi)
                raise Exception(msg)

            # Collect shake level and calculated damage
            result_dict = {self.target_field: damage,
                           'MMI': mmi}

            # Carry all orginal attributes forward
            for key in attributes:
                result_dict[key] = E.get_data(key, i)

            # Record result for this feature
            building_damage.append(result_dict)

        # Create report
        impact_summary = ('<table border="0" width="320px">'
                   '   <tr><th><b>%s</b></th><th><b>%s</b></th></th>'
                    '   <tr></tr>'
                    '   <tr><td>%s&#58;</td><td>%s</td></tr>'
                    '   <tr><td>%s (10-25%%)&#58;</td><td>%s</td></tr>'
                    '   <tr><td>%s (25-50%%)&#58;</td><td>%s</td></tr>'
                    '   <tr><td>%s (50-100%%)&#58;</td><td>%s</td></tr>'
                    % (tr('Buildings'), tr('Total'),
                       tr('All'), format_int(N),
                       tr('Low damage'), format_int(count1),
                       tr('Medium damage'), format_int(count2),
                       tr('High damage'), format_int(count3)))
        impact_summary += ('   <tr><td>%s (NaN)&#58;</td><td>%s</td></tr>'
                    % ('Unknown', format_int(count_unknown)))
        impact_summary += '</table>'

        # Create style
        style_classes = [dict(label=tr('Low damage'), min=0.5, max=1.5,
                              colour='#fecc5c', transparency=0),
                         dict(label=tr('Medium damage'), min=1.5, max=2.5,
                              colour='#fd8d3c', transparency=0),
                         dict(label=tr('High damage'), min=2.5, max=3.5,
                              colour='#f31a1c', transparency=0)]
        style_info = dict(target_field=self.target_field,
                          style_classes=style_classes)

        # Create vector layer and return
        V = Vector(data=building_damage,
                   projection=E.get_projection(),
                   geometry=coordinates,
                   name='Estimated damage level',
                   keywords={'impact_summary': impact_summary},
                   style_info=style_info)

        return V
예제 #4
0
    def run(self, layers):
        """Risk plugin for earthquake school damage
        """

        # Extract data
        H = get_hazard_layer(layers)  # Ground shaking
        E = get_exposure_layer(layers)  # Building locations

        keywords = E.get_keywords()
        if 'datatype' in keywords:
            datatype = keywords['datatype']
            if datatype.lower() == 'osm':
                # Map from OSM attributes to the guideline classes (URM and RM)
                E = osm2bnpb(E, target_attribute=self.vclass_tag)
            elif datatype.lower() == 'sigab':
                # Map from SIGAB attributes to the guideline classes
                # (URM and RM)
                E = sigab2bnpb(E)
            else:
                E = unspecific2bnpb(E, target_attribute=self.vclass_tag)
        else:
            E = unspecific2bnpb(E, target_attribute=self.vclass_tag)

        # Interpolate hazard level to building locations
        H = assign_hazard_values_to_exposure_data(H, E, attribute_name='MMI')

        # Extract relevant numerical data
        coordinates = E.get_geometry()
        shaking = H.get_data()
        N = len(shaking)

        # List attributes to carry forward to result layer
        attributes = E.get_attribute_names()

        # Calculate building damage
        count3 = 0
        count2 = 0
        count1 = 0
        count_unknown = 0
        building_damage = []
        for i in range(N):
            mmi = float(shaking[i]['MMI'])

            building_class = E.get_data(self.vclass_tag, i)
            lo, hi = damage_parameters[building_class]

            if numpy.isnan(mmi):
                # If we don't know the shake level assign Not-a-Number
                damage = numpy.nan
                count_unknown += 1
            elif mmi < lo:
                damage = 1  # Low
                count1 += 1
            elif lo <= mmi < hi:
                damage = 2  # Medium
                count2 += 1
            elif mmi >= hi:
                damage = 3  # High
                count3 += 1
            else:
                msg = 'Undefined shakelevel %s' % str(mmi)
                raise Exception(msg)

            # Collect shake level and calculated damage
            result_dict = {self.target_field: damage, 'MMI': mmi}

            # Carry all orginal attributes forward
            for key in attributes:
                result_dict[key] = E.get_data(key, i)

            # Record result for this feature
            building_damage.append(result_dict)

        # Create report
        impact_summary = (
            '<table border="0" width="320px">'
            '   <tr><th><b>%s</b></th><th><b>%s</b></th></th>'
            '   <tr></tr>'
            '   <tr><td>%s&#58;</td><td>%s</td></tr>'
            '   <tr><td>%s (10-25%%)&#58;</td><td>%s</td></tr>'
            '   <tr><td>%s (25-50%%)&#58;</td><td>%s</td></tr>'
            '   <tr><td>%s (50-100%%)&#58;</td><td>%s</td></tr>' %
            (tr('Buildings'), tr('Total'), tr('All'), format_int(N),
             tr('Low damage'), format_int(count1), tr('Medium damage'),
             format_int(count2), tr('High damage'), format_int(count3)))
        impact_summary += ('   <tr><td>%s (NaN)&#58;</td><td>%s</td></tr>' %
                           ('Unknown', format_int(count_unknown)))
        impact_summary += '</table>'

        # Create style
        style_classes = [
            dict(label=tr('Low damage'),
                 min=0.5,
                 max=1.5,
                 colour='#fecc5c',
                 transparency=0),
            dict(label=tr('Medium damage'),
                 min=1.5,
                 max=2.5,
                 colour='#fd8d3c',
                 transparency=0),
            dict(label=tr('High damage'),
                 min=2.5,
                 max=3.5,
                 colour='#f31a1c',
                 transparency=0)
        ]
        style_info = dict(target_field=self.target_field,
                          style_classes=style_classes)

        # Create vector layer and return
        V = Vector(data=building_damage,
                   projection=E.get_projection(),
                   geometry=coordinates,
                   name='Estimated damage level',
                   keywords={'impact_summary': impact_summary},
                   style_info=style_info)

        return V