예제 #1
0
def __find_eisen_chars(character, k):
    """
    Find all triples `(\psi_1, \psi_2, t)` that give rise to an Eisenstein series of the given weight and character.

    EXAMPLES::

        sage: sage.modular.modform.eis_series.__find_eisen_chars(DirichletGroup(36).0, 4)
        []

        sage: pars =  sage.modular.modform.eis_series.__find_eisen_chars(DirichletGroup(36).0, 5)
        sage: [(x[0].values_on_gens(), x[1].values_on_gens(), x[2]) for x in pars]
        [((1, 1), (-1, 1), 1),
        ((1, 1), (-1, 1), 3),
        ((1, 1), (-1, 1), 9),
        ((1, -1), (-1, -1), 1),
        ((-1, 1), (1, 1), 1),
        ((-1, 1), (1, 1), 3),
        ((-1, 1), (1, 1), 9),
        ((-1, -1), (1, -1), 1)]
    """
    N = character.modulus()
    if character.is_trivial():
        if k%2 != 0:
            return []
        char_inv = ~character
        V = [(character, char_inv, t) for t in divisors(N) if t>1]
        if k != 2:
            V.insert(0,(character, char_inv, 1))
        if is_squarefree(N):
            return V
        # Now include all pairs (chi,chi^(-1)) such that cond(chi)^2 divides N:
        # TODO: Optimize -- this is presumably way too hard work below.
        G = dirichlet.DirichletGroup(N)
        for chi in G:
            if not chi.is_trivial():
                f = chi.conductor()
                if N % (f**2) == 0:
                    chi = chi.minimize_base_ring()
                    chi_inv = ~chi
                    for t in divisors(N//(f**2)):
                        V.insert(0, (chi, chi_inv, t))
        return V


    eps = character
    if eps(-1) != (-1)**k:
        return []
    eps = eps.maximize_base_ring()
    G = eps.parent()

    # Find all pairs chi, psi such that:
    #
    #  (1) cond(chi)*cond(psi) divides the level, and
    #
    #  (2) chi*psi == eps, where eps is the nebentypus character of self.
    #
    # See [Miyake, Modular Forms] Lemma 7.1.1.

    K = G.base_ring()
    C = {}

    t0 = cputime()

    for e in G:
        m = Integer(e.conductor())
        if m in C:
            C[m].append(e)
        else:
            C[m] = [e]

    verbose("Enumeration with conductors.", t0)

    params = []
    for L in divisors(N):
        verbose("divisor %s" % L)
        if L not in C:
            continue
        GL = C[L]
        for R in divisors(N/L):
            if R not in C:
                continue
            GR = C[R]
            for chi in GL:
                for psi in GR:
                    if chi*psi == eps:
                        chi0, psi0 = __common_minimal_basering(chi, psi)
                        for t in divisors(N//(R*L)):
                            if k != 1 or ((psi0, chi0, t) not in params):
                                params.append( (chi0,psi0,t) )
    return params
예제 #2
0
def __find_eisen_chars(character, k):
    """
    Find all triples `(\psi_1, \psi_2, t)` that give rise to an Eisenstein series of the given weight and character.

    EXAMPLES::

        sage: sage.modular.modform.eis_series.__find_eisen_chars(DirichletGroup(36).0, 4)
        []

        sage: pars =  sage.modular.modform.eis_series.__find_eisen_chars(DirichletGroup(36).0, 5)
        sage: [(x[0].values_on_gens(), x[1].values_on_gens(), x[2]) for x in pars]
        [((1, 1), (-1, 1), 1),
        ((1, 1), (-1, 1), 3),
        ((1, 1), (-1, 1), 9),
        ((1, -1), (-1, -1), 1),
        ((-1, 1), (1, 1), 1),
        ((-1, 1), (1, 1), 3),
        ((-1, 1), (1, 1), 9),
        ((-1, -1), (1, -1), 1)]
    """
    N = character.modulus()
    if character.is_trivial():
        if k%2 != 0:
            return []
        char_inv = ~character
        V = [(character, char_inv, t) for t in divisors(N) if t>1]
        if k != 2:
            V.insert(0,(character, char_inv, 1))
        if is_squarefree(N):
            return V
        # Now include all pairs (chi,chi^(-1)) such that cond(chi)^2 divides N:
        # TODO: Optimize -- this is presumably way too hard work below.
        G = dirichlet.DirichletGroup(N)
        for chi in G:
            if not chi.is_trivial():
                f = chi.conductor()
                if N % (f**2) == 0:
                    chi = chi.minimize_base_ring()
                    chi_inv = ~chi
                    for t in divisors(N//(f**2)):
                        V.insert(0, (chi, chi_inv, t))
        return V


    eps = character
    if eps(-1) != (-1)**k:
        return []
    eps = eps.maximize_base_ring()
    G = eps.parent()

    # Find all pairs chi, psi such that:
    #
    #  (1) cond(chi)*cond(psi) divides the level, and
    #
    #  (2) chi*psi == eps, where eps is the nebentypus character of self.
    #
    # See [Miyake, Modular Forms] Lemma 7.1.1.

    C = {}

    t0 = cputime()

    for e in G:
        m = Integer(e.conductor())
        if m in C:
            C[m].append(e)
        else:
            C[m] = [e]

    verbose("Enumeration with conductors.", t0)

    params = []
    for L in divisors(N):
        verbose("divisor %s" % L)
        if L not in C:
            continue
        GL = C[L]
        for R in divisors(N/L):
            if R not in C:
                continue
            GR = C[R]
            for chi in GL:
                for psi in GR:
                    if chi*psi == eps:
                        chi0, psi0 = __common_minimal_basering(chi, psi)
                        for t in divisors(N//(R*L)):
                            if k != 1 or ((psi0, chi0, t) not in params):
                                params.append( (chi0,psi0,t) )
    return params