예제 #1
0
    def _element_constructor_(self, x, check=True):
        """
        Construct an element of ``self`` from ``x``.

        EXAMPLES::

            sage: H = Hom(QuadraticField(-1, 'a'), QuadraticField(-1, 'b'))
            sage: phi = H([H.domain().gen()]); phi
            Ring morphism:
              From: Number Field in a with defining polynomial x^2 + 1 with a = 1*I
              To:   Number Field in b with defining polynomial x^2 + 1 with b = 1*I
              Defn: a |--> b
            sage: H1 = End(QuadraticField(-1, 'a'))
            sage: H1.coerce(loads(dumps(H1[1])))
            Ring endomorphism of Number Field in a with defining polynomial x^2 + 1 with a = 1*I
              Defn: a |--> -a

        TESTS:

        We can move morphisms between categories::

            sage: f = H1.an_element()
            sage: g = End(H1.domain(), category=Rings())(f)
            sage: f == End(H1.domain(), category=NumberFields())(g)
            True

        Check that :trac:`28869` is fixed::

            sage: K.<a> = CyclotomicField(8)
            sage: L.<b> = K.absolute_field()
            sage: H = L.Hom(K)
            sage: phi = L.structure()[0]
            sage: phi.parent() is H
            True
            sage: H(phi)
            Isomorphism given by variable name change map:
              From: Number Field in b with defining polynomial x^4 + 1
              To:   Cyclotomic Field of order 8 and degree 4
            sage: R.<x> = L[]
            sage: (x^2 + b).change_ring(phi)
            x^2 + a
        """
        if not isinstance(x, NumberFieldHomomorphism_im_gens):
            return self.element_class(self, x, check=check)
        from sage.categories.all import NumberFields, Rings
        if (x.parent() == self or
            (x.domain() == self.domain() and x.codomain() == self.codomain()
             and
             # This would be the better check, however it returns False currently:
             # self.homset_category().is_full_subcategory(x.category_for())
             # So we check instead that this is a morphism anywhere between
             # Rings and NumberFields where the hom spaces do not change.
             NumberFields().is_subcategory(self.homset_category())
             and self.homset_category().is_subcategory(Rings())
             and NumberFields().is_subcategory(x.category_for())
             and x.category_for().is_subcategory(Rings()))):
            return self.element_class(self, x.im_gens(), check=False)
예제 #2
0
    def _normalize_number_field_data(self, R):
        r"""
        Helper method which returns the defining data of the number field
        ``R``.

        EXAMPLES::

            sage: sys.path.append(os.getcwd()); from mac_lane import * # optional: standalone
            sage: R.<x> = QQ[]
            sage: K = R.quo(x^2 + 1)
            sage: pAdicValuation._normalize_number_field_data(K)
            (Rational Field,
             Univariate Quotient Polynomial Ring in xbar over Rational Field with modulus x^2 + 1,
             x^2 + 1)

        """
        from sage.rings.polynomial.polynomial_quotient_ring import is_PolynomialQuotientRing
        from sage.rings.number_field.number_field import is_NumberField
        from sage.rings.fraction_field import is_FractionField
        if is_NumberField(R.fraction_field()):
            L = R.fraction_field()
            G = L.relative_polynomial()
            K = L.base_ring()
        elif is_PolynomialQuotientRing(R):
            from sage.categories.all import NumberFields
            if R.base_ring().fraction_field() not in NumberFields():
                raise NotImplementedError("can not normalize quotients over %r"%(R.base_ring(),))
            L = R.fraction_field()
            K = R.base_ring().fraction_field()
            G = R.modulus().change_ring(K)
        else:
            raise NotImplementedError("can not normalize %r"%(R,))

        return K, L, G
예제 #3
0
파일: morphism.py 프로젝트: shalec/sage
    def _coerce_impl(self, x):
        r"""
        Canonical coercion of ``x`` into this homset. The only things that
        coerce canonically into self are elements of self and of homsets equal
        to self.

        EXAMPLES::

            sage: H1 = End(QuadraticField(-1, 'a'))
            sage: H1.coerce(loads(dumps(H1[1]))) # indirect doctest
            Ring endomorphism of Number Field in a with defining polynomial x^2 + 1
              Defn: a |--> -a

        TESTS:

        We can move morphisms between categories::

            sage: f = H1.an_element()
            sage: g = End(H1.domain(), category=Rings())(f)
            sage: f == End(H1.domain(), category=NumberFields())(g)
            True

        """
        if not isinstance(x, NumberFieldHomomorphism_im_gens):
            raise TypeError
        if x.parent() is self:
            return x
        from sage.categories.all import NumberFields, Rings
        if (x.parent() == self or
            (x.domain() == self.domain() and x.codomain() == self.codomain()
             and
             # This would be the better check, however it returns False currently:
             # self.homset_category().is_full_subcategory(x.category_for())
             # So we check instead that this is a morphism anywhere between
             # Rings and NumberFields where the hom spaces do not change.
             NumberFields().is_subcategory(self.homset_category())
             and self.homset_category().is_subcategory(Rings())
             and NumberFields().is_subcategory(x.category_for())
             and x.category_for().is_subcategory(Rings()))):
            return NumberFieldHomomorphism_im_gens(self,
                                                   x.im_gens(),
                                                   check=False)
        raise TypeError
예제 #4
0
    def __init__(self, R, S, category=None):
        """
        TESTS:

        Check that :trac:`23647` is fixed::

            sage: K.<a, b> = NumberField([x^2 - 2, x^2 - 3])
            sage: e, u, v, w = End(K)
            sage: e.abs_hom().parent().category()
            Category of homsets of number fields
            sage: (v*v).abs_hom().parent().category()
            Category of homsets of number fields
        """
        if category is None:
            from sage.categories.all import Fields, NumberFields
            if S in NumberFields():
                category = NumberFields()
            elif S in Fields():
                category = Fields()
        RingHomset_generic.__init__(self, R, S, category)