def _del_derived(self): r""" Delete the derived quantities. TESTS:: sage: M = Manifold(2, 'M') sage: X.<x,y> = M.chart() sage: f = M.scalar_field({X: x+y}) sage: U = M.open_subset('U', coord_def={X: x>0}) sage: f.restrict(U) Scalar field on the Open subset U of the 2-dimensional differentiable manifold M sage: f._restrictions {Open subset U of the 2-dimensional differentiable manifold M: Scalar field on the Open subset U of the 2-dimensional differentiable manifold M} sage: f._del_derived() sage: f._restrictions # restrictions are derived quantities {} """ ScalarField._del_derived( self) # derived quantities of the mother class self._differential = None # reset of the differential # First deletes any reference to self in the vectors' dictionaries: for vid, val in self._lie_derivatives.items(): del val[0]._lie_der_along_self[id(self)] # Then clears the dictionary of Lie derivatives self._lie_derivatives.clear()
def _del_derived(self): r""" Delete the derived quantities. TESTS:: sage: M = Manifold(2, 'M') sage: X.<x,y> = M.chart() sage: f = M.scalar_field({X: x+y}) sage: U = M.open_subset('U', coord_def={X: x>0}) sage: f.restrict(U) Scalar field on the Open subset U of the 2-dimensional differentiable manifold M sage: f._restrictions {Open subset U of the 2-dimensional differentiable manifold M: Scalar field on the Open subset U of the 2-dimensional differentiable manifold M} sage: f._del_derived() sage: f._restrictions # restrictions are derived quantities {} """ ScalarField._del_derived(self) # derived quantities of the mother class self._differential = None # reset of the differential # First deletes any reference to self in the vectors' dictionaries: for vid, val in self._lie_derivatives.items(): del val[0]._lie_der_along_self[id(self)] # Then clears the dictionary of Lie derivatives self._lie_derivatives.clear()
def __init__(self, parent, coord_expression=None, chart=None, name=None, latex_name=None): r""" Construct a scalar field. TESTS:: sage: M = Manifold(2, 'M') sage: X.<x,y> = M.chart() sage: f = M.scalar_field({X: x+y}, name='f') ; f Scalar field f on the 2-dimensional differentiable manifold M sage: from sage.manifolds.scalarfield import ScalarField sage: isinstance(f, ScalarField) True sage: f.parent() Algebra of differentiable scalar fields on the 2-dimensional differentiable manifold M sage: TestSuite(f).run() """ ScalarField.__init__(self, parent, coord_expression=coord_expression, chart=chart, name=name, latex_name=latex_name) self._tensor_type = (0, 0)
def _init_derived(self): r""" Initialize the derived quantities. TEST:: sage: M = Manifold(2, 'M') sage: X.<x,y> = M.chart() sage: f = M.scalar_field({X: x+y}) sage: f._init_derived() """ ScalarField._init_derived( self) # derived quantities of the mother class
def _init_derived(self): r""" Initialize the derived quantities. TESTS:: sage: M = Manifold(2, 'M') sage: X.<x,y> = M.chart() sage: f = M.scalar_field({X: x+y}) sage: f._init_derived() """ ScalarField._init_derived(self) # derived quantities of the parent class self._differential = None # differential 1-form of the scalar field self._lie_derivatives = {} # dict. of Lie derivatives of self, (keys: id(vector))
def __init__(self, parent, coord_expression=None, chart=None, name=None, latex_name=None): r""" Construct a scalar field. TESTS:: sage: M = Manifold(2, 'M') sage: X.<x,y> = M.chart() sage: f = M.scalar_field({X: x+y}, name='f') ; f Scalar field f on the 2-dimensional differentiable manifold M sage: from sage.manifolds.scalarfield import ScalarField sage: isinstance(f, ScalarField) True sage: f.parent() Algebra of differentiable scalar fields on the 2-dimensional differentiable manifold M sage: TestSuite(f).run() """ ScalarField.__init__(self, parent, coord_expression=coord_expression, chart=chart, name=name, latex_name=latex_name) self._tensor_type = (0,0)
def _del_derived(self): r""" Delete the derived quantities. TEST:: sage: M = Manifold(2, 'M') sage: X.<x,y> = M.chart() sage: f = M.scalar_field({X: x+y}) sage: U = M.open_subset('U', coord_def={X: x>0}) sage: f.restrict(U) Scalar field on the Open subset U of the 2-dimensional differentiable manifold M sage: f._restrictions {Open subset U of the 2-dimensional differentiable manifold M: Scalar field on the Open subset U of the 2-dimensional differentiable manifold M} sage: f._del_derived() sage: f._restrictions # restrictions are derived quantities {} """ ScalarField._del_derived( self) # derived quantities of the mother class