예제 #1
0
        def quotient(self, I, names=None):
            """
            Quotient of a ring by a two-sided ideal.

            INPUT:

            - ``I``: A twosided ideal of this ring.
            - ``names``: a list of strings to be used as names
              for the variables in the quotient ring.

            EXAMPLES::

                sage: F.<x,y,z> = FreeAlgebra(QQ, 3)
                sage: I = F*[x*y+y*z,x^2+x*y-y*x-y^2]*F
                sage: Q = Rings().parent_class.quotient(F,I); Q
                Quotient of Free Algebra on 3 generators (x, y, z) over Rational Field by the ideal (x*y + y*z, x^2 + x*y - y*x - y^2)
                sage: Q.0
                xbar
                sage: Q.1
                ybar
                sage: Q.2
                zbar

            """
            from sage.rings.quotient_ring import QuotientRing
            return QuotientRing(self, I, names=names)
예제 #2
0
파일: rings.py 프로젝트: bopopescu/sage-5
        def quotient(self, I, names=None):
            """
            Quotient of a ring by a two-sided ideal.

            INPUT:

            - ``I``: A twosided ideal of this ring.
            - ``names``: a list of strings to be used as names
              for the variables in the quotient ring.

            EXAMPLES:

            Usually, a ring inherits a method :meth:`sage.rings.ring.Ring.quotient`.
            So, we need a bit of effort to make the following example work with the
            category framework::

                sage: F.<x,y,z> = FreeAlgebra(QQ)
                sage: from sage.rings.noncommutative_ideals import Ideal_nc
                sage: class PowerIdeal(Ideal_nc):
                ...    def __init__(self, R, n):
                ...        self._power = n
                ...        self._power = n
                ...        Ideal_nc.__init__(self,R,[R.prod(m) for m in CartesianProduct(*[R.gens()]*n)])
                ...    def reduce(self,x):
                ...        R = self.ring()
                ...        return add([c*R(m) for c,m in x if len(m)<self._power],R(0))
                ...
                sage: I = PowerIdeal(F,3)
                sage: Q = Rings().parent_class.quotient(F,I); Q
                Quotient of Free Algebra on 3 generators (x, y, z) over Rational Field by the ideal (x^3, x^2*y, x^2*z, x*y*x, x*y^2, x*y*z, x*z*x, x*z*y, x*z^2, y*x^2, y*x*y, y*x*z, y^2*x, y^3, y^2*z, y*z*x, y*z*y, y*z^2, z*x^2, z*x*y, z*x*z, z*y*x, z*y^2, z*y*z, z^2*x, z^2*y, z^3)
                sage: Q.0
                xbar
                sage: Q.1
                ybar
                sage: Q.2
                zbar
                sage: Q.0*Q.1
                xbar*ybar
                sage: Q.0*Q.1*Q.0
                0

            """
            from sage.rings.quotient_ring import QuotientRing
            return QuotientRing(self, I, names=names)