def _element_constructor_(self, fun): """ Coerce a given function (element of the symbolic ring) into a differential form of degree zero. EXAMPLES:: sage: x, y, z = var('x, y, z') sage: U = CoordinatePatch((x, y, z)) doctest:...: DeprecationWarning: Use Manifold instead. See http://trac.sagemath.org/24444 for details. sage: F = DifferentialForms(U); F doctest:...: DeprecationWarning: For the set of differential forms of degree p, use U.diff_form_module(p), where U is the base manifold (type U.diff_form_module? for details). See http://trac.sagemath.org/24444 for details. Algebra of differential forms in the variables x, y, z sage: F(sin(x*y)) # indirect doctest doctest:...: DeprecationWarning: Use U.diff_form(degree) instead, where U is the base manifold (type U.diff_form? for details). See http://trac.sagemath.org/24444 for details. sin(x*y) """ fun = SR(fun) if fun not in self: raise ValueError("Function not an element of this algebra of differential forms.") return DifferentialForm(self, 0, fun)
def gen(self, i=0): """ Return the `i^{th}` generator of ``self``. This is a one-form, more precisely the exterior derivative of the i-th coordinate. INPUT: - ``i`` - integer (optional, default 0) EXAMPLES:: sage: x, y, z = var('x, y, z') sage: U = CoordinatePatch((x, y, z)); U Open subset of R^3 with coordinates x, y, z sage: F = DifferentialForms(U); F Algebra of differential forms in the variables x, y, z sage: F.gen(0) dx sage: F.gen(1) dy sage: F.gen(2) dz """ form = DifferentialForm(self, 0, self._patch.coordinate(i)) return form.diff()
def test_derivative(self): x = self.x y = self.y z = self.z logdf = LogarithmicDifferentialForm(1, [y * z, x * z, x * y], self.normal_logdf) form = DifferentialForm(self.normal_logdf.form_space, 2) logdf_der = LogarithmicDifferentialForm.create_from_form( form, self.normal_logdf) self.assertTrue(logdf_der.equals(logdf.derivative()))
def test_creationA(self): x = self.normal_logdf.form_vars[0] y = self.normal_logdf.form_vars[1] z = self.normal_logdf.form_vars[2] logdf = LogarithmicDifferentialForm(2, [self.x, self.y, self.z], self.normal_logdf) form = DifferentialForm(self.normal_logdf.form_space, 2) form[0, 1] = 1 / (y * z) form[0, 2] = 1 / (x * z) form[1, 2] = 1 / (x * y) self.assertEqual(form, logdf.form)
def __init__(self,degree,vec,differential_forms): self.vec = vec self.degree = degree self.diff_forms = differential_forms self.divisor = self.diff_forms.divisor sym_divisor = convert_polynomial_to_symbolic(self.divisor,self.diff_forms.form_vars) #Construct the p_forms version of self if degree==0: sym_poly = convert_polynomial_to_symbolic(self.vec[0],self.diff_forms.form_vars) self.form = DifferentialForm(self.diff_forms.form_space,degree,sym_poly/sym_divisor) return if degree==self.diff_forms.poly_ring.ngens(): sym_poly = convert_polynomial_to_symbolic(self.vec[0],self.diff_forms.form_vars) self.form = DifferentialForm(self.diff_forms.form_space,degree) self.form[tuple(range(degree))] = sym_poly/sym_divisor else: self.form = DifferentialForm(self.diff_forms.form_space,degree) for i,v in enumerate(skew_iter(self.diff_forms.poly_ring.ngens(),degree)): sym_poly = convert_polynomial_to_symbolic(self.vec[i],self.diff_forms.form_vars) self.form[tuple(v)] = sym_poly/sym_divisor;
def test_creation_B(self): x = self.whitney_logdf.form_vars[0] y = self.whitney_logdf.form_vars[1] z = self.whitney_logdf.form_vars[2] whitney = x**2 * y - z**2 logdf = LogarithmicDifferentialForm(2, [self.x, self.y, self.z], self.whitney_logdf) form = DifferentialForm(self.normal_logdf.form_space, 2) form[0, 1] = x / whitney form[0, 2] = y / whitney form[1, 2] = z / whitney self.assertEqual(form, logdf.form)
def test_interior_1_form(self): x = self.normal_logdf.form_vars[0] y = self.normal_logdf.form_vars[1] z = self.normal_logdf.form_vars[2] form = DifferentialForm(self.normal_logdf.form_space, 0, (x + y + z) / (x * y * z)) one = self.poly_ring.one() logdf = LogarithmicDifferentialForm(1, [one, one, one], self.normal_logdf) int_product = logdf.interior_product() logdf_form = LogarithmicDifferentialForm.create_from_form( form, self.normal_logdf) self.assertTrue(int_product.equals(logdf_form))
def test_mul(self): x = self.normal_logdf.form_vars[0] y = self.normal_logdf.form_vars[1] z = self.normal_logdf.form_vars[2] logdf = LogarithmicDifferentialForm(2, [self.x, self.y, self.z], self.normal_logdf) form = DifferentialForm(self.normal_logdf.form_space, 2) form[0, 1] = -5 / (y * z) form[0, 2] = -5 / (x * z) form[1, 2] = -5 / (x * y) self.assertTrue((logdf * (-5)).equals((-5) * logdf)) logdf_mul = LogarithmicDifferentialForm.create_from_form( form, self.normal_logdf) self.assertTrue((-5 * logdf).equals(logdf_mul))
def test_create_from_0_form(self): x = self.normal_logdf.form_vars[0] y = self.normal_logdf.form_vars[1] z = self.normal_logdf.form_vars[2] xp = self.x yp = self.y zp = self.z logdf = LogarithmicDifferentialForm(0, [xp + yp + zp], self.normal_logdf) form = DifferentialForm(self.normal_logdf.form_space, 0, (x + y + z) / (x * y * z)) logdf_form = LogarithmicDifferentialForm.create_from_form( form, self.normal_logdf) self.assertTrue(logdf.equals(logdf_form))
def test_sub(self): x = self.normal_logdf.form_vars[0] y = self.normal_logdf.form_vars[1] z = self.normal_logdf.form_vars[2] logdfA = LogarithmicDifferentialForm(2, [self.x, self.y, self.z], self.normal_logdf) logdfB = LogarithmicDifferentialForm(2, [self.z, self.y, self.x], self.normal_logdf) form = DifferentialForm(self.normal_logdf.form_space, 2) form[0, 1] = 1 / (y * z) - 1 / (x * y) form[0, 2] = 0 form[1, 2] = 1 / (x * y) - 1 / (y * z) logdf_diff = LogarithmicDifferentialForm.create_from_form( form, self.normal_logdf) self.assertTrue(logdf_diff.equals(logdfA - logdfB))
def interior_product(self): if self.degree==0: return LogarithmicDifferentialForm.make_zero(0,self.diff_forms) prod_form = DifferentialForm(self.diff_forms.form_space,self.degree-1) for v in skew_iter(self.diff_forms.poly_ring.ngens(),self.degree): for e_i,e in enumerate(v): partial_var = self.diff_forms.form_vars[e] partial_w = self.diff_forms.wieghts[e] partial = ((-1)**(e_i)) * self.form[tuple(v)] * partial_var * partial_w if self.degree>1: rest = [ e_other for e_other in v if e_other != e] prod_form[tuple(rest)] = prod_form[tuple(rest)] + partial else: prod_form = prod_form + partial return LogarithmicDifferentialForm.create_from_form(prod_form,self.diff_forms)
def weight_integrand(self, simplify_factor=True): """ Weight integrand as a rational function. The Jacobian determinant of some coordinate transformation. """ def arg(x, y): return arctan(y / x) # up to a constant, but it doesn't matter def phi(x, y, a, b): z = (a + I * b - x - I * y) * (a - I * b - x - I * y) w = z.real() q = z.imag() return arg(w, q).full_simplify() n = len(self.internal_vertices()) coordinates = lambda v: SR.var(chr(97+2*(v-1)) + ',' + chr(97+2*(v-1)+1)) \ if v in self.internal_vertices() else \ [(0,0), (1,0)][self.ground_vertices().index(v)] internal_coordinates = sum( (list(coordinates(v)) for v in sorted(self.internal_vertices())), []) U = CoordinatePatch(internal_coordinates) F = DifferentialForms(U) psi = 0 two_forms = [] for v in self.internal_vertices(): x, y = coordinates(v) outgoing_edges = self.outgoing_edges([v]) left_target = filter(lambda (x, y, z): z == 'L', outgoing_edges)[0][1] right_target = filter(lambda (x, y, z): z == 'R', outgoing_edges)[0][1] one_forms = [] for target in [left_target, right_target]: a, b = coordinates(target) one_form = DifferentialForm(F, 1) for v in internal_coordinates: index = internal_coordinates.index(v) one_form[index] = phi(x, y, a, b).diff(v) if simplify_factor: one_form[index] = SR(one_form[index]).full_simplify() one_forms.append(one_form) two_form = one_forms[0] * one_forms[1] two_forms.append(two_form) import operator two_n_form = reduce(operator.mul, two_forms, 1) return two_n_form[range(0, 2 * n)]
def test_wedge(self): x = self.normal_logdf.form_vars[0] y = self.normal_logdf.form_vars[1] z = self.normal_logdf.form_vars[2] norm = self.x * self.y * self.z logdfA = LogarithmicDifferentialForm( 1, [self.x * norm, self.y * norm, self.z * norm], self.normal_logdf) logdfB = LogarithmicDifferentialForm(1, [self.z, self.y, self.x], self.normal_logdf) form = DifferentialForm(self.normal_logdf.form_space, 2) form[0, 1] = 1 / z - 1 / x form[0, 2] = (x / (y * z)) - (z / (x * y)) form[1, 2] = 1 / z - 1 / x logdf_wedge = LogarithmicDifferentialForm.create_from_form( form, self.normal_logdf) self.assertTrue(logdf_wedge.equals(logdfA.wedge(logdfB)))
def test_create_from_form(self): x = self.normal_logdf.form_vars[0] y = self.normal_logdf.form_vars[1] z = self.normal_logdf.form_vars[2] xp = self.x yp = self.y zp = self.z logdf = LogarithmicDifferentialForm( 2, [xp * yp - yp * zp, xp**2 - zp**2, xp * yp - yp * zp], self.normal_logdf) form = DifferentialForm(self.normal_logdf.form_space, 2) form[0, 1] = 1 / z - 1 / x form[0, 2] = (x / (y * z)) - (z / (x * y)) form[1, 2] = 1 / z - 1 / x logdf_form = LogarithmicDifferentialForm.create_from_form( form, self.normal_logdf) self.assertTrue(logdf.equals(logdf_form))
def test_interior(self): xp = self.x yp = self.y zp = self.z logdf = LogarithmicDifferentialForm( 2, [xp**2, xp + 4 * yp + zp, xp**3 * zp**3], self.whitney_logdf) int_product = logdf.interior_product() x = self.normal_logdf.form_vars[0] y = self.normal_logdf.form_vars[1] z = self.normal_logdf.form_vars[2] whitney = x**2 * y - z**2 form = DifferentialForm(self.normal_logdf.form_space, 1) form[0] = (-2 * x**2 * y - 2 * x * z - 8 * y * z - 2 * z**2) / whitney form[1] = (x**3 - 2 * x**3 * z**4) / whitney form[2] = (x**2 + 4 * x * y + x * z + 2 * x**3 * y * z**3) / whitney logdf_form = LogarithmicDifferentialForm.create_from_form( form, self.whitney_logdf) self.assertTrue(int_product.equals(logdf_form))
def _element_constructor_(self, fun): """ Coerce a given function (element of the symbolic ring) into a differential form of degree zero. EXAMPLES:: sage: x, y, z = var('x, y, z') sage: U = CoordinatePatch((x, y, z)) sage: F = DifferentialForms(U); F Algebra of differential forms in the variables x, y, z sage: F(sin(x*y)) # indirect doctest sin(x*y) """ fun = SR(fun) if fun not in self: raise ValueError, \ "Function not an element of this algebra of differential forms." return DifferentialForm(self, 0, fun)
def gen(self, i=0): """ Return the `i^{th}` generator of ``self``. This is a one-form, more precisely the exterior derivative of the i-th coordinate. INPUT: - ``i`` - integer (optional, default 0) EXAMPLES:: sage: x, y, z = var('x, y, z') sage: U = CoordinatePatch((x, y, z)); U doctest:...: DeprecationWarning: Use Manifold instead. See http://trac.sagemath.org/24444 for details. Open subset of R^3 with coordinates x, y, z sage: F = DifferentialForms(U); F doctest:...: DeprecationWarning: For the set of differential forms of degree p, use U.diff_form_module(p), where U is the base manifold (type U.diff_form_module? for details). See http://trac.sagemath.org/24444 for details. Algebra of differential forms in the variables x, y, z sage: F.gen(0) doctest:...: DeprecationWarning: Use U.diff_form(degree) instead, where U is the base manifold (type U.diff_form? for details). See http://trac.sagemath.org/24444 for details. dx sage: F.gen(1) dy sage: F.gen(2) dz """ form = DifferentialForm(self, 0, self._patch.coordinate(i)) return form.diff()
def _get_sym_from_0_form(form,diff_forms): dz = DifferentialForm(diff_forms.form_space,1) dz[(0,)] = 1 return form.wedge(dz)[(0,)]
def make_zero(cls,p,diff_forms): zero_form = DifferentialForm(diff_forms.form_space,p) return LogarithmicDifferentialForm.create_from_form(zero_form,diff_forms)
def test_creation_0_form(self): z = self.normal_logdf.form_vars[2] logdf = LogarithmicDifferentialForm(0, [self.x * self.y], self.normal_logdf) form = DifferentialForm(self.normal_logdf.form_space, 0, 1 / z) self.assertEqual(form, logdf.form)
def test_unit(self): one = LogarithmicDifferentialForm.make_unit(self.normal_logdf) form = DifferentialForm(self.normal_logdf.form_space, 0, 1) one_form = LogarithmicDifferentialForm.create_from_form( form, self.normal_logdf) self.assertTrue(one.equals(one_form))