예제 #1
0
        def boundary_conditions(self, hx, hy):
            where = (hx == hy)
            self.set_node(
                where,
                NTEquilibriumVelocity(
                    multifield((0.01 * (hx - self.gy / 2)**2, 0.0), where)))

            where = ((hx == 5) & (hy == 7))
            self.set_node(where,
                          NTEquilibriumDensity(DynamicValue(0.1 * S.gx)))

            # Interpolated time series.
            data = np.linspace(0, 50, 10)
            where = ((hx == 5) & (hy == 8))
            self.set_node(
                where,
                NTEquilibriumDensity(
                    DynamicValue(0.1 * S.gx *
                                 LinearlyInterpolatedTimeSeries(data, 40))))

            # Same underlying data, but different time step.
            where = ((hx == 5) & (hy == 9))
            self.set_node(
                where,
                NTEquilibriumDensity(
                    DynamicValue(0.1 * S.gx *
                                 LinearlyInterpolatedTimeSeries(data, 30))))

            self.set_node((hx > 10) & (hy < 5), NTFullBBWall)
예제 #2
0
 def boundary_conditions(self, hx, hy, hz):
     wall_map = np.array([
         [[0, 0, 0, 0, 1],
          [0, 0, 0, 0, 1],
          [0, 0, 0, 1, 1],
          [0, 0, 0, 1, 1],  # There was a bug once that caused the
                            # middle node here to be marked
                            # PropagationOnly.
          [0, 0, 1, 1, 1],
          [0, 1, 1, 1, 1],
          [1, 1, 1, 1, 1],
          [1, 1, 1, 1, 1]],
         [[0, 0, 0, 1, 1],
          [0, 0, 0, 1, 1],
          [0, 0, 1, 1, 1],
          [0, 1, 1, 1, 1],
          [0, 1, 1, 1, 1],
          [1, 1, 1, 1, 1],
          [1, 1, 1, 1, 1],
          [1, 1, 1, 1, 1]],
         [[0, 0, 1, 1, 1],
          [0, 1, 1, 1, 1],
          [0, 1, 1, 1, 1],
          [1, 1, 1, 1, 1],
          [1, 1, 1, 1, 1],
          [1, 1, 1, 1, 1],
          [1, 1, 1, 1, 1],
          [1, 1, 1, 1, 1]]], dtype=np.bool)
     wall_map = np.pad(wall_map, (1, 1), mode='constant',
                       constant_values=0)
     self.set_node(wall_map, NTFullBBWall)
     self.set_node(np.logical_not(wall_map) & (hz == 0),
                 NTEquilibriumDensity(1.0))
예제 #3
0
    def boundary_conditions(self, hx, hy, hz):
        # Channel walls.
        wall_map = ((hx == 0) | (hx == self.gx - 1))
        self.set_node(wall_map, self.wall_bc)

        h = self.config.H * 2 / 3
        buf_len = CubeChannelGeometry.buf_nz(self.config)

        # For BBL, the number of nodes has to be extended by 1 in every
        # direction other than wall-normal due to the effective wall location,
        # i.e. due to the fact that a sequence of N BBL nodes corresponds to
        # a solid body N-2 across.
        ext = 1 if self.wall_bc.location == -0.5 else 0

        # Cube.
        cube_map = ((hx > 0) & (hx <= h) & (hz >= buf_len + 3 * h - ext) &
                    (hz < buf_len + 4 * h + ext) & (hy >= 2.7 * h - ext) &
                    (hy < 3.7 * h + ext))
        self.set_node(cube_map, self.wall_bc)

        # Outlet.
        outlet_map = (hz == self.gz - 1) & np.logical_not(wall_map)
        self.set_node(
            outlet_map,
            NTEquilibriumDensity(1.0, orientation=D3Q19.vec_to_dir([0, 0,
                                                                    -1])))
예제 #4
0
    def boundary_conditions(self, hx, hy):

        # set walls
        walls = (hx == -2)  # set to all false
        y_wall = np.random.randint(0, 2)
        if y_wall == 0:
            print("y wall")
            walls = (hy == 0) | (hy == self.gy - 1) | walls
        # x bottom
        #x_wall = np.random.randint(0,2)
        #if x_wall == 1:
        #  walls = (hx == self.gx - 1) | walls
        self.set_node(walls, self.bc)

        self.set_node((hx == 0) & np.logical_not(walls),
                      NTEquilibriumVelocity(self.vel))

        # set open boundarys
        self.set_node((hx == self.gx - 1) & np.logical_not(walls),
                      NTEquilibriumDensity(1))

        boundary = self.make_boundary(hx)
        self.set_node(boundary, self.bc)

        # save geometry (boundary, velocity, pressure)
        solid = np.array(boundary | walls, dtype=np.float32)
        solid = np.expand_dims(solid, axis=-1)
        velocity = np.concatenate(2 * [np.zeros_like(solid, dtype=np.float32)],
                                  axis=-1)
        velocity[:, 0] = self.vel
        pressure = np.array((hx == self.gx - 1) & np.logical_not(walls),
                            dtype=np.float32)
        pressure = np.expand_dims(pressure, axis=-1)
        geometry = np.concatenate([solid, velocity, pressure], axis=-1)
        np.save(self.config.checkpoint_file + "_geometry", geometry)
예제 #5
0
 def boundary_conditions(self, hx, hy):
     self.set_node(
         (hx == 5) & (hy == 0),
         NTEquilibriumDensity(
             DynamicValue(LinearlyInterpolatedTimeSeries(sin_timeseries,
                                                         8))))
     self.set_node(
         (hx == 6) & (hy == 0),
         NTEquilibriumDensity(
             DynamicValue(
                 LinearlyInterpolatedTimeSeries(cos_timeseries, 1.61))))
     self.set_node(
         (hx == 7) & (hy == 0),
         NTEquilibriumDensity(
             DynamicValue(
                 2.0 * LinearlyInterpolatedTimeSeries(sin_timeseries, 4))))
예제 #6
0
    def boundary_conditions(self, hx, hy):

        walls = (hy == 0) | (hy == self.gy - 1)
        self.set_node(walls, self.bc)

        H = self.config.lat_ny
        hhy = S.gy - self.bc.location
        self.set_node(
            (hx == 0) & np.logical_not(walls),
            NTEquilibriumVelocity(
                DynamicValue(4.0 * self.max_v / H**2 * hhy * (H - hhy), 0.0)))
        self.set_node((hx == self.gx - 1) & np.logical_not(walls),
                      NTEquilibriumDensity(1))

        L = self.config.vox_size
        model = self.load_vox_file(self.config.vox_filename)
        model = np.pad(model, ((L / 2, L / 2), (L, 6 * L)),
                       'constant',
                       constant_values=False)
        self.set_node(model, self.bc)

        # save boundary
        geometry_array = model.astype(np.uint8)
        geometry_array = geometry_array[1:-1, L / 2 + 1:5 * L / 2 + 1]
        geometry_array = np.expand_dims(geometry_array, axis=-1)
        np.save(self.config.output + "_boundary", geometry_array)
예제 #7
0
    def boundary_conditions(self, hx, hy, hz):
        wall_map = (hx == 0) | (hx == self.gx -
                                1) | (hy == 0) | (hy == self.gy - 1)
        self.set_node(wall_map, self.wall_bc)

        self.set_node((hz == 0) & np.logical_not(wall_map),
                      NTEquilibriumVelocity((0.0, 0.0, 0.1)))
        self.set_node((hx == self.gx - 1) & np.logical_not(wall_map),
                      NTEquilibriumDensity(1))

        L = self.config.vox_size
        model = self.load_vox_file(self.config.vox_filename)
        model = np.pad(model, ((L, 8 * L / 4), (L / 2, L / 2), (L / 2, L / 2)),
                       'constant',
                       constant_values=False)
        np.save(self.config.output + "_boundary", model)
        self.set_node(model, self.wall_bc)
    def boundary_conditions(self, hx, hy):
        #walls = (hy == 0) | (hy == self.gy - 1)
        walls = (hy == -2)
        self.set_node(walls, self.bc)

        #hhy = S.gy - self.bc.location
        self.set_node((hx == 0) & np.logical_not(walls),
                      NTEquilibriumVelocity((self.max_v, 0.0)))
        self.set_node((hx == self.gx - 1) & np.logical_not(walls),
                      NTEquilibriumDensity(1))
        l = L / 4

        # Full bounce-back. For N box nodes, effective size is N+1.
        if self.bc.location == 0.5:
            eff_D = D - 1
        # Half-way bounce-back. For N box nodes, effective size is N-2.
        else:
            eff_D = D + 2

        box = ((hx > l - eff_D / 2.0) & (hx <= l + eff_D / 2.0) &
               (hy > (H - eff_D) / 2.0) & (hy <= (H + eff_D) / 2.0))
        self.set_node(box, self.bc)
예제 #9
0
  def boundary_conditions(self, hx, hy):

    # set walls
    walls = (hx == -2) # set to all false
    y_wall = np.random.randint(0,2)
    if y_wall == 0:
      walls = (hy == 0) | walls
    # x bottom
    x_wall = np.random.randint(0,2) 
    if x_wall == 1:
      walls = (hx == self.gx - 1) | walls
    self.set_node(walls, self.bc)

    self.set_node((hx == 0) & np.logical_not(walls),
                  NTEquilibriumVelocity(self.vel))

    # set open boundarys 
    self.set_node((hx == self.gx - 1) & np.logical_not(walls),
                  NTEquilibriumDensity(1))

    boundary = self.make_boundary(hx)
    self.set_node(boundary, self.bc)
예제 #10
0
 def boundary_conditions(self, hx, hy, hz):
     self.set_node((hx == 0) | (hy == 0) | (hz == 0) | (hz == self.gz - 1) |
                   (hx == self.gx - 1) | (hy == self.gy - 1),
                   NTEquilibriumDensity(1.0))