예제 #1
0
def make_final_image(input_image, output_image, output_wave_image,
                     desired_fwhm,
                     input_uncert_image=None, output_uncert_image=None,
                     clobber=False):
    """This routine makes the 'final' images for a data cube. At least the paths
    to the input image, output image, and output wavelength image are necessary
    for this. Beyond that, the user may also have the routine create uncertainty
    images as well.
    
    Images are convolved to the resolution 'desired_fwhm'. If the current fwhm
    is already higher than that, the routine will throw an error.
    
    A number of fits header keywords are necessary for this program to function
    properly. Any of these missing will throw an error.
    
    The output images are intensity-weighted, i.e. the wavelength image will be
    created such that the wavelengths at each pixel are the 'most likely'
    wavelength for the intensity at that pixel, etc.
    
    Inputs:
    input_image -> Path to the input image.
    output_image -> Path to the output image.
    output_wave_image -> Path to the output wavelength image.
    desired_fwhm -> Desired FWHM for the resultant image to have.
    
    Optional Inputs:
    input_uncert_image -> Path to the input uncertainty image, if it exists.
    output_uncert_image -> Path to the output uncertainty image, if it exists.
    clobber -> Overwrite output images if they already exist. Default is False.
    
    """
    
    print "Making final data cube images for image "+input_image
    
    #Measure the sky background level in the input image
    skyavg, skysig = fit_sky_level([input_image])
    
    #Open the input image and get various header keywords, crash if necessary
    intyimage = openfits(input_image)
    intygrid = intyimage[0].data
    fwhm = intyimage[0].header.get("fpfwhm")
    wave0 = intyimage[0].header.get("fpwave0")
    calf = intyimage[0].header.get("fpcalf")
    xcen = intyimage[0].header.get("fpxcen")
    ycen = intyimage[0].header.get("fpycen")
    if fwhm == None: crash("Error! FWHM not measured for image "+input_image+".")
    if wave0 == None or calf == None: crash("Error! Wavelength solution does "+
                                            "not exist for image "+input_image+".")
    if xcen == None or ycen == None: crash("Error! Center values not measured "+
                                           "image "+input_image+".")
    if fwhm>desired_fwhm: crash("Error! Desired FWHM too low for image "+
                                input_image+".")
    
    #Subtract the sky background from the image
    intygrid[intygrid!=0] -= skyavg[0]
    
    #Calculate the necessary FWHM for convolution and make the gaussian kernel
    fwhm_conv = np.sqrt(desired_fwhm**2-fwhm**2)
    sig = fwhm_conv/2.3548+0.0001
    ksize = np.ceil(4*sig) #Generate the kernel to 4-sigma
    kxgrid, kygrid = np.meshgrid(np.linspace(-ksize,ksize,2*ksize+1),np.linspace(-ksize,ksize,2*ksize+1))
    kern = np.exp(-(kxgrid**2+kygrid**2)/(2*sig**2)) #Gaussian (unnormalized because sig can be 0)
    kern = kern/np.sum(kern) #Normalize the kernel
    
    #Open and convolve the uncertainty image if one exists. Save the output.
    if input_uncert_image != None:
        uncertimage = openfits(input_uncert_image)
        uncertgrid = uncertimage[0].data
        #Add the sky background uncertainty to the uncertainty grid
        uncertgrid[intygrid!=0] = np.sqrt(uncertgrid[intygrid!=0]**2+skysig[0]**2)
        #Convolve the uncertainties appropriately
        new_uncert_grid = convolve_uncert(uncertgrid, intygrid, kern)
        #Write to output file
        writefits(output_uncert_image,new_uncert_grid,header=uncertimage[0].header,clobber=clobber)
        uncertimage.close()
        
    #Create and convolve the wavelength image. Save the output.
    xgrid, ygrid = np.meshgrid(np.arange(intyimage[0].data.shape[1]),
                               np.arange(intyimage[0].data.shape[0]))
    r2grid = (xgrid-xcen)**2 + (ygrid-ycen)**2
    wavegrid = wave0 / np.sqrt(1+r2grid/calf**2)
    newwavegrid = convolve_wave(wavegrid, intygrid, kern)
    writefits(output_wave_image,newwavegrid,header=intyimage[0].header,clobber=clobber)
    
    #Convolve the intensity image. Save the output
    newintygrid = convolve_inty(intygrid, kern)
    intyimage[0].header["fpfwhm"] = desired_fwhm #Update header FWHM keyword
    writefits(output_image,newintygrid,header=intyimage[0].header,clobber=clobber)
    
    #Close images
    intyimage.close()
    
    return
예제 #2
0
def align_norm(fnlist,uncertlist=None):
    """Aligns a set of images to each other, as well as normalizing the images
    to the same average brightness.
    
    Both the alignment and normalization are accomplished through stellar
    photometry using the IRAF routine 'daophot'. The centroids of a handful
    of stars are found and used to run the IRAF routine 'imalign'. The
    instrumental magnitudes of the stars are used to determine by how much
    each image must be scaled for the photometry to match across images.
    
    The images are simply updated with their rescaled, shifted selves. This
    overwrites the previous images and adds the header keyword 'fpphot' to
    the images.
    
    A handful of temporary files are created during this process, which should
    all be deleted by the routine at the end. But if it is interrupted, they
    might not be.
    
    If the uncertainty images exist, this routine also shifts them by the same
    amounts as the intensity images, as well as updating the uncertainty values
    for both the new normalization and the uncertainties in normalizing the
    images.
    
    Inputs:
    fnlist -> List of strings, each the path to a fits image.
    uncertlist (optional) -> List of paths to uncertainty images.
    
    """
    
    #Fit for the sky background level
    _skyavg, skysig = fit_sky_level(fnlist)
    
    #Get image FWHMs
    fwhm = np.empty(len(fnlist))
    firstimage = openfits(fnlist[0])
    toggle = firstimage[0].header.get("fpfwhm")
    axcen = firstimage[0].header.get("fpaxcen")
    aycen = firstimage[0].header.get("fpaycen")
    arad = firstimage[0].header.get("fparad")
    firstimage.close()
    if axcen == None:
        print "Error! Images have not yet been aperture-masked! Do this first!"
        crash()
    if toggle == None:
        print "Warning: FWHMs have not been measured! Assuming 5 pixel FWHM for all images."
        for i in range(len(fnlist)): fwhm[i] = 5
    else:
        for i in range(len(fnlist)):
            image = openfits(fnlist[i])
            fwhm[i] = image[0].header["fpfwhm"]
            image.close()
    
    #Identify objects in the fields
    coolist = identify_objects(fnlist,skysig,fwhm)
    
    #Match objects between fields
    coofile = match_objects(coolist)
    
    #Do aperture photometry on the matched objects
    photlist = do_phot(fnlist,coofile,fwhm,skysig)
    
    #Read the photometry files
    x, y, mag, dmag = read_phot(photlist)
    
    #Calculate the normalizations
    norm, dnorm = calc_norm(mag,dmag)
    
    #Normalize the images (and optionally, the uncertainty images)
    for i in range(len(fnlist)):
        print "Normalizing image "+fnlist[i]
        image = openfits(fnlist[i],mode="update")
        if not (uncertlist is None):
            uncimage = openfits(uncertlist[i],mode="update")
            uncimage[0].data = np.sqrt(norm[i]**2*uncimage[0].data**2 + dnorm[i]**2*image[0].data**2)
            uncimage.close()
        image[0].data *= norm[i]
        image.close()
    
    #Calculate the shifts
    for i in range(x.shape[1]):
        x[:,i] = -(x[:,i] - x[0,i])
        y[:,i] = -(y[:,i] - y[0,i])
    xshifts = np.average(x,axis=1)
    yshifts = np.average(y,axis=1)
    
    #Shift the images (and optionally, the uncertainty images)
    iraf.images(_doprint=0)
    iraf.immatch(_doprint=0)
    for i in range(len(fnlist)):
        print "Shifting image "+fnlist[i]
        iraf.geotran(input=fnlist[i],
                     output=fnlist[i],
                     geometry="linear",
                     xshift=xshifts[i],
                     yshift=yshifts[i],
                     database="",
                     verbose="no")
        if not (uncertlist is None):
            iraf.geotran(input=uncertlist[i],
                         output=uncertlist[i],
                         geometry="linear",
                         xshift=xshifts[i],
                         yshift=yshifts[i],
                         database="",
                         verbose="no")
    
    #Update the image headers
    for i in range(len(fnlist)):
        image = openfits(fnlist[i],mode="update")
        image[0].header["fpphot"]="True"
        image[0].header["fpxcen"]+=xshifts[i]
        image[0].header["fpycen"]+=yshifts[i]
        image[0].header["fpaxcen"]+=xshifts[i]
        image[0].header["fpaycen"]+=yshifts[i]
        image.close()
    
    #Clean up the coordinate file list
    clean_files(fnlist)
    remove(coofile)
    for i in range(len(photlist)):
        remove(photlist[i])
    
    return