def saltclean(images, outpath, obslogfile=None, gaindb=None, xtalkfile=None, geomfile=None, subover=True, trim=True, masbias=None, subbias=False, median=False, function='polynomial', order=5, rej_lo=3, rej_hi=3, niter=5, interp='linear', clobber=False, logfile='salt.log', verbose=True): """SALTCLEAN will provide basic CCD reductions for a set of data. It will sort the data, and first process the biases, flats, and then the science frames. It will record basic quality control information about each of the steps. """ plotover = False #start logging with logging(logfile, debug) as log: # Check the input images infiles = saltio.argunpack('Input', images) # create list of output files outpath = saltio.abspath(outpath) #does the gain database file exist if gaindb: dblist = saltio.readgaindb(gaindb) else: dblist = [] # does crosstalk coefficient data exist if xtalkfile: xtalkfile = xtalkfile.strip() xdict = saltio.readxtalkcoeff(xtalkfile) else: xdict = None #does the mosaic file exist--raise error if no saltio.fileexists(geomfile) # Delete the obslog file if it already exists if os.path.isfile(obslogfile) and clobber: saltio.delete(obslogfile) #read in the obsveration log or create it if os.path.isfile(obslogfile): msg = 'The observing log already exists. Please either delete it or run saltclean with clobber=yes' raise SaltError(msg) else: headerDict = obslog(infiles, log) obsstruct = createobslogfits(headerDict) saltio.writefits(obsstruct, obslogfile) #create the list of bias frames and process them filename = obsstruct.data.field('FILENAME') detmode = obsstruct.data.field('DETMODE') ccdtype = obsstruct.data.field('CCDTYPE') #set the bias list of objects biaslist = filename[ccdtype == 'ZERO'] masterbias_dict = {} for img in infiles: if os.path.basename(img) in biaslist: #open the image struct = fits.open(img) bimg = outpath + 'bxgp' + os.path.basename(img) #print the message if log: message = 'Processing Zero frame %s' % img log.message(message, with_stdout=verbose) #process the image struct = clean(struct, createvar=False, badpixelstruct=None, mult=True, dblist=dblist, xdict=xdict, subover=subover, trim=trim, subbias=False, bstruct=None, median=median, function=function, order=order, rej_lo=rej_lo, rej_hi=rej_hi, niter=niter, plotover=plotover, log=log, verbose=verbose) #write the file out # housekeeping keywords fname, hist = history( level=1, wrap=False, exclude=['images', 'outimages', 'outpref']) saltkey.housekeeping(struct[0], 'SPREPARE', 'Images have been prepared', hist) saltkey.new('SGAIN', time.asctime(time.localtime()), 'Images have been gain corrected', struct[0]) saltkey.new('SXTALK', time.asctime(time.localtime()), 'Images have been xtalk corrected', struct[0]) saltkey.new('SBIAS', time.asctime(time.localtime()), 'Images have been de-biased', struct[0]) # write FITS file saltio.writefits(struct, bimg, clobber=clobber) saltio.closefits(struct) #add files to the master bias list masterbias_dict = compareimages(struct, bimg, masterbias_dict, keylist=biasheader_list) #create the master bias frame for i in masterbias_dict.keys(): bkeys = masterbias_dict[i][0] blist = masterbias_dict[i][1:] mbiasname = outpath + createmasterbiasname(blist, bkeys) bfiles = ','.join(blist) saltcombine(bfiles, mbiasname, method='median', reject='sigclip', mask=False, weight=False, blank=0, scale=None, statsec=None, lthresh=3, \ hthresh=3, clobber=False, logfile=logfile,verbose=verbose) #create the list of flatfields and process them flatlist = filename[ccdtype == 'FLAT'] masterflat_dict = {} for img in infiles: if os.path.basename(img) in flatlist: #open the image struct = fits.open(img) fimg = outpath + 'bxgp' + os.path.basename(img) #print the message if log: message = 'Processing Flat frame %s' % img log.message(message, with_stdout=verbose) #process the image struct = clean(struct, createvar=False, badpixelstruct=None, mult=True, dblist=dblist, xdict=xdict, subover=subover, trim=trim, subbias=False, bstruct=None, median=median, function=function, order=order, rej_lo=rej_lo, rej_hi=rej_hi, niter=niter, plotover=plotover, log=log, verbose=verbose) #write the file out # housekeeping keywords fname, hist = history( level=1, wrap=False, exclude=['images', 'outimages', 'outpref']) saltkey.housekeeping(struct[0], 'SPREPARE', 'Images have been prepared', hist) saltkey.new('SGAIN', time.asctime(time.localtime()), 'Images have been gain corrected', struct[0]) saltkey.new('SXTALK', time.asctime(time.localtime()), 'Images have been xtalk corrected', struct[0]) saltkey.new('SBIAS', time.asctime(time.localtime()), 'Images have been de-biased', struct[0]) # write FITS file saltio.writefits(struct, fimg, clobber=clobber) saltio.closefits(struct) #add files to the master bias list masterflat_dict = compareimages(struct, fimg, masterflat_dict, keylist=flatheader_list) #create the master flat frame for i in masterflat_dict.keys(): fkeys = masterflat_dict[i][0] flist = masterflat_dict[i][1:] mflatname = outpath + createmasterflatname(flist, fkeys) ffiles = ','.join(flist) saltcombine(ffiles, mflatname, method='median', reject='sigclip', mask=False, weight=False, blank=0, scale=None, statsec=None, lthresh=3, \ hthresh=3, clobber=False, logfile=logfile,verbose=verbose) #process the science data for img in infiles: nimg = os.path.basename(img) #print nimg, nimg in flatlist, nimg in biaslist if not (nimg in biaslist): #open the image struct = fits.open(img) simg = outpath + 'bxgp' + os.path.basename(img) #print the message if log: message = 'Processing science frame %s' % img log.message(message, with_stdout=verbose) #process the image struct = clean(struct, createvar=False, badpixelstruct=None, mult=True, dblist=dblist, xdict=xdict, subover=subover, trim=trim, subbias=False, bstruct=None, median=median, function=function, order=order, rej_lo=rej_lo, rej_hi=rej_hi, niter=niter, plotover=plotover, log=log, verbose=verbose) #write the file out # housekeeping keywords fname, hist = history( level=1, wrap=False, exclude=['images', 'outimages', 'outpref']) saltkey.housekeeping(struct[0], 'SPREPARE', 'Images have been prepared', hist) saltkey.new('SGAIN', time.asctime(time.localtime()), 'Images have been gain corrected', struct[0]) saltkey.new('SXTALK', time.asctime(time.localtime()), 'Images have been xtalk corrected', struct[0]) saltkey.new('SBIAS', time.asctime(time.localtime()), 'Images have been de-biased', struct[0]) # write FITS file saltio.writefits(struct, simg, clobber=clobber) saltio.closefits(struct) #mosaic the files--currently not in the proper format--will update when it is if not saltkey.fastmode(saltkey.get('DETMODE', struct[0])): mimg = outpath + 'mbxgp' + os.path.basename(img) saltmosaic(images=simg, outimages=mimg, outpref='', geomfile=geomfile, interp=interp, cleanup=True, clobber=clobber, logfile=logfile, verbose=verbose) #remove the intermediate steps saltio.delete(simg)
def saltclean(images, outpath, obslogfile=None, gaindb=None,xtalkfile=None, geomfile=None,subover=True,trim=True,masbias=None, subbias=False, median=False, function='polynomial', order=5,rej_lo=3, rej_hi=3,niter=5,interp='linear', clobber=False, logfile='salt.log', verbose=True): """SALTCLEAN will provide basic CCD reductions for a set of data. It will sort the data, and first process the biases, flats, and then the science frames. It will record basic quality control information about each of the steps. """ plotover=False #start logging with logging(logfile,debug) as log: # Check the input images infiles = saltio.argunpack ('Input',images) # create list of output files outpath=saltio.abspath(outpath) #does the gain database file exist if gaindb: dblist= saltio.readgaindb(gaindb) else: dblist=[] # does crosstalk coefficient data exist if xtalkfile: xtalkfile = xtalkfile.strip() xdict = saltio.readxtalkcoeff(xtalkfile) else: xdict=None #does the mosaic file exist--raise error if no saltio.fileexists(geomfile) # Delete the obslog file if it already exists if os.path.isfile(obslogfile) and clobber: saltio.delete(obslogfile) #read in the obsveration log or create it if os.path.isfile(obslogfile): msg='The observing log already exists. Please either delete it or run saltclean with clobber=yes' raise SaltError(msg) else: headerDict=obslog(infiles, log) obsstruct=createobslogfits(headerDict) saltio.writefits(obsstruct, obslogfile) #create the list of bias frames and process them filename=obsstruct.data.field('FILENAME') detmode=obsstruct.data.field('DETMODE') ccdtype=obsstruct.data.field('CCDTYPE') #set the bias list of objects biaslist=filename[ccdtype=='ZERO'] masterbias_dict={} for img in infiles: if os.path.basename(img) in biaslist: #open the image struct=pyfits.open(img) bimg=outpath+'bxgp'+os.path.basename(img) #print the message if log: message='Processing Zero frame %s' % img log.message(message, with_stdout=verbose) #process the image struct=clean(struct, createvar=False, badpixelstruct=None, mult=True, dblist=dblist, xdict=xdict, subover=subover, trim=trim, subbias=False, bstruct=None, median=median, function=function, order=order, rej_lo=rej_lo, rej_hi=rej_hi, niter=niter, plotover=plotover, log=log, verbose=verbose) #write the file out # housekeeping keywords fname, hist=history(level=1, wrap=False, exclude=['images', 'outimages', 'outpref']) saltkey.housekeeping(struct[0],'SPREPARE', 'Images have been prepared', hist) saltkey.new('SGAIN',time.asctime(time.localtime()),'Images have been gain corrected',struct[0]) saltkey.new('SXTALK',time.asctime(time.localtime()),'Images have been xtalk corrected',struct[0]) saltkey.new('SBIAS',time.asctime(time.localtime()),'Images have been de-biased',struct[0]) # write FITS file saltio.writefits(struct,bimg, clobber=clobber) saltio.closefits(struct) #add files to the master bias list masterbias_dict=compareimages(struct, bimg, masterbias_dict, keylist=biasheader_list) #create the master bias frame for i in masterbias_dict.keys(): bkeys=masterbias_dict[i][0] blist=masterbias_dict[i][1:] mbiasname=outpath+createmasterbiasname(blist, bkeys) bfiles=','.join(blist) saltcombine(bfiles, mbiasname, method='median', reject='sigclip', mask=False, weight=False, blank=0, scale=None, statsec=None, lthresh=3, \ hthresh=3, clobber=False, logfile=logfile,verbose=verbose) #create the list of flatfields and process them flatlist=filename[ccdtype=='FLAT'] masterflat_dict={} for img in infiles: if os.path.basename(img) in flatlist: #open the image struct=pyfits.open(img) fimg=outpath+'bxgp'+os.path.basename(img) #print the message if log: message='Processing Flat frame %s' % img log.message(message, with_stdout=verbose) #process the image struct=clean(struct, createvar=False, badpixelstruct=None, mult=True, dblist=dblist, xdict=xdict, subover=subover, trim=trim, subbias=False, bstruct=None, median=median, function=function, order=order, rej_lo=rej_lo, rej_hi=rej_hi, niter=niter, plotover=plotover, log=log, verbose=verbose) #write the file out # housekeeping keywords fname, hist=history(level=1, wrap=False, exclude=['images', 'outimages', 'outpref']) saltkey.housekeeping(struct[0],'SPREPARE', 'Images have been prepared', hist) saltkey.new('SGAIN',time.asctime(time.localtime()),'Images have been gain corrected',struct[0]) saltkey.new('SXTALK',time.asctime(time.localtime()),'Images have been xtalk corrected',struct[0]) saltkey.new('SBIAS',time.asctime(time.localtime()),'Images have been de-biased',struct[0]) # write FITS file saltio.writefits(struct,fimg, clobber=clobber) saltio.closefits(struct) #add files to the master bias list masterflat_dict=compareimages(struct, fimg, masterflat_dict, keylist=flatheader_list) #create the master flat frame for i in masterflat_dict.keys(): fkeys=masterflat_dict[i][0] flist=masterflat_dict[i][1:] mflatname=outpath+createmasterflatname(flist, fkeys) ffiles=','.join(flist) saltcombine(ffiles, mflatname, method='median', reject='sigclip', mask=False, weight=False, blank=0, scale=None, statsec=None, lthresh=3, \ hthresh=3, clobber=False, logfile=logfile,verbose=verbose) #process the science data for img in infiles: nimg=os.path.basename(img) if not nimg in flatlist or not nimg in biaslist: #open the image struct=pyfits.open(img) simg=outpath+'bxgp'+os.path.basename(img) #print the message if log: message='Processing science frame %s' % img log.message(message, with_stdout=verbose) #process the image struct=clean(struct, createvar=False, badpixelstruct=None, mult=True, dblist=dblist, xdict=xdict, subover=subover, trim=trim, subbias=False, bstruct=None, median=median, function=function, order=order, rej_lo=rej_lo, rej_hi=rej_hi, niter=niter, plotover=plotover, log=log, verbose=verbose) #write the file out # housekeeping keywords fname, hist=history(level=1, wrap=False, exclude=['images', 'outimages', 'outpref']) saltkey.housekeeping(struct[0],'SPREPARE', 'Images have been prepared', hist) saltkey.new('SGAIN',time.asctime(time.localtime()),'Images have been gain corrected',struct[0]) saltkey.new('SXTALK',time.asctime(time.localtime()),'Images have been xtalk corrected',struct[0]) saltkey.new('SBIAS',time.asctime(time.localtime()),'Images have been de-biased',struct[0]) # write FITS file saltio.writefits(struct,simg, clobber=clobber) saltio.closefits(struct) #mosaic the files--currently not in the proper format--will update when it is if not saltkey.fastmode(saltkey.get('DETMODE', struct[0])): mimg=outpath+'mbxgp'+os.path.basename(img) saltmosaic(images=simg, outimages=mimg,outpref='',geomfile=geomfile, interp=interp,cleanup=True,clobber=clobber,logfile=logfile, verbose=verbose) #remove the intermediate steps saltio.delete(simg)
def hrsclean(images, outpath, obslogfile=None, subover=True, trim=True, masbias=None, subbias=True, median=False, function='polynomial', order=5, rej_lo=3, rej_hi=3, niter=5, interp='linear', clobber=False, logfile='salt.log',verbose=True): """Convert MEF HRS data into a single image. If variance frames and BPMs, then convert them to the same format as well. Returns an MEF image but that is combined into a single frame """ with logging(logfile,debug) as log: # Check the input images infiles = saltio.argunpack ('Input',images) # create list of output files outpath=saltio.abspath(outpath) if saltio.checkfornone(obslogfile) is None: raise SaltError('Obslog file is required') # Delete the obslog file if it already exists if (os.path.isfile(obslogfile) and clobber) or not os.path.isfile(obslogfile): if os.path.isfile(obslogfile): saltio.delete(obslogfile) #read in the obsveration log or create it headerDict=obslog(infiles, log) obsstruct=createobslogfits(headerDict) saltio.writefits(obsstruct, obslogfile) else: obsstruct=saltio.openfits(obslogfile) #create the list of bias frames and process them filename=obsstruct.data.field('FILENAME') detmode=obsstruct.data.field('DETMODE') ccdtype=obsstruct.data.field('OBJECT') biaslist=filename[ccdtype=='Bias'] masterbias_dict={} if log: log.message('Processing Bias Frames') for img in infiles: if os.path.basename(img) in biaslist: #open the image struct=pyfits.open(img) bimg=outpath+'bgph'+os.path.basename(img) #print the message if log: message='Processing Zero frame %s' % img log.message(message, with_stdout=verbose, with_header=False) #process the image struct=clean(struct, createvar=False, badpixelstruct=None, mult=True, subover=subover, trim=trim, subbias=False, imstack=False, bstruct=None, median=median, function=function, order=order, rej_lo=rej_lo, rej_hi=rej_hi, niter=niter, log=log, verbose=verbose) #write the file out # housekeeping keywords fname, hist=history(level=1, wrap=False, exclude=['images', 'outimages', 'outpref']) saltkey.housekeeping(struct[0],'HPREPARE', 'Images have been prepared', hist) saltkey.new('HGAIN',time.asctime(time.localtime()),'Images have been gain corrected',struct[0]) #saltkey.new('HXTALK',time.asctime(time.localtime()),'Images have been xtalk corrected',struct[0]) saltkey.new('HBIAS',time.asctime(time.localtime()),'Images have been de-biased',struct[0]) # write FITS file saltio.writefits(struct,bimg, clobber=clobber) saltio.closefits(struct) #add files to the master bias list masterbias_dict=compareimages(struct, bimg, masterbias_dict, keylist=hrsbiasheader_list) #create the master bias frame for i in list(masterbias_dict.keys()): bkeys=masterbias_dict[i][0] blist=masterbias_dict[i][1:] mbiasname=outpath+createmasterbiasname(blist, bkeys, x1=5, x2=13) bfiles=','.join(blist) saltcombine(bfiles, mbiasname, method='median', reject='sigclip', mask=False, weight=False, blank=0, scale=None, statsec=None, lthresh=3, \ hthresh=3, clobber=False, logfile=logfile,verbose=verbose) #apply full reductions to the science data for img in infiles: nimg=os.path.basename(img) if not nimg in biaslist: #open the image struct=pyfits.open(img) simg=outpath+'mbgph'+os.path.basename(img) #print the message if log: message='Processing science frame %s' % img log.message(message, with_stdout=verbose) #get master bias frame masterbias=get_masterbias(struct, masterbias_dict, keylist=hrsbiasheader_list) if masterbias: subbias=True bstruct=saltio.openfits(masterbias) else: subbias=False bstruct=None #process the image struct=clean(struct, createvar=False, badpixelstruct=None, mult=True, subover=subover, trim=trim, subbias=subbias, imstack=True, bstruct=bstruct, median=median, function=function, order=order, rej_lo=rej_lo, rej_hi=rej_hi, niter=niter, log=log, verbose=verbose) #write the file out # housekeeping keywords fname, hist=history(level=1, wrap=False, exclude=['images', 'outimages', 'outpref']) saltkey.housekeeping(struct[0],'HPREPARE', 'Images have been prepared', hist) saltkey.new('HGAIN',time.asctime(time.localtime()),'Images have been gain corrected',struct[0]) #saltkey.new('HXTALK',time.asctime(time.localtime()),'Images have been xtalk corrected',struct[0]) saltkey.new('HBIAS',time.asctime(time.localtime()),'Images have been de-biased',struct[0]) # write FITS file saltio.writefits(struct,simg, clobber=clobber) saltio.closefits(struct) return
def saltadvance(images, outpath, obslogfile=None, gaindb=None,xtalkfile=None, geomfile=None,subover=True,trim=True,masbias=None, subbias=False, median=False, function='polynomial', order=5,rej_lo=3, rej_hi=3,niter=5,interp='linear', sdbhost='',sdbname='',sdbuser='', password='', clobber=False, cleanup=True, logfile='salt.log', verbose=True): """SALTADVANCE provides advanced data reductions for a set of data. It will sort the data, and first process the biases, flats, and then the science frames. It will record basic quality control information about each of the steps. """ plotover=False #start logging with logging(logfile,debug) as log: # Check the input images infiles = saltio.argunpack ('Input',images) infiles.sort() # create list of output files outpath=saltio.abspath(outpath) #log into the database sdb=saltmysql.connectdb(sdbhost, sdbname, sdbuser, password) #does the gain database file exist if gaindb: dblist= saltio.readgaindb(gaindb) else: dblist=[] # does crosstalk coefficient data exist if xtalkfile: xtalkfile = xtalkfile.strip() xdict = saltio.readxtalkcoeff(xtalkfile) else: xdict=None #does the mosaic file exist--raise error if no saltio.fileexists(geomfile) # Delete the obslog file if it already exists if os.path.isfile(obslogfile) and clobber: saltio.delete(obslogfile) #read in the obsveration log or create it if os.path.isfile(obslogfile): msg='The observing log already exists. Please either delete it or run saltclean with clobber=yes' raise SaltError(msg) else: headerDict=obslog(infiles, log) obsstruct=createobslogfits(headerDict) saltio.writefits(obsstruct, obslogfile) #create the list of bias frames and process them filename=obsstruct.data.field('FILENAME') detmode=obsstruct.data.field('DETMODE') obsmode=obsstruct.data.field('OBSMODE') ccdtype=obsstruct.data.field('CCDTYPE') propcode=obsstruct.data.field('PROPID') masktype=obsstruct.data.field('MASKTYP') #set the bias list of objects biaslist=filename[(ccdtype=='ZERO')*(propcode=='CAL_BIAS')] masterbias_dict={} for img in infiles: if os.path.basename(img) in biaslist: #open the image struct=fits.open(img) bimg=outpath+'bxgp'+os.path.basename(img) #print the message if log: message='Processing Zero frame %s' % img log.message(message, with_stdout=verbose) #process the image struct=clean(struct, createvar=True, badpixelstruct=None, mult=True, dblist=dblist, xdict=xdict, subover=subover, trim=trim, subbias=False, bstruct=None, median=median, function=function, order=order, rej_lo=rej_lo, rej_hi=rej_hi, niter=niter, plotover=plotover, log=log, verbose=verbose) #update the database updatedq(os.path.basename(img), struct, sdb) #write the file out # housekeeping keywords fname, hist=history(level=1, wrap=False, exclude=['images', 'outimages', 'outpref']) saltkey.housekeeping(struct[0],'SPREPARE', 'Images have been prepared', hist) saltkey.new('SGAIN',time.asctime(time.localtime()),'Images have been gain corrected',struct[0]) saltkey.new('SXTALK',time.asctime(time.localtime()),'Images have been xtalk corrected',struct[0]) saltkey.new('SBIAS',time.asctime(time.localtime()),'Images have been de-biased',struct[0]) # write FITS file saltio.writefits(struct,bimg, clobber=clobber) saltio.closefits(struct) #add files to the master bias list masterbias_dict=compareimages(struct, bimg, masterbias_dict, keylist=biasheader_list) #create the master bias frame for i in masterbias_dict.keys(): bkeys=masterbias_dict[i][0] blist=masterbias_dict[i][1:] mbiasname=outpath+createmasterbiasname(blist, bkeys) bfiles=','.join(blist) saltcombine(bfiles, mbiasname, method='median', reject='sigclip', mask=False, weight=False, blank=0, scale=None, statsec=None, lthresh=3, \ hthresh=3, clobber=False, logfile=logfile,verbose=verbose) #create the list of flatfields and process them flatlist=filename[ccdtype=='FLAT'] masterflat_dict={} for img in infiles: if os.path.basename(img) in flatlist: #open the image struct=fits.open(img) fimg=outpath+'bxgp'+os.path.basename(img) #print the message if log: message='Processing Flat frame %s' % img log.message(message, with_stdout=verbose) #process the image struct=clean(struct, createvar=True, badpixelstruct=None, mult=True, dblist=dblist, xdict=xdict, subover=subover, trim=trim, subbias=False, bstruct=None, median=median, function=function, order=order, rej_lo=rej_lo, rej_hi=rej_hi, niter=niter, plotover=plotover, log=log, verbose=verbose) #update the database updatedq(os.path.basename(img), struct, sdb) #write the file out # housekeeping keywords fname, hist=history(level=1, wrap=False, exclude=['images', 'outimages', 'outpref']) saltkey.housekeeping(struct[0],'SPREPARE', 'Images have been prepared', hist) saltkey.new('SGAIN',time.asctime(time.localtime()),'Images have been gain corrected',struct[0]) saltkey.new('SXTALK',time.asctime(time.localtime()),'Images have been xtalk corrected',struct[0]) saltkey.new('SBIAS',time.asctime(time.localtime()),'Images have been de-biased',struct[0]) # write FITS file saltio.writefits(struct,fimg, clobber=clobber) saltio.closefits(struct) #add files to the master bias list masterflat_dict=compareimages(struct, fimg, masterflat_dict, keylist=flatheader_list) #create the master flat frame for i in masterflat_dict.keys(): fkeys=masterflat_dict[i][0] flist=masterflat_dict[i][1:] mflatname=outpath+createmasterflatname(flist, fkeys) ffiles=','.join(flist) saltcombine(ffiles, mflatname, method='median', reject='sigclip', mask=False, weight=False, blank=0, scale=None, statsec=None, lthresh=3, \ hthresh=3, clobber=False, logfile=logfile,verbose=verbose) #process the arc data arclist=filename[(ccdtype=='ARC') * (obsmode=='SPECTROSCOPY') * (masktype=='LONGSLIT')] for i, img in enumerate(infiles): nimg=os.path.basename(img) if nimg in arclist: #open the image struct=fits.open(img) simg=outpath+'bxgp'+os.path.basename(img) obsdate=os.path.basename(img)[1:9] #print the message if log: message='Processing ARC frame %s' % img log.message(message, with_stdout=verbose) struct=clean(struct, createvar=False, badpixelstruct=None, mult=True, dblist=dblist, xdict=xdict, subover=subover, trim=trim, subbias=False, bstruct=None, median=median, function=function, order=order, rej_lo=rej_lo, rej_hi=rej_hi, niter=niter, plotover=plotover, log=log, verbose=verbose) # write FITS file saltio.writefits(struct,simg, clobber=clobber) saltio.closefits(struct) #mosaic the images mimg=outpath+'mbxgp'+os.path.basename(img) saltmosaic(images=simg, outimages=mimg,outpref='',geomfile=geomfile, interp=interp,cleanup=True,clobber=clobber,logfile=logfile, verbose=verbose) #remove the intermediate steps saltio.delete(simg) #measure the arcdata arcimage=outpath+'mbxgp'+nimg dbfile=outpath+obsdate+'_specid.db' lamp = obsstruct.data.field('LAMPID')[i] lamp = lamp.replace(' ', '') lampfile = iraf.osfn("pysalt$data/linelists/%s.salt" % lamp) print arcimage, lampfile, os.getcwd() specidentify(arcimage, lampfile, dbfile, guesstype='rss', guessfile='', automethod='Matchlines', function='legendre', order=3, rstep=100, rstart='middlerow', mdiff=20, thresh=3, startext=0, niter=5, smooth=3, inter=False, clobber=True, logfile=logfile, verbose=verbose) try: ximg = outpath+'xmbxgp'+os.path.basename(arcimage) specrectify(images=arcimage, outimages=ximg, outpref='', solfile=dbfile, caltype='line', function='legendre', order=3, inttype='interp', w1=None, w2=None, dw=None, nw=None, blank=0.0, conserve=True, nearest=True, clobber=True, logfile=logfile, verbose=verbose) except: pass #process the science data for i, img in enumerate(infiles): nimg=os.path.basename(img) if not (nimg in flatlist or nimg in biaslist or nimg in arclist): #open the image struct=fits.open(img) if struct[0].header['PROPID'].count('CAL_GAIN'): continue simg=outpath+'bxgp'+os.path.basename(img) #print the message if log: message='Processing science frame %s' % img log.message(message, with_stdout=verbose) #Check to see if it is RSS 2x2 and add bias subtraction instrume=saltkey.get('INSTRUME', struct[0]).strip() gainset = saltkey.get('GAINSET', struct[0]) rospeed = saltkey.get('ROSPEED', struct[0]) target = saltkey.get('OBJECT', struct[0]).strip() exptime = saltkey.get('EXPTIME', struct[0]) obsmode = saltkey.get('OBSMODE', struct[0]).strip() detmode = saltkey.get('DETMODE', struct[0]).strip() masktype = saltkey.get('MASKTYP', struct[0]).strip() xbin, ybin = saltkey.ccdbin( struct[0], img) obsdate=os.path.basename(img)[1:9] bstruct=None crtype=None thresh=5 mbox=11 bthresh=5.0, flux_ratio=0.2 bbox=25 gain=1.0 rdnoise=5.0 fthresh=5.0 bfactor=2 gbox=3 maxiter=5 subbias=False if instrume=='RSS' and gainset=='FAINT' and rospeed=='SLOW': bfile='P%sBiasNM%ix%iFASL.fits' % (obsdate, xbin, ybin) if os.path.exists(bfile): bstruct=fits.open(bfile) subbias=True if detmode=='Normal' and target!='ARC' and xbin < 5 and ybin < 5: crtype='edge' thresh=5 mbox=11 bthresh=5.0, flux_ratio=0.2 bbox=25 gain=1.0 rdnoise=5.0 fthresh=5.0 bfactor=2 gbox=3 maxiter=3 #process the image struct=clean(struct, createvar=True, badpixelstruct=None, mult=True, dblist=dblist, xdict=xdict, subover=subover, trim=trim, subbias=subbias, bstruct=bstruct, median=median, function=function, order=order, rej_lo=rej_lo, rej_hi=rej_hi, niter=niter, plotover=plotover, crtype=crtype,thresh=thresh,mbox=mbox, bbox=bbox, \ bthresh=bthresh, flux_ratio=flux_ratio, gain=gain, rdnoise=rdnoise, bfactor=bfactor, fthresh=fthresh, gbox=gbox, maxiter=maxiter, log=log, verbose=verbose) #update the database updatedq(os.path.basename(img), struct, sdb) #write the file out # housekeeping keywords fname, hist=history(level=1, wrap=False, exclude=['images', 'outimages', 'outpref']) saltkey.housekeeping(struct[0],'SPREPARE', 'Images have been prepared', hist) saltkey.new('SGAIN',time.asctime(time.localtime()),'Images have been gain corrected',struct[0]) saltkey.new('SXTALK',time.asctime(time.localtime()),'Images have been xtalk corrected',struct[0]) saltkey.new('SBIAS',time.asctime(time.localtime()),'Images have been de-biased',struct[0]) # write FITS file saltio.writefits(struct,simg, clobber=clobber) saltio.closefits(struct) #mosaic the files--currently not in the proper format--will update when it is if not saltkey.fastmode(saltkey.get('DETMODE', struct[0])): mimg=outpath+'mbxgp'+os.path.basename(img) saltmosaic(images=simg, outimages=mimg,outpref='',geomfile=geomfile, interp=interp,fill=True, cleanup=True,clobber=clobber,logfile=logfile, verbose=verbose) #remove the intermediate steps saltio.delete(simg) #if the file is spectroscopic mode, apply the wavelength correction if obsmode == 'SPECTROSCOPY' and masktype.strip()=='LONGSLIT': dbfile=outpath+obsdate+'_specid.db' try: ximg = outpath+'xmbxgp'+os.path.basename(img) specrectify(images=mimg, outimages=ximg, outpref='', solfile=dbfile, caltype='line', function='legendre', order=3, inttype='interp', w1=None, w2=None, dw=None, nw=None, blank=0.0, conserve=True, nearest=True, clobber=True, logfile=logfile, verbose=verbose) except Exception, e: log.message('%s' % e) #clean up the results if cleanup: #clean up the bias frames for i in masterbias_dict.keys(): blist=masterbias_dict[i][1:] for b in blist: saltio.delete(b) #clean up the flat frames for i in masterflat_dict.keys(): flist=masterflat_dict[i][1:] for f in flist: saltio.delete(f)
def hrsclean(images, outpath, obslogfile=None, subover=True, trim=True, masbias=None, subbias=True, median=False, function='polynomial', order=5, rej_lo=3, rej_hi=3, niter=5, interp='linear', clobber=False, logfile='salt.log', verbose=True): """Convert MEF HRS data into a single image. If variance frames and BPMs, then convert them to the same format as well. Returns an MEF image but that is combined into a single frame """ with logging(logfile, debug) as log: # Check the input images infiles = saltio.argunpack('Input', images) # create list of output files outpath = saltio.abspath(outpath) if saltio.checkfornone(obslogfile) is None: raise SaltError('Obslog file is required') # Delete the obslog file if it already exists if (os.path.isfile(obslogfile) and clobber) or not os.path.isfile(obslogfile): if os.path.isfile(obslogfile): saltio.delete(obslogfile) #read in the obsveration log or create it headerDict = obslog(infiles, log) obsstruct = createobslogfits(headerDict) saltio.writefits(obsstruct, obslogfile) else: obsstruct = saltio.openfits(obslogfile) #create the list of bias frames and process them filename = obsstruct.data.field('FILENAME') detmode = obsstruct.data.field('DETMODE') ccdtype = obsstruct.data.field('OBJECT') biaslist = filename[ccdtype == 'Bias'] masterbias_dict = {} if log: log.message('Processing Bias Frames') for img in infiles: if os.path.basename(img) in biaslist: #open the image struct = pyfits.open(img) bimg = outpath + 'bgph' + os.path.basename(img) #print the message if log: message = 'Processing Zero frame %s' % img log.message(message, with_stdout=verbose, with_header=False) #process the image struct = clean(struct, createvar=False, badpixelstruct=None, mult=True, subover=subover, trim=trim, subbias=False, imstack=False, bstruct=None, median=median, function=function, order=order, rej_lo=rej_lo, rej_hi=rej_hi, niter=niter, log=log, verbose=verbose) #write the file out # housekeeping keywords fname, hist = history( level=1, wrap=False, exclude=['images', 'outimages', 'outpref']) saltkey.housekeeping(struct[0], 'HPREPARE', 'Images have been prepared', hist) saltkey.new('HGAIN', time.asctime(time.localtime()), 'Images have been gain corrected', struct[0]) #saltkey.new('HXTALK',time.asctime(time.localtime()),'Images have been xtalk corrected',struct[0]) saltkey.new('HBIAS', time.asctime(time.localtime()), 'Images have been de-biased', struct[0]) # write FITS file saltio.writefits(struct, bimg, clobber=clobber) saltio.closefits(struct) #add files to the master bias list masterbias_dict = compareimages(struct, bimg, masterbias_dict, keylist=hrsbiasheader_list) #create the master bias frame for i in masterbias_dict.keys(): bkeys = masterbias_dict[i][0] blist = masterbias_dict[i][1:] mbiasname = outpath + createmasterbiasname( blist, bkeys, x1=5, x2=13) bfiles = ','.join(blist) saltcombine(bfiles, mbiasname, method='median', reject='sigclip', mask=False, weight=False, blank=0, scale=None, statsec=None, lthresh=3, \ hthresh=3, clobber=False, logfile=logfile,verbose=verbose) #apply full reductions to the science data for img in infiles: nimg = os.path.basename(img) if not nimg in biaslist: #open the image struct = pyfits.open(img) simg = outpath + 'mbgph' + os.path.basename(img) #print the message if log: message = 'Processing science frame %s' % img log.message(message, with_stdout=verbose) #get master bias frame masterbias = get_masterbias(struct, masterbias_dict, keylist=hrsbiasheader_list) if masterbias: subbias = True bstruct = saltio.openfits(masterbias) else: subbias = False bstruct = None #process the image struct = clean(struct, createvar=False, badpixelstruct=None, mult=True, subover=subover, trim=trim, subbias=subbias, imstack=True, bstruct=bstruct, median=median, function=function, order=order, rej_lo=rej_lo, rej_hi=rej_hi, niter=niter, log=log, verbose=verbose) #write the file out # housekeeping keywords fname, hist = history( level=1, wrap=False, exclude=['images', 'outimages', 'outpref']) saltkey.housekeeping(struct[0], 'HPREPARE', 'Images have been prepared', hist) saltkey.new('HGAIN', time.asctime(time.localtime()), 'Images have been gain corrected', struct[0]) #saltkey.new('HXTALK',time.asctime(time.localtime()),'Images have been xtalk corrected',struct[0]) saltkey.new('HBIAS', time.asctime(time.localtime()), 'Images have been de-biased', struct[0]) # write FITS file saltio.writefits(struct, simg, clobber=clobber) saltio.closefits(struct) return