예제 #1
0
def saltclean(images,
              outpath,
              obslogfile=None,
              gaindb=None,
              xtalkfile=None,
              geomfile=None,
              subover=True,
              trim=True,
              masbias=None,
              subbias=False,
              median=False,
              function='polynomial',
              order=5,
              rej_lo=3,
              rej_hi=3,
              niter=5,
              interp='linear',
              clobber=False,
              logfile='salt.log',
              verbose=True):
    """SALTCLEAN will provide basic CCD reductions for a set of data.  It will 
      sort the data, and first process the biases, flats, and then the science 
      frames.  It will record basic quality control information about each of 
      the steps.
   """
    plotover = False

    #start logging
    with logging(logfile, debug) as log:

        # Check the input images
        infiles = saltio.argunpack('Input', images)

        # create list of output files
        outpath = saltio.abspath(outpath)

        #does the gain database file exist
        if gaindb:
            dblist = saltio.readgaindb(gaindb)
        else:
            dblist = []

        # does crosstalk coefficient data exist
        if xtalkfile:
            xtalkfile = xtalkfile.strip()
            xdict = saltio.readxtalkcoeff(xtalkfile)
        else:
            xdict = None
        #does the mosaic file exist--raise error if no
        saltio.fileexists(geomfile)

        # Delete the obslog file if it already exists
        if os.path.isfile(obslogfile) and clobber: saltio.delete(obslogfile)

        #read in the obsveration log or create it
        if os.path.isfile(obslogfile):
            msg = 'The observing log already exists.  Please either delete it or run saltclean with clobber=yes'
            raise SaltError(msg)
        else:
            headerDict = obslog(infiles, log)
            obsstruct = createobslogfits(headerDict)
            saltio.writefits(obsstruct, obslogfile)

        #create the list of bias frames and process them
        filename = obsstruct.data.field('FILENAME')
        detmode = obsstruct.data.field('DETMODE')
        ccdtype = obsstruct.data.field('CCDTYPE')

        #set the bias list of objects
        biaslist = filename[ccdtype == 'ZERO']
        masterbias_dict = {}
        for img in infiles:
            if os.path.basename(img) in biaslist:
                #open the image
                struct = fits.open(img)
                bimg = outpath + 'bxgp' + os.path.basename(img)

                #print the message
                if log:
                    message = 'Processing Zero frame %s' % img
                    log.message(message, with_stdout=verbose)

                #process the image
                struct = clean(struct,
                               createvar=False,
                               badpixelstruct=None,
                               mult=True,
                               dblist=dblist,
                               xdict=xdict,
                               subover=subover,
                               trim=trim,
                               subbias=False,
                               bstruct=None,
                               median=median,
                               function=function,
                               order=order,
                               rej_lo=rej_lo,
                               rej_hi=rej_hi,
                               niter=niter,
                               plotover=plotover,
                               log=log,
                               verbose=verbose)

                #write the file out
                # housekeeping keywords
                fname, hist = history(
                    level=1,
                    wrap=False,
                    exclude=['images', 'outimages', 'outpref'])
                saltkey.housekeeping(struct[0], 'SPREPARE',
                                     'Images have been prepared', hist)
                saltkey.new('SGAIN', time.asctime(time.localtime()),
                            'Images have been gain corrected', struct[0])
                saltkey.new('SXTALK', time.asctime(time.localtime()),
                            'Images have been xtalk corrected', struct[0])
                saltkey.new('SBIAS', time.asctime(time.localtime()),
                            'Images have been de-biased', struct[0])

                # write FITS file
                saltio.writefits(struct, bimg, clobber=clobber)
                saltio.closefits(struct)

                #add files to the master bias list
                masterbias_dict = compareimages(struct,
                                                bimg,
                                                masterbias_dict,
                                                keylist=biasheader_list)

        #create the master bias frame
        for i in masterbias_dict.keys():
            bkeys = masterbias_dict[i][0]
            blist = masterbias_dict[i][1:]
            mbiasname = outpath + createmasterbiasname(blist, bkeys)
            bfiles = ','.join(blist)
            saltcombine(bfiles, mbiasname, method='median', reject='sigclip', mask=False,
                        weight=False, blank=0, scale=None, statsec=None, lthresh=3,    \
                        hthresh=3, clobber=False, logfile=logfile,verbose=verbose)

        #create the list of flatfields and process them
        flatlist = filename[ccdtype == 'FLAT']
        masterflat_dict = {}
        for img in infiles:
            if os.path.basename(img) in flatlist:
                #open the image
                struct = fits.open(img)
                fimg = outpath + 'bxgp' + os.path.basename(img)

                #print the message
                if log:
                    message = 'Processing Flat frame %s' % img
                    log.message(message, with_stdout=verbose)

                #process the image
                struct = clean(struct,
                               createvar=False,
                               badpixelstruct=None,
                               mult=True,
                               dblist=dblist,
                               xdict=xdict,
                               subover=subover,
                               trim=trim,
                               subbias=False,
                               bstruct=None,
                               median=median,
                               function=function,
                               order=order,
                               rej_lo=rej_lo,
                               rej_hi=rej_hi,
                               niter=niter,
                               plotover=plotover,
                               log=log,
                               verbose=verbose)

                #write the file out
                # housekeeping keywords
                fname, hist = history(
                    level=1,
                    wrap=False,
                    exclude=['images', 'outimages', 'outpref'])
                saltkey.housekeeping(struct[0], 'SPREPARE',
                                     'Images have been prepared', hist)
                saltkey.new('SGAIN', time.asctime(time.localtime()),
                            'Images have been gain corrected', struct[0])
                saltkey.new('SXTALK', time.asctime(time.localtime()),
                            'Images have been xtalk corrected', struct[0])
                saltkey.new('SBIAS', time.asctime(time.localtime()),
                            'Images have been de-biased', struct[0])

                # write FITS file
                saltio.writefits(struct, fimg, clobber=clobber)
                saltio.closefits(struct)

                #add files to the master bias list
                masterflat_dict = compareimages(struct,
                                                fimg,
                                                masterflat_dict,
                                                keylist=flatheader_list)

        #create the master flat frame
        for i in masterflat_dict.keys():
            fkeys = masterflat_dict[i][0]
            flist = masterflat_dict[i][1:]
            mflatname = outpath + createmasterflatname(flist, fkeys)
            ffiles = ','.join(flist)
            saltcombine(ffiles, mflatname, method='median', reject='sigclip', mask=False,
                        weight=False, blank=0, scale=None, statsec=None, lthresh=3,    \
                        hthresh=3, clobber=False, logfile=logfile,verbose=verbose)

        #process the science data
        for img in infiles:
            nimg = os.path.basename(img)
            #print nimg, nimg in flatlist, nimg in biaslist
            if not (nimg in biaslist):
                #open the image
                struct = fits.open(img)
                simg = outpath + 'bxgp' + os.path.basename(img)

                #print the message
                if log:
                    message = 'Processing science frame %s' % img
                    log.message(message, with_stdout=verbose)

                #process the image
                struct = clean(struct,
                               createvar=False,
                               badpixelstruct=None,
                               mult=True,
                               dblist=dblist,
                               xdict=xdict,
                               subover=subover,
                               trim=trim,
                               subbias=False,
                               bstruct=None,
                               median=median,
                               function=function,
                               order=order,
                               rej_lo=rej_lo,
                               rej_hi=rej_hi,
                               niter=niter,
                               plotover=plotover,
                               log=log,
                               verbose=verbose)

                #write the file out
                # housekeeping keywords
                fname, hist = history(
                    level=1,
                    wrap=False,
                    exclude=['images', 'outimages', 'outpref'])
                saltkey.housekeeping(struct[0], 'SPREPARE',
                                     'Images have been prepared', hist)
                saltkey.new('SGAIN', time.asctime(time.localtime()),
                            'Images have been gain corrected', struct[0])
                saltkey.new('SXTALK', time.asctime(time.localtime()),
                            'Images have been xtalk corrected', struct[0])
                saltkey.new('SBIAS', time.asctime(time.localtime()),
                            'Images have been de-biased', struct[0])

                # write FITS file
                saltio.writefits(struct, simg, clobber=clobber)
                saltio.closefits(struct)

                #mosaic the files--currently not in the proper format--will update when it is
                if not saltkey.fastmode(saltkey.get('DETMODE', struct[0])):
                    mimg = outpath + 'mbxgp' + os.path.basename(img)
                    saltmosaic(images=simg,
                               outimages=mimg,
                               outpref='',
                               geomfile=geomfile,
                               interp=interp,
                               cleanup=True,
                               clobber=clobber,
                               logfile=logfile,
                               verbose=verbose)

                    #remove the intermediate steps
                    saltio.delete(simg)
예제 #2
0
파일: saltclean.py 프로젝트: dr-jpk/pysalt
def saltclean(images, outpath, obslogfile=None, gaindb=None,xtalkfile=None, 
	geomfile=None,subover=True,trim=True,masbias=None, 
        subbias=False, median=False, function='polynomial', order=5,rej_lo=3,
        rej_hi=3,niter=5,interp='linear', clobber=False, logfile='salt.log', 
        verbose=True):
   """SALTCLEAN will provide basic CCD reductions for a set of data.  It will 
      sort the data, and first process the biases, flats, and then the science 
      frames.  It will record basic quality control information about each of 
      the steps.
   """
   plotover=False

   #start logging
   with logging(logfile,debug) as log:

       # Check the input images 
       infiles = saltio.argunpack ('Input',images)

       # create list of output files 
       outpath=saltio.abspath(outpath)


       #does the gain database file exist
       if gaindb:
           dblist= saltio.readgaindb(gaindb)
       else:
           dblist=[]

       # does crosstalk coefficient data exist
       if xtalkfile:
           xtalkfile = xtalkfile.strip()
           xdict = saltio.readxtalkcoeff(xtalkfile)
       else:
           xdict=None
       #does the mosaic file exist--raise error if no
       saltio.fileexists(geomfile)


       # Delete the obslog file if it already exists
       if os.path.isfile(obslogfile) and clobber: saltio.delete(obslogfile)

       #read in the obsveration log or create it
       if os.path.isfile(obslogfile):
           msg='The observing log already exists.  Please either delete it or run saltclean with clobber=yes'
           raise SaltError(msg)
       else:
           headerDict=obslog(infiles, log)
           obsstruct=createobslogfits(headerDict)
           saltio.writefits(obsstruct, obslogfile)

       #create the list of bias frames and process them
       filename=obsstruct.data.field('FILENAME')
       detmode=obsstruct.data.field('DETMODE')
       ccdtype=obsstruct.data.field('CCDTYPE')

       #set the bias list of objects
       biaslist=filename[ccdtype=='ZERO']
       masterbias_dict={}
       for img in infiles:
           if os.path.basename(img) in biaslist:
               #open the image
               struct=pyfits.open(img)
               bimg=outpath+'bxgp'+os.path.basename(img)

               #print the message
               if log:
                   message='Processing Zero frame %s' % img
                   log.message(message, with_stdout=verbose)

               #process the image
               struct=clean(struct, createvar=False, badpixelstruct=None, mult=True, 
                            dblist=dblist, xdict=xdict, subover=subover, trim=trim, subbias=False,
                            bstruct=None, median=median, function=function, order=order,
                            rej_lo=rej_lo, rej_hi=rej_hi, niter=niter, plotover=plotover, log=log,
                            verbose=verbose)

               #write the file out
               # housekeeping keywords
               fname, hist=history(level=1, wrap=False, exclude=['images', 'outimages', 'outpref'])
               saltkey.housekeeping(struct[0],'SPREPARE', 'Images have been prepared', hist)
               saltkey.new('SGAIN',time.asctime(time.localtime()),'Images have been gain corrected',struct[0])
               saltkey.new('SXTALK',time.asctime(time.localtime()),'Images have been xtalk corrected',struct[0])
               saltkey.new('SBIAS',time.asctime(time.localtime()),'Images have been de-biased',struct[0])

               # write FITS file
               saltio.writefits(struct,bimg, clobber=clobber)
               saltio.closefits(struct)

               #add files to the master bias list
               masterbias_dict=compareimages(struct, bimg, masterbias_dict, keylist=biasheader_list)

       #create the master bias frame
       for i in masterbias_dict.keys():
           bkeys=masterbias_dict[i][0]
           blist=masterbias_dict[i][1:]
           mbiasname=outpath+createmasterbiasname(blist, bkeys)
           bfiles=','.join(blist)
           saltcombine(bfiles, mbiasname, method='median', reject='sigclip', mask=False, 
                       weight=False, blank=0, scale=None, statsec=None, lthresh=3,    \
                       hthresh=3, clobber=False, logfile=logfile,verbose=verbose)

           

       #create the list of flatfields and process them
       flatlist=filename[ccdtype=='FLAT']
       masterflat_dict={}
       for img in infiles:
           if os.path.basename(img) in flatlist:
               #open the image
               struct=pyfits.open(img)
               fimg=outpath+'bxgp'+os.path.basename(img)

               #print the message
               if log:
                   message='Processing Flat frame %s' % img
                   log.message(message, with_stdout=verbose)

               #process the image
               struct=clean(struct, createvar=False, badpixelstruct=None, mult=True, 
                            dblist=dblist, xdict=xdict, subover=subover, trim=trim, subbias=False,
                            bstruct=None, median=median, function=function, order=order,
                            rej_lo=rej_lo, rej_hi=rej_hi, niter=niter, plotover=plotover, log=log,
                            verbose=verbose)

               #write the file out
               # housekeeping keywords
               fname, hist=history(level=1, wrap=False, exclude=['images', 'outimages', 'outpref'])
               saltkey.housekeeping(struct[0],'SPREPARE', 'Images have been prepared', hist)
               saltkey.new('SGAIN',time.asctime(time.localtime()),'Images have been gain corrected',struct[0])
               saltkey.new('SXTALK',time.asctime(time.localtime()),'Images have been xtalk corrected',struct[0])
               saltkey.new('SBIAS',time.asctime(time.localtime()),'Images have been de-biased',struct[0])

               # write FITS file
               saltio.writefits(struct,fimg, clobber=clobber)
               saltio.closefits(struct)

               #add files to the master bias list
               masterflat_dict=compareimages(struct, fimg, masterflat_dict,  keylist=flatheader_list)

       #create the master flat frame
       for i in masterflat_dict.keys():
           fkeys=masterflat_dict[i][0]
           flist=masterflat_dict[i][1:]
           mflatname=outpath+createmasterflatname(flist, fkeys)
           ffiles=','.join(flist)
           saltcombine(ffiles, mflatname, method='median', reject='sigclip', mask=False, 
                       weight=False, blank=0, scale=None, statsec=None, lthresh=3,    \
                       hthresh=3, clobber=False, logfile=logfile,verbose=verbose)

       #process the science data
       for img in infiles:
           nimg=os.path.basename(img)
           if not nimg in flatlist or not nimg in biaslist:
               #open the image
               struct=pyfits.open(img)
               simg=outpath+'bxgp'+os.path.basename(img)

               #print the message
               if log:
                   message='Processing science frame %s' % img
                   log.message(message, with_stdout=verbose)

               #process the image
               struct=clean(struct, createvar=False, badpixelstruct=None, mult=True, 
                            dblist=dblist, xdict=xdict, subover=subover, trim=trim, subbias=False,
                            bstruct=None, median=median, function=function, order=order,
                            rej_lo=rej_lo, rej_hi=rej_hi, niter=niter, plotover=plotover, log=log,
                            verbose=verbose)

               #write the file out
               # housekeeping keywords
               fname, hist=history(level=1, wrap=False, exclude=['images', 'outimages', 'outpref'])
               saltkey.housekeeping(struct[0],'SPREPARE', 'Images have been prepared', hist)
               saltkey.new('SGAIN',time.asctime(time.localtime()),'Images have been gain corrected',struct[0])
               saltkey.new('SXTALK',time.asctime(time.localtime()),'Images have been xtalk corrected',struct[0])
               saltkey.new('SBIAS',time.asctime(time.localtime()),'Images have been de-biased',struct[0])

               # write FITS file
               saltio.writefits(struct,simg, clobber=clobber)
               saltio.closefits(struct)

               #mosaic the files--currently not in the proper format--will update when it is
               if not saltkey.fastmode(saltkey.get('DETMODE', struct[0])):
                   mimg=outpath+'mbxgp'+os.path.basename(img)
                   saltmosaic(images=simg, outimages=mimg,outpref='',geomfile=geomfile,
                        interp=interp,cleanup=True,clobber=clobber,logfile=logfile,
                        verbose=verbose)

                   #remove the intermediate steps
                   saltio.delete(simg)
예제 #3
0
def hrsclean(images, outpath, obslogfile=None, subover=True, trim=True, masbias=None, 
             subbias=True, median=False, function='polynomial', order=5, rej_lo=3, rej_hi=3,
             niter=5, interp='linear', clobber=False,  logfile='salt.log',verbose=True):
    """Convert MEF HRS data into a single image.  If variance frames and BPMs, then 
       convert them to the same format as well.   Returns an MEF image but that is
       combined into a single frame

    """
 
    with logging(logfile,debug) as log:

       # Check the input images 
       infiles = saltio.argunpack ('Input',images)

       # create list of output files 
       outpath=saltio.abspath(outpath)

       if saltio.checkfornone(obslogfile) is None:
          raise SaltError('Obslog file is required')

       # Delete the obslog file if it already exists 
          

       if (os.path.isfile(obslogfile) and clobber) or not os.path.isfile(obslogfile): 
          if os.path.isfile(obslogfile): saltio.delete(obslogfile)
          #read in the obsveration log or create it
          headerDict=obslog(infiles, log)
          obsstruct=createobslogfits(headerDict)
          saltio.writefits(obsstruct, obslogfile)
       else:
          obsstruct=saltio.openfits(obslogfile)

       #create the list of bias frames and process them
       filename=obsstruct.data.field('FILENAME')
       detmode=obsstruct.data.field('DETMODE')
       ccdtype=obsstruct.data.field('OBJECT')

       biaslist=filename[ccdtype=='Bias']
       masterbias_dict={}
       if log: log.message('Processing Bias Frames')
       for img in infiles:
           if os.path.basename(img) in biaslist:
               #open the image
               struct=pyfits.open(img)
               bimg=outpath+'bgph'+os.path.basename(img)
               #print the message
               if log:
                   message='Processing Zero frame %s' % img
                   log.message(message, with_stdout=verbose, with_header=False)

               #process the image
               struct=clean(struct, createvar=False, badpixelstruct=None, mult=True,
                            subover=subover, trim=trim, subbias=False, imstack=False,
                            bstruct=None, median=median, function=function, order=order,
                            rej_lo=rej_lo, rej_hi=rej_hi, niter=niter, log=log,
                            verbose=verbose)

               #write the file out
               # housekeeping keywords
               fname, hist=history(level=1, wrap=False, exclude=['images', 'outimages', 'outpref'])
               saltkey.housekeeping(struct[0],'HPREPARE', 'Images have been prepared', hist)
               saltkey.new('HGAIN',time.asctime(time.localtime()),'Images have been gain corrected',struct[0])
               #saltkey.new('HXTALK',time.asctime(time.localtime()),'Images have been xtalk corrected',struct[0])
               saltkey.new('HBIAS',time.asctime(time.localtime()),'Images have been de-biased',struct[0])

               # write FITS file
               saltio.writefits(struct,bimg, clobber=clobber)
               saltio.closefits(struct)
 
               #add files to the master bias list
               masterbias_dict=compareimages(struct, bimg, masterbias_dict, keylist=hrsbiasheader_list)

       #create the master bias frame
       for i in list(masterbias_dict.keys()):
           bkeys=masterbias_dict[i][0]
           blist=masterbias_dict[i][1:]
           mbiasname=outpath+createmasterbiasname(blist, bkeys, x1=5, x2=13)
           bfiles=','.join(blist)
           saltcombine(bfiles, mbiasname, method='median', reject='sigclip', mask=False,
                       weight=False, blank=0, scale=None, statsec=None, lthresh=3,    \
                       hthresh=3, clobber=False, logfile=logfile,verbose=verbose)

       #apply full reductions to the science data
       for img in infiles:
           nimg=os.path.basename(img)
           if not nimg in biaslist:
               #open the image
               struct=pyfits.open(img)
               simg=outpath+'mbgph'+os.path.basename(img)

               #print the message
               if log:
                   message='Processing science frame %s' % img
                   log.message(message, with_stdout=verbose)

               #get master bias frame
               masterbias=get_masterbias(struct, masterbias_dict, keylist=hrsbiasheader_list) 
               if masterbias:
                  subbias=True
                  bstruct=saltio.openfits(masterbias)
               else:
                  subbias=False
                  bstruct=None

               #process the image
               struct=clean(struct, createvar=False, badpixelstruct=None, mult=True,
                            subover=subover, trim=trim, subbias=subbias, imstack=True,
                            bstruct=bstruct, median=median, function=function, order=order,
                            rej_lo=rej_lo, rej_hi=rej_hi, niter=niter, log=log,
                            verbose=verbose)

               #write the file out
               # housekeeping keywords
               fname, hist=history(level=1, wrap=False, exclude=['images', 'outimages', 'outpref'])
               saltkey.housekeeping(struct[0],'HPREPARE', 'Images have been prepared', hist)
               saltkey.new('HGAIN',time.asctime(time.localtime()),'Images have been gain corrected',struct[0])
               #saltkey.new('HXTALK',time.asctime(time.localtime()),'Images have been xtalk corrected',struct[0])
               saltkey.new('HBIAS',time.asctime(time.localtime()),'Images have been de-biased',struct[0])

               # write FITS file
               saltio.writefits(struct,simg, clobber=clobber)
               saltio.closefits(struct)


 
    return 
예제 #4
0
def saltadvance(images, outpath, obslogfile=None, gaindb=None,xtalkfile=None, 
	geomfile=None,subover=True,trim=True,masbias=None, 
        subbias=False, median=False, function='polynomial', order=5,rej_lo=3,
        rej_hi=3,niter=5,interp='linear',  sdbhost='',sdbname='',sdbuser='', password='',
        clobber=False, cleanup=True, logfile='salt.log', verbose=True):
   """SALTADVANCE provides advanced data reductions for a set of data.  It will 
      sort the data, and first process the biases, flats, and then the science 
      frames.  It will record basic quality control information about each of 
      the steps.
   """
   plotover=False

   #start logging
   with logging(logfile,debug) as log:

       # Check the input images 
       infiles = saltio.argunpack ('Input',images)
       infiles.sort()

       # create list of output files 
       outpath=saltio.abspath(outpath)

       #log into the database
       sdb=saltmysql.connectdb(sdbhost, sdbname, sdbuser, password)

       #does the gain database file exist
       if gaindb:
           dblist= saltio.readgaindb(gaindb)
       else:
           dblist=[]

       # does crosstalk coefficient data exist
       if xtalkfile:
           xtalkfile = xtalkfile.strip()
           xdict = saltio.readxtalkcoeff(xtalkfile)
       else:
           xdict=None
       #does the mosaic file exist--raise error if no
       saltio.fileexists(geomfile)


       # Delete the obslog file if it already exists
       if os.path.isfile(obslogfile) and clobber: saltio.delete(obslogfile)

       #read in the obsveration log or create it
       if os.path.isfile(obslogfile):
           msg='The observing log already exists.  Please either delete it or run saltclean with clobber=yes'
           raise SaltError(msg)
       else:
           headerDict=obslog(infiles, log)
           obsstruct=createobslogfits(headerDict)
           saltio.writefits(obsstruct, obslogfile)

       #create the list of bias frames and process them
       filename=obsstruct.data.field('FILENAME')
       detmode=obsstruct.data.field('DETMODE')
       obsmode=obsstruct.data.field('OBSMODE')
       ccdtype=obsstruct.data.field('CCDTYPE')
       propcode=obsstruct.data.field('PROPID')
       masktype=obsstruct.data.field('MASKTYP')

       #set the bias list of objects
       biaslist=filename[(ccdtype=='ZERO')*(propcode=='CAL_BIAS')]
       masterbias_dict={}
       for img in infiles:
           if os.path.basename(img) in biaslist:
               #open the image
               struct=fits.open(img)
               bimg=outpath+'bxgp'+os.path.basename(img)

               #print the message
               if log:
                   message='Processing Zero frame %s' % img
                   log.message(message, with_stdout=verbose)

               #process the image
               struct=clean(struct, createvar=True, badpixelstruct=None, mult=True, 
                            dblist=dblist, xdict=xdict, subover=subover, trim=trim, subbias=False,
                            bstruct=None, median=median, function=function, order=order,
                            rej_lo=rej_lo, rej_hi=rej_hi, niter=niter, plotover=plotover, log=log,
                            verbose=verbose)
 
               #update the database
               updatedq(os.path.basename(img), struct, sdb)

               #write the file out
               # housekeeping keywords
               fname, hist=history(level=1, wrap=False, exclude=['images', 'outimages', 'outpref'])
               saltkey.housekeeping(struct[0],'SPREPARE', 'Images have been prepared', hist)
               saltkey.new('SGAIN',time.asctime(time.localtime()),'Images have been gain corrected',struct[0])
               saltkey.new('SXTALK',time.asctime(time.localtime()),'Images have been xtalk corrected',struct[0])
               saltkey.new('SBIAS',time.asctime(time.localtime()),'Images have been de-biased',struct[0])

               # write FITS file
               saltio.writefits(struct,bimg, clobber=clobber)
               saltio.closefits(struct)

               #add files to the master bias list
               masterbias_dict=compareimages(struct, bimg, masterbias_dict, keylist=biasheader_list)

       #create the master bias frame
       for i in masterbias_dict.keys():
           bkeys=masterbias_dict[i][0]
           blist=masterbias_dict[i][1:]
           mbiasname=outpath+createmasterbiasname(blist, bkeys)
           bfiles=','.join(blist)
           saltcombine(bfiles, mbiasname, method='median', reject='sigclip', mask=False, 
                       weight=False, blank=0, scale=None, statsec=None, lthresh=3,    \
                       hthresh=3, clobber=False, logfile=logfile,verbose=verbose)

           

       #create the list of flatfields and process them
       flatlist=filename[ccdtype=='FLAT']
       masterflat_dict={}
       for img in infiles:
           if os.path.basename(img) in flatlist:
               #open the image
               struct=fits.open(img)
               fimg=outpath+'bxgp'+os.path.basename(img)

               #print the message
               if log:
                   message='Processing Flat frame %s' % img
                   log.message(message, with_stdout=verbose)

               #process the image
               struct=clean(struct, createvar=True, badpixelstruct=None, mult=True, 
                            dblist=dblist, xdict=xdict, subover=subover, trim=trim, subbias=False,
                            bstruct=None, median=median, function=function, order=order,
                            rej_lo=rej_lo, rej_hi=rej_hi, niter=niter, plotover=plotover, log=log,
                            verbose=verbose)

               #update the database
               updatedq(os.path.basename(img), struct, sdb)

               #write the file out
               # housekeeping keywords
               fname, hist=history(level=1, wrap=False, exclude=['images', 'outimages', 'outpref'])
               saltkey.housekeeping(struct[0],'SPREPARE', 'Images have been prepared', hist)
               saltkey.new('SGAIN',time.asctime(time.localtime()),'Images have been gain corrected',struct[0])
               saltkey.new('SXTALK',time.asctime(time.localtime()),'Images have been xtalk corrected',struct[0])
               saltkey.new('SBIAS',time.asctime(time.localtime()),'Images have been de-biased',struct[0])

               # write FITS file
               saltio.writefits(struct,fimg, clobber=clobber)
               saltio.closefits(struct)

               #add files to the master bias list
               masterflat_dict=compareimages(struct, fimg, masterflat_dict,  keylist=flatheader_list)

       #create the master flat frame
       for i in masterflat_dict.keys():
           fkeys=masterflat_dict[i][0]
           flist=masterflat_dict[i][1:]
           mflatname=outpath+createmasterflatname(flist, fkeys)
           ffiles=','.join(flist)
           saltcombine(ffiles, mflatname, method='median', reject='sigclip', mask=False, 
                       weight=False, blank=0, scale=None, statsec=None, lthresh=3,    \
                       hthresh=3, clobber=False, logfile=logfile,verbose=verbose)

       #process the arc data
       arclist=filename[(ccdtype=='ARC') * (obsmode=='SPECTROSCOPY') * (masktype=='LONGSLIT')]
       for i, img in enumerate(infiles):
           nimg=os.path.basename(img)
           if nimg in arclist:
               #open the image
               struct=fits.open(img)
               simg=outpath+'bxgp'+os.path.basename(img)
               obsdate=os.path.basename(img)[1:9]

               #print the message
               if log:
                   message='Processing ARC frame %s' % img
                   log.message(message, with_stdout=verbose)


               struct=clean(struct, createvar=False, badpixelstruct=None, mult=True, 
                            dblist=dblist, xdict=xdict, subover=subover, trim=trim, subbias=False,
                            bstruct=None, median=median, function=function, order=order,
                            rej_lo=rej_lo, rej_hi=rej_hi, niter=niter, plotover=plotover, 
                            log=log, verbose=verbose)

               # write FITS file
               saltio.writefits(struct,simg, clobber=clobber)
               saltio.closefits(struct)

               #mosaic the images
               mimg=outpath+'mbxgp'+os.path.basename(img)
               saltmosaic(images=simg, outimages=mimg,outpref='',geomfile=geomfile,
                    interp=interp,cleanup=True,clobber=clobber,logfile=logfile,
                    verbose=verbose)

               #remove the intermediate steps
               saltio.delete(simg)


               #measure the arcdata
               arcimage=outpath+'mbxgp'+nimg
               dbfile=outpath+obsdate+'_specid.db'
               lamp = obsstruct.data.field('LAMPID')[i]
               lamp = lamp.replace(' ', '')
               lampfile = iraf.osfn("pysalt$data/linelists/%s.salt" % lamp)
               print arcimage, lampfile, os.getcwd()
               specidentify(arcimage, lampfile, dbfile, guesstype='rss', 
                                guessfile='', automethod='Matchlines', function='legendre',
                                order=3, rstep=100, rstart='middlerow', mdiff=20, thresh=3,
                                startext=0, niter=5, smooth=3, inter=False, clobber=True, logfile=logfile, 
                                verbose=verbose)
               try:
                   ximg = outpath+'xmbxgp'+os.path.basename(arcimage)
                   specrectify(images=arcimage, outimages=ximg, outpref='', solfile=dbfile, caltype='line',
                              function='legendre', order=3, inttype='interp', w1=None, w2=None, dw=None,
                              nw=None, blank=0.0, conserve=True, nearest=True, clobber=True,
                              logfile=logfile, verbose=verbose)
               except:
                   pass


              
       #process the science data
       for i, img in enumerate(infiles):
           nimg=os.path.basename(img)
           if not (nimg in flatlist or nimg in biaslist or nimg in arclist):
     
               #open the image
               struct=fits.open(img)
               if struct[0].header['PROPID'].count('CAL_GAIN'): continue
               simg=outpath+'bxgp'+os.path.basename(img)
   

               #print the message
               if log:
                   message='Processing science frame %s' % img
                   log.message(message, with_stdout=verbose)


               #Check to see if it is RSS 2x2 and add bias subtraction
               instrume=saltkey.get('INSTRUME', struct[0]).strip()
               gainset = saltkey.get('GAINSET', struct[0])    
               rospeed = saltkey.get('ROSPEED', struct[0])    
               target = saltkey.get('OBJECT', struct[0]).strip()
               exptime = saltkey.get('EXPTIME', struct[0])
               obsmode = saltkey.get('OBSMODE', struct[0]).strip()
               detmode = saltkey.get('DETMODE', struct[0]).strip()
               masktype = saltkey.get('MASKTYP', struct[0]).strip()
  
               
               xbin, ybin = saltkey.ccdbin( struct[0], img)
               obsdate=os.path.basename(img)[1:9]
               bstruct=None
               crtype=None
               thresh=5 
               mbox=11 
               bthresh=5.0,
               flux_ratio=0.2 
               bbox=25 
               gain=1.0 
               rdnoise=5.0 
               fthresh=5.0 
               bfactor=2
               gbox=3 
               maxiter=5
    
               subbias=False
               if instrume=='RSS' and gainset=='FAINT' and rospeed=='SLOW':
                   bfile='P%sBiasNM%ix%iFASL.fits' % (obsdate, xbin, ybin)
                   if os.path.exists(bfile):
                      bstruct=fits.open(bfile)
                      subbias=True
                   if detmode=='Normal' and target!='ARC' and xbin < 5 and ybin < 5:
                       crtype='edge' 
                       thresh=5 
                       mbox=11 
                       bthresh=5.0,
                       flux_ratio=0.2 
                       bbox=25 
                       gain=1.0 
                       rdnoise=5.0 
                       fthresh=5.0 
                       bfactor=2
                       gbox=3 
                       maxiter=3
    
               #process the image
               struct=clean(struct, createvar=True, badpixelstruct=None, mult=True, 
                            dblist=dblist, xdict=xdict, subover=subover, trim=trim, subbias=subbias,
                            bstruct=bstruct, median=median, function=function, order=order,
                            rej_lo=rej_lo, rej_hi=rej_hi, niter=niter, plotover=plotover, 
                            crtype=crtype,thresh=thresh,mbox=mbox, bbox=bbox,      \
                            bthresh=bthresh, flux_ratio=flux_ratio, gain=gain, rdnoise=rdnoise, 
                            bfactor=bfactor, fthresh=fthresh, gbox=gbox, maxiter=maxiter,
                            log=log, verbose=verbose)

               

               #update the database
               updatedq(os.path.basename(img), struct, sdb)

               #write the file out
               # housekeeping keywords
               fname, hist=history(level=1, wrap=False, exclude=['images', 'outimages', 'outpref'])
               saltkey.housekeeping(struct[0],'SPREPARE', 'Images have been prepared', hist)
               saltkey.new('SGAIN',time.asctime(time.localtime()),'Images have been gain corrected',struct[0])
               saltkey.new('SXTALK',time.asctime(time.localtime()),'Images have been xtalk corrected',struct[0])
               saltkey.new('SBIAS',time.asctime(time.localtime()),'Images have been de-biased',struct[0])

               # write FITS file
               saltio.writefits(struct,simg, clobber=clobber)
               saltio.closefits(struct)

               #mosaic the files--currently not in the proper format--will update when it is
               if not saltkey.fastmode(saltkey.get('DETMODE', struct[0])):
                   mimg=outpath+'mbxgp'+os.path.basename(img)
                   saltmosaic(images=simg, outimages=mimg,outpref='',geomfile=geomfile,
                        interp=interp,fill=True, cleanup=True,clobber=clobber,logfile=logfile,
                        verbose=verbose)

                   #remove the intermediate steps
                   saltio.delete(simg)

               #if the file is spectroscopic mode, apply the wavelength correction
               if obsmode == 'SPECTROSCOPY' and masktype.strip()=='LONGSLIT':
                  dbfile=outpath+obsdate+'_specid.db'
                  try:
                     ximg = outpath+'xmbxgp'+os.path.basename(img)
                     specrectify(images=mimg, outimages=ximg, outpref='', solfile=dbfile, caltype='line', 
                              function='legendre', order=3, inttype='interp', w1=None, w2=None, dw=None,
                              nw=None, blank=0.0, conserve=True, nearest=True, clobber=True, 
                              logfile=logfile, verbose=verbose)
                  except Exception, e:
                     log.message('%s' % e)


       #clean up the results
       if cleanup:
          #clean up the bias frames
          for i in masterbias_dict.keys():
               blist=masterbias_dict[i][1:]
               for b in blist: saltio.delete(b)

          #clean up the flat frames
          for i in masterflat_dict.keys():
               flist=masterflat_dict[i][1:]
               for f in flist: saltio.delete(f)
예제 #5
0
def hrsclean(images,
             outpath,
             obslogfile=None,
             subover=True,
             trim=True,
             masbias=None,
             subbias=True,
             median=False,
             function='polynomial',
             order=5,
             rej_lo=3,
             rej_hi=3,
             niter=5,
             interp='linear',
             clobber=False,
             logfile='salt.log',
             verbose=True):
    """Convert MEF HRS data into a single image.  If variance frames and BPMs, then 
       convert them to the same format as well.   Returns an MEF image but that is
       combined into a single frame

    """

    with logging(logfile, debug) as log:

        # Check the input images
        infiles = saltio.argunpack('Input', images)

        # create list of output files
        outpath = saltio.abspath(outpath)

        if saltio.checkfornone(obslogfile) is None:
            raise SaltError('Obslog file is required')

        # Delete the obslog file if it already exists

        if (os.path.isfile(obslogfile)
                and clobber) or not os.path.isfile(obslogfile):
            if os.path.isfile(obslogfile): saltio.delete(obslogfile)
            #read in the obsveration log or create it
            headerDict = obslog(infiles, log)
            obsstruct = createobslogfits(headerDict)
            saltio.writefits(obsstruct, obslogfile)
        else:
            obsstruct = saltio.openfits(obslogfile)

        #create the list of bias frames and process them
        filename = obsstruct.data.field('FILENAME')
        detmode = obsstruct.data.field('DETMODE')
        ccdtype = obsstruct.data.field('OBJECT')

        biaslist = filename[ccdtype == 'Bias']
        masterbias_dict = {}
        if log: log.message('Processing Bias Frames')
        for img in infiles:
            if os.path.basename(img) in biaslist:
                #open the image
                struct = pyfits.open(img)
                bimg = outpath + 'bgph' + os.path.basename(img)
                #print the message
                if log:
                    message = 'Processing Zero frame %s' % img
                    log.message(message,
                                with_stdout=verbose,
                                with_header=False)

                #process the image
                struct = clean(struct,
                               createvar=False,
                               badpixelstruct=None,
                               mult=True,
                               subover=subover,
                               trim=trim,
                               subbias=False,
                               imstack=False,
                               bstruct=None,
                               median=median,
                               function=function,
                               order=order,
                               rej_lo=rej_lo,
                               rej_hi=rej_hi,
                               niter=niter,
                               log=log,
                               verbose=verbose)

                #write the file out
                # housekeeping keywords
                fname, hist = history(
                    level=1,
                    wrap=False,
                    exclude=['images', 'outimages', 'outpref'])
                saltkey.housekeeping(struct[0], 'HPREPARE',
                                     'Images have been prepared', hist)
                saltkey.new('HGAIN', time.asctime(time.localtime()),
                            'Images have been gain corrected', struct[0])
                #saltkey.new('HXTALK',time.asctime(time.localtime()),'Images have been xtalk corrected',struct[0])
                saltkey.new('HBIAS', time.asctime(time.localtime()),
                            'Images have been de-biased', struct[0])

                # write FITS file
                saltio.writefits(struct, bimg, clobber=clobber)
                saltio.closefits(struct)

                #add files to the master bias list
                masterbias_dict = compareimages(struct,
                                                bimg,
                                                masterbias_dict,
                                                keylist=hrsbiasheader_list)

        #create the master bias frame
        for i in masterbias_dict.keys():
            bkeys = masterbias_dict[i][0]
            blist = masterbias_dict[i][1:]
            mbiasname = outpath + createmasterbiasname(
                blist, bkeys, x1=5, x2=13)
            bfiles = ','.join(blist)
            saltcombine(bfiles, mbiasname, method='median', reject='sigclip', mask=False,
                        weight=False, blank=0, scale=None, statsec=None, lthresh=3,    \
                        hthresh=3, clobber=False, logfile=logfile,verbose=verbose)

        #apply full reductions to the science data
        for img in infiles:
            nimg = os.path.basename(img)
            if not nimg in biaslist:
                #open the image
                struct = pyfits.open(img)
                simg = outpath + 'mbgph' + os.path.basename(img)

                #print the message
                if log:
                    message = 'Processing science frame %s' % img
                    log.message(message, with_stdout=verbose)

                #get master bias frame
                masterbias = get_masterbias(struct,
                                            masterbias_dict,
                                            keylist=hrsbiasheader_list)
                if masterbias:
                    subbias = True
                    bstruct = saltio.openfits(masterbias)
                else:
                    subbias = False
                    bstruct = None

                #process the image
                struct = clean(struct,
                               createvar=False,
                               badpixelstruct=None,
                               mult=True,
                               subover=subover,
                               trim=trim,
                               subbias=subbias,
                               imstack=True,
                               bstruct=bstruct,
                               median=median,
                               function=function,
                               order=order,
                               rej_lo=rej_lo,
                               rej_hi=rej_hi,
                               niter=niter,
                               log=log,
                               verbose=verbose)

                #write the file out
                # housekeeping keywords
                fname, hist = history(
                    level=1,
                    wrap=False,
                    exclude=['images', 'outimages', 'outpref'])
                saltkey.housekeeping(struct[0], 'HPREPARE',
                                     'Images have been prepared', hist)
                saltkey.new('HGAIN', time.asctime(time.localtime()),
                            'Images have been gain corrected', struct[0])
                #saltkey.new('HXTALK',time.asctime(time.localtime()),'Images have been xtalk corrected',struct[0])
                saltkey.new('HBIAS', time.asctime(time.localtime()),
                            'Images have been de-biased', struct[0])

                # write FITS file
                saltio.writefits(struct, simg, clobber=clobber)
                saltio.closefits(struct)

    return