예제 #1
0
def plot(year):
    base = 'mmttProcessor_DevTools'

    hamasses = [(
        125,
        5,
    ), (
        125,
        7,
    ), (
        125,
        9,
    ), (125, 11), (125, 13), (125, 15), (125, 17), (125, 19)]

    # define the samples
    backgrounds = []
    data = 'DATA'
    signals = [f'haaH{h}A{a}' for h, a in hamasses]
    sampleMap = {
        s: get_sample_list(base, year, s)
        for s in backgrounds + signals + [data]
    }
    print(sampleMap)

    # load the tfiles
    channels = ['mm']
    cats = ['dimuon', 'ditau', 'ditauMD']
    tfiles = {}
    for s in sampleMap:
        for sample in sampleMap[s]:
            # TODO: we can keep this in the sample map builder
            tfiles[sample] = ROOT.TFile.Open(
                f'hists/{base}/{year}/{sample}.root')

    # styles for plots
    styleMap = {
        'DATA': {
            'label': 'Observed',
        }
    }

    sigcolors = [
        ROOT.kRed + 2, ROOT.kRed - 1, ROOT.kRed - 3, ROOT.kGreen + 2,
        ROOT.kGreen - 1, ROOT.kGreen - 3, ROOT.kBlue + 2, ROOT.kBlue - 1,
        ROOT.kBlue - 3
    ]
    for i, (h, a) in enumerate(hamasses):
        styleMap[f'haaH{h}A{a}'] = {
            'label':
            f'ggH #rightarrow aa (m_{{H}} = {h} GeV, m_{{a}} = {a} GeV',
            'linecolor': sigcolors[i],
        }

    # setup plotter
    plotter = Plotter('MMTT', year)
    plotter.setStyleMap(styleMap)
    for bg in backgrounds:
        plotter.addSampleToStack(bg)
    for sig in signals:
        plotter.addSampleToPlot(sig)
    plotter.setDataSample(data)

    # plot
    plots = {
        'mmMass': {
            'hPath': '{sample}_{chan}_{cat}_mmMass',
            'xlabel': 'm_{#mu#mu} (GeV)',
            'binning': [x * 0.1 for x in range(25, 251, 1)],
            'ylabel': 'Events / 100 MeV',
            'logx': False,
            'logy': False,
            'plotratio': False,
            'blind': blind,
        },
        'ttMass': {
            'hPath': '{sample}_{chan}_{cat}_ttMass',
            'xlabel': 'm_{#tau#tau} (GeV)',
            'binning': [x * 0.1 for x in range(0, 251, 5)],
            'ylabel': 'Events / 0.5 GeV',
            'logx': False,
            'logy': False,
            'plotratio': False,
            'blind': blind,
        },
        'mmttMass': {
            'hPath': '{sample}_{chan}_{cat}_mmttMass',
            'xlabel': 'm_{#mu#mu#tau#tau} (GeV)',
            'binning': range(0, 250, 1),
            'ylabel': 'Events / 1 GeV',
            'logx': False,
            'logy': False,
            'plotratio': False,
            'blind': blind,
        },
        'pileup': {
            'hPath': '{sample}_{chan}_{cat}_pileup',
            'xlabel': 'Number of reconstructed vertices',
            'binning': range(0, 120, 1),
            'ylabel': 'Events',
            'logx': False,
            'logy': False,
            'plotratio': False,
            'blind': blind,
        },
    }

    def sumHists(name, *hists):
        hlist = ROOT.TList()
        for h in hists:
            if h: hlist.Add(h.Clone())
        if hlist.IsEmpty():
            print('No histograms for', name)
            return None
        hist = hists[0].Clone(name)
        hist.Reset()
        hist.Merge(hlist)
        return hist

    chan = 'mm'
    for plot in plots:
        for cat in cats:
            if plot in ['ttMass', 'mmttMass'] and cat == 'dimuon': continue
            # load the histograms
            hists = {s: [] for s in sampleMap}
            for s in sampleMap:
                for sample in sampleMap[s]:
                    name = f'h_{plot}_{chan}_{cat}_{s}_{sample}'
                    hist = tfiles[sample].Get(plots[plot]['hPath'].format(
                        sample=sample, chan=chan, cat=cat))
                    if hist:
                        hists[s] += [hist.Clone(name)]
            # sum the histograms
            for s in hists:
                hname = f'{plot}_{chan}_{cat}_{s}'
                hist = sumHists(hname, *hists[s])
                # bin the histogram
                if hist:
                    binning = array('d', plots[plot]['binning'])
                    hist = hist.Rebin(
                        len(binning) - 1, hname + '_rebin', binning)
                hists[s] = hist
                if s == 'SIG': hists[s].Scale(0.001)
            # scale the hists:
            for s in hists:
                if s == 'DATA': continue
                hists[s].Scale(float(plotter.intLumi) / 1000)
            # send to plotter
            plotter.plot(hists, f'{year}/{chan}/{cat}/{plot}', **plots[plot])
예제 #2
0
def plot(year):
    base = 'mmjProcessor'

    # define the samples
    backgrounds = ['TT','Z','ZZ']
    data = 'DATA'
    signals = []
    sampleMap = { s: get_sample_list(base,year,s) for s in backgrounds+signals+[data] }
    print(sampleMap)

    # load the tfiles
    channels = ['mmj']
    tfiles = {}
    for s in sampleMap:
        for sample in sampleMap[s]:
            # TODO: we can keep this in the sample map builder
            tfiles[sample] = ROOT.TFile.Open(f'hists/{base}/{year}/{sample}.root')
    
    # styles for plots
    styleMap = {
        'TT'  : {'label': 't#bar{t}',    'linecolor': ROOT.kGreen+3,   'fillcolor': ROOT.kGreen+3,},
        'Z'   : {'label': 'Drell-Yan',   'linecolor': ROOT.kOrange-2,  'fillcolor': ROOT.kOrange-2,},
        'WZ'  : {'label': 'WZ',          'linecolor': ROOT.kViolet,    'fillcolor': ROOT.kViolet,},
        'ZZ'  : {'label': 'ZZ',          'linecolor': ROOT.kBlue,      'fillcolor': ROOT.kBlue,},
        'DATA': {'label': 'Observed',}
    }
    
    # setup plotter
    plotter = Plotter('MuMuJ',year)
    plotter.setStyleMap(styleMap)
    for bg in backgrounds: plotter.addSampleToStack(bg)
    for sig in signals: plotter.addSampleToPlot(sig)
    plotter.setDataSample(data)
    
    # plot
    plots = {
        'mll'       : {'hPath': '{sample}_{chan}_iso_mmMass',       'xlabel': 'm_{#mu#mu} (GeV)',       'binning': [x*0.1 for x in range(25,625,1)],          'ylabel': 'Events / 100 MeV', 'logx': False, 'logy': True, 'plotratio': False,},
        'mllj'      : {'hPath': '{sample}_{chan}_iso_mmjMass',      'xlabel': 'm_{#mu#mu j} (GeV)',     'binning': [x for x in range(0,300,1)],               'ylabel': 'Events / 1 GeV',   'logx': False, 'logy': False,'plotratio': False,},
        'mllj_log'  : {'hPath': '{sample}_{chan}_iso_mmjMass',      'xlabel': 'm_{#mu#mu j} (GeV)',     'binning': [x for x in range(0,1200,1)],              'ylabel': 'Events / 1 GeV',   'logx': False, 'logy': True, 'plotratio': False,},
        'mllj_jpsi'      : {'hPath': '{sample}_{chan}_jpsi_iso_mmjMass',      'xlabel': 'm_{#mu#mu j} (GeV)',     'binning': [x for x in range(0,300,1)],               'ylabel': 'Events / 1 GeV',   'logx': False, 'logy': False,'plotratio': False,},
        'mllj_jpsi_log'  : {'hPath': '{sample}_{chan}_jpsi_iso_mmjMass',      'xlabel': 'm_{#mu#mu j} (GeV)',     'binning': [x for x in range(0,1200,1)],              'ylabel': 'Events / 1 GeV',   'logx': False, 'logy': True, 'plotratio': False,},
        'jpsi'      : {'hPath': '{sample}_{chan}_iso_mmMass',       'xlabel': 'm_{#mu#mu} (GeV)',       'binning': [x*0.01 for x in range(250,450,1)],        'ylabel': 'Events / 10 MeV',  'logx': False, 'logy': True, 'plotratio': False,},
        'upsilon'   : {'hPath': '{sample}_{chan}_iso_mmMass',       'xlabel': 'm_{#mu#mu} (GeV)',       'binning': [x*0.01 for x in range(600,1400,1)],       'ylabel': 'Events / 10 MeV',  'logx': False, 'logy': False, 'plotratio': False,},
        'pileup'    : {'hPath': '{sample}_{chan}_iso_pileup',       'xlabel': 'Number of reconstructed vertices', 'binning': range(0,120,1), 'ylabel': 'Events',           'logx': False, 'logy': False, 'plotratio': False,},
    }
    
    def sumHists(name,*hists):
        hlist = ROOT.TList()
        for h in hists:
            if h: hlist.Add(h.Clone())
        if hlist.IsEmpty():
            print('No histograms for',name)
            return None
        hist = hists[0].Clone(name)
        hist.Reset()
        hist.Merge(hlist)
        return hist
    
    for plot in plots:
        # individual channels
        for chan in channels:
            # load the histograms
            hists = {s:[] for s in sampleMap}
            for s in sampleMap:
                for sample in sampleMap[s]:
                    name = f'h_{plot}_{chan}_{s}_{sample}'
                    hist  = tfiles[sample].Get(plots[plot]['hPath'].format(sample=sample,chan=chan))
                    if hist:
                        hists[s] += [hist.Clone(name)]
            # sum the histograms
            for s in hists:
                hname = f'{plot}_{chan}_{s}'
                hist = sumHists(hname,*hists[s])
                # bin the histogram
                if hist:
                    binning = array('d',plots[plot]['binning'])
                    hist = hist.Rebin(len(binning)-1,hname+'_rebin',binning)
                hists[s] = hist
                if s=='SIG': hists[s].Scale(0.001)
            # scale the hists:
            for s in hists:
                if s=='DATA': continue
                hists[s].Scale(float(plotter.intLumi)/1000)
            # send to plotter
            plotter.plot(hists, f'{year}/{chan}/{plot}', **plots[plot])
    
        # combined
        hists = {s:[] for s in sampleMap}
        for chan in channels:
            # load the histograms
            for s in sampleMap:
                for sample in sampleMap[s]:
                    name = f'h_{plot}_{chan}_{s}_{sample}'
                    hist  = tfiles[sample].Get(plots[plot]['hPath'].format(sample=sample,chan=chan))
                    if hist:
                        hists[s] += [hist.Clone(name)]
        # sum the histograms
        for s in hists:
            hname = f'{plot}_{s}'
            hist = sumHists(hname,*hists[s])
            # bin the histogram
            if hist:
                binning = array('d',plots[plot]['binning'])
                hist = hist.Rebin(len(binning)-1,hname+'_rebin',binning)
            hists[s] = hist
            if s=='SIG': hists[s].Scale(0.001)
        # scale the hists:
        for s in hists:
            if s=='DATA': continue
            hists[s].Scale(float(plotter.intLumi)/1000)
        # send to plotter
        plotter.plot(hists, f'{year}/{plot}', **plots[plot])
예제 #3
0
def plot(year):
    base = 'hzzProcessor'
    
    backgrounds = ['ggZZ','qqZZ','HZZ']
    data = 'DATA'
    signals = []
    
    sampleMap = { s: get_sample_list(base,year,s) for s in backgrounds+signals+[data] }
    print(sampleMap)
    
    # load the tfiles
    channels = ['2m2e','2e2m','4e','4m']
    tfiles = {}
    for s in sampleMap:
        if None in sampleMap[s]:
            sampleMap[s] = [x for x in sampleMap[s] if x is not None]
            print(f'Warning: missing samples for {s}')
        for sample in sampleMap[s]:
            tfiles[sample] = ROOT.TFile.Open(f'hists/hzzProcessor/{year}/{sample}.root')
    
    # styles for plots
    styleMap = {
        'TT'  : {'label': 't#bar{t}',                             'linecolor': ROOT.kGreen+3,   'fillcolor': ROOT.kGreen+3,},
        'TTV' : {'label': 't#bar{t}V',                            'linecolor': ROOT.kGreen+4,   'fillcolor': ROOT.kGreen+4,},
        'Z'   : {'label': 'Z+X',                                  'linecolor': ROOT.kGreen+2,   'fillcolor': ROOT.kGreen+2,},
        'ggZZ': {'label': 'gg#rightarrowZZ, Z#gamma*',            'linecolor': ROOT.kBlue,      'fillcolor': ROOT.kBlue,},
        'qqZZ': {'label': 'q#bar{q}#rightarrowZZ, Z#gamma*',      'linecolor': ROOT.kAzure+6,   'fillcolor': ROOT.kAzure+6,},
        'HWW' : {'label': 'H(125)#rightarrowWW#rightarrow2l2#nu', 'linecolor': ROOT.kRed+2,     'fillcolor': ROOT.kRed+2,},
        'HZZ' : {'label': 'H(125)#rightarrowZZ#rightarrow4l',     'linecolor': ROOT.kRed+1,     'fillcolor': ROOT.kRed+1,},
        'SIG' : {'label': '2HDM+a',                               'linecolor': ROOT.kMagenta+1,},
        'DATA': {'label': 'Observed',}
    }
    
    # setup plotter
    plotter = Plotter('MonoHZZ',year)
    plotter.setStyleMap(styleMap)
    for bg in backgrounds: plotter.addSampleToStack(bg)
    for sig in signals: plotter.addSampleToPlot(sig)
    plotter.setDataSample(data)
    
    # plot
    plots = {
        'm4l'       : {'hPath': '{sample}_{chan}_hzz_mass',         'xlabel': 'm_{4l} (GeV)',       'binning': range(70,500,4),         'ylabel': 'Events / 4 GeV', 'logx': False, 'logy': False,},
        'm4l_zoom'  : {'hPath': '{sample}_{chan}_hzz_mass',         'xlabel': 'm_{4l} (GeV)',       'binning': range(70,170,2),         'ylabel': 'Events / 2 GeV', 'logx': False, 'logy': False,},
        'm4l_full'  : {'hPath': '{sample}_{chan}_massWindow_mass',  'xlabel': 'm_{4l} (GeV)',       'binning': range(113,135,3),        'ylabel': 'Events / 3 GeV', 'logx': False, 'logy': False, 'blind':blind,},
        'mz1'       : {'hPath': '{sample}_{chan}_hzz_z1mass',       'xlabel': 'm_{ll} (GeV)',       'binning': range(40,120,1),         'ylabel': 'Events / 1 GeV', 'logx': False, 'logy': False,},
        'mz2'       : {'hPath': '{sample}_{chan}_hzz_z2mass',       'xlabel': 'm_{ll} (GeV)',       'binning': range(12,120,1),         'ylabel': 'Events / 1 GeV', 'logx': False, 'logy': False,},
        'met'       : {'hPath': '{sample}_{chan}_hzz_met',          'xlabel': 'E_{T}^{miss} (GeV)', 'binning': range(0,420,20),         'ylabel': 'Events / 20 GeV','logx': False, 'logy': True, 'ymin':0.1,},
        'met_limit' : {'hPath': '{sample}_{chan}_massWindow_met',   'xlabel': 'E_{T}^{miss} (GeV)', 'binning': [0,25,50,200,500,1000],  'ylabel': 'Events',         'logx': False, 'logy': True, 'ymin':0.1, 'blind':blind,},
        'pileup'    : {'hPath': '{sample}_{chan}_hzz_pileup',       'xlabel': 'Number of reconstructed vertices', 'binning': range(0,120,1), 'ylabel': 'Events',    'logx': False, 'logy': False,},
    }
    
    def sumHists(name,*hists):
        hlist = ROOT.TList()
        for h in hists:
            if h: hlist.Add(h.Clone())
        if hlist.IsEmpty():
            print('No histograms for',name)
            return None
        hist = hists[0].Clone(name)
        hist.Reset()
        hist.Merge(hlist)
        return hist
    
    for plot in plots:
        # individual channels
        for chan in channels:
            # load the histograms
            hists = {s:[] for s in sampleMap}
            for s in sampleMap:
                for sample in sampleMap[s]:
                    name = f'h_{plot}_{chan}_{s}_{sample}'
                    hist  = tfiles[sample].Get(plots[plot]['hPath'].format(sample=sample,chan=chan))
                    if hist:
                        hists[s] += [hist.Clone(name)]
            # sum the histograms
            for s in hists:
                hname = f'{plot}_{chan}_{s}'
                hist = sumHists(hname,*hists[s])
                # bin the histogram
                if hist:
                    binning = array('d',plots[plot]['binning'])
                    hist = hist.Rebin(len(binning)-1,hname+'_rebin',binning)
                hists[s] = hist
                if s=='SIG': hists[s].Scale(0.001)
            # scale the hists:
            for s in hists:
                if s=='DATA': continue
                hists[s].Scale(float(plotter.intLumi)/1000)
            # send to plotter
            plotter.plot(hists, f'{year}/{chan}/{plot}', **plots[plot])
    
        # combined
        hists = {s:[] for s in sampleMap}
        for chan in channels:
            # load the histograms
            for s in sampleMap:
                for sample in sampleMap[s]:
                    name = f'h_{plot}_{chan}_{s}_{sample}'
                    hist  = tfiles[sample].Get(plots[plot]['hPath'].format(sample=sample,chan=chan))
                    if hist:
                        hists[s] += [hist.Clone(name)]
        # sum the histograms
        for s in hists:
            hname = f'{plot}_{s}'
            hist = sumHists(hname,*hists[s])
            # bin the histogram
            if hist:
                binning = array('d',plots[plot]['binning'])
                hist = hist.Rebin(len(binning)-1,hname+'_rebin',binning)
            hists[s] = hist
            if s=='SIG': hists[s].Scale(0.001)
        # scale the hists:
        for s in hists:
            if s=='DATA': continue
            hists[s].Scale(float(plotter.intLumi)/1000)
        # send to plotter
        plotter.plot(hists, f'{year}/{plot}', **plots[plot])