def test_utc_to_lst_gmst(self): self.assertEqual(clock.utc_to_lst(datetime.datetime(2010, 12, 25), 0), clock.utc_to_gmst(datetime.datetime(2010, 12, 25))) # Perhaps not perfect test, a few seconds of uncertainty exist.. self.assertAlmostEqual( clock.utc_to_lst(datetime.datetime(2010, 12, 25), 0), clock.time_to_decimal(datetime.time(6, 13, 35, 852535)))
def test_utc_to_lst_at_longitudes(self): self.assertAlmostEqual(clock.utc_to_lst(datetime.datetime(2010, 12, 25), 90), clock.time_to_decimal(datetime.time(12, 13, 35, 852535))) self.assertAlmostEqual(clock.utc_to_lst(datetime.datetime(2010, 12, 25), 180), clock.time_to_decimal(datetime.time(18, 13, 35, 852535))) self.assertAlmostEqual(clock.utc_to_lst(datetime.datetime(2010, 12, 25), 5), clock.time_to_decimal(datetime.time(6, 33, 35, 852535)))
def test_utc_to_lst_gmst(self): self.assertEqual( clock.utc_to_lst(datetime.datetime(2010, 12, 25), 0), clock.utc_to_gmst(datetime.datetime(2010, 12, 25)) ) # Perhaps not perfect test, a few seconds of uncertainty exist.. self.assertAlmostEqual( clock.utc_to_lst(datetime.datetime(2010, 12, 25), 0), clock.time_to_decimal(datetime.time(6, 13, 35, 852535)), )
def oldvsnew_diagram(): """ Visual accuracy comparisons of old and new transformations. Compares the correlations between the transformations: equatorial_to_horizontal and equatorial_to_zenith_azimuth_astropy horizontal_to_equatorial and horizontal_to_zenith_azimuth_astropy Makes a histogram of the error differences between these two functions as well. The errors seem to be in the order of 1000 arcsec :return: None Ethan van Woerkom is responsible for the benchmarking functions; refer to him for when something is unclear """ # make random frames, in correct angle range and from utc time 2000-2020 frames = [] # boxes for the four different transformation results etoha = [] etoh = [] htoe = [] htoea = [] straight = lambda x : x # straight trendline function # Create the data sets for eq to az for i in range(100): frames.append((r.uniform(-90, 90), r.uniform(-180,180), r.randint(946684800,1577836800), r.uniform(0, 2 * np.pi), r.uniform(-0.5 * np.pi, 0.5 * np.pi))) for i in frames: etoha.append(celestial.equatorial_to_zenithazimuth_astropy(i[0], i[1], i[2], [(i[3], i[4])])[0]) etoh.append(celestial.equatorial_to_zenithazimuth(i[0], i[1], clock.utc_to_gps(i[2]), i[3], i[4])) # Data sets for hor to eq for i in frames: htoe.append(celestial.horizontal_to_equatorial(i[0], clock.utc_to_lst(datetime.datetime.utcfromtimestamp(i[2]), i[1]), i[4], i[3])) htoea.extend(celestial.horizontal_to_equatorial_astropy(i[0], i[1], i[2], [(i[3], i[4])])) # Make figs eq -> zenaz plt.figure(1) plt.suptitle('Zen/Az correlation in rads (equatorial_to_zenithazimuth)') zenrange = [0, np.pi] plt.subplot(211) plt.title('Zenith') plt.axis(zenrange*2) plt.xlabel('New (Astropy)') plt.ylabel('Old') # Make figure and add 1:1 trendline plt.plot([co[0] for co in etoha], [co[0] for co in etoh], 'r.', zenrange, straight(zenrange), '-') plt.subplot(212) plt.title('Azimuth') azrange = [-np.pi, np.pi] plt.axis(azrange*2) plt.xlabel('New (Astropy)') plt.ylabel('Old') # Make figure and add 1:1 trendline plt.plot([co[1] for co in etoha], [co[1] for co in etoh], 'b.', azrange, straight(azrange), '-') plt.tight_layout() # Prevent titles merging plt.subplots_adjust(top=0.85) # Make histogram of differences plt.figure(2) # Take diff. and convert to arcsec nieuw = (np.array(etoh) - np.array(etoha)) nieuw *= 360 * 3600 / (2 * np.pi) plt.hist([i[0] for i in nieuw], bins=20) plt.title('Zenith Old-New Error (equatorial_to_zenithazimuth)') plt.xlabel('Error (arcsec)') plt.ylabel('Counts') plt.figure(3) plt.hist([i[1] for i in nieuw], bins=20) plt.title('Azimuth Old-New Error (equatorial_to_zenithazimuth)') plt.xlabel('Error (arcsec)') plt.ylabel('Counts') # Make histogram of differences using the absolute distance in arcsec # this graph has no wrapping issues plt.figure(7) nieuw = np.array([angle_between(etoh[i][0], etoh[i][1], etoha[i][0], etoha[i][1]) for i in range(len(etoh))]) nieuw *= 360 * 3600 / (2 * np.pi) plt.hist(nieuw, bins=20) plt.title('ZEN+AZ Old-New Error (equatorial_to_zenithazimuth)') plt.xlabel('Error (arcsec)') plt.ylabel('Counts') # Make figs hor - > eq plt.figure(4) plt.suptitle('RA/DEC correlation in rads (horizontal_to_equatorial)') altrange = [-0.5 * np.pi, 0.5 * np.pi] plt.subplot(211) plt.title('Declination') plt.axis(altrange * 2) plt.xlabel('New (Astropy)') plt.ylabel('Old') # Make figure and add 1:1 trendline plt.plot([co[1] for co in htoea], [co[1] for co in htoe], 'r.', altrange, straight(altrange), '-') plt.subplot(212) plt.title('Right Ascension') azrange = [0, 2 * np.pi] plt.axis(azrange * 2) plt.xlabel('New (Astropy)') plt.ylabel('Old') # Make figure and add 1:1 trendline plt.plot([co[0] for co in htoea], [co[0] for co in htoe], 'b.', azrange, straight(azrange), '-') plt.tight_layout() # Prevent titles merging plt.subplots_adjust(top=0.85) # Make histogram of differences plt.figure(5) # Take diff. and convert to arcsec nieuw = (np.array(htoe) - np.array(htoea)) nieuw *= 360 * 3600 / (2 * np.pi) plt.hist([i[1] for i in nieuw], bins=20) plt.title('Declination Old-New Error (horizontal_to_equatorial)') plt.xlabel('Error (arcsec)') plt.ylabel('Counts') plt.figure(6) # Take diff. and convert to arcsec nieuw = (np.array(htoe) - np.array(htoea)) nieuw *= 360 * 3600 / (2 * np.pi) plt.hist([i[0] for i in nieuw], bins=20) plt.title('Right Ascension Old-New Error (horizontal_to_equatorial)') plt.xlabel('Error (arcsec)') plt.ylabel('Counts') # Make histogram of differences using the absolute distance in arcsec # this graph has no wrapping issues plt.figure(8) nieuw = np.array([angle_between_horizontal(htoe[i][0], htoe[i][1], htoea[i][0], htoea[i][1]) for i in range(len(htoe))]) # Take diff. and convert to arcsec nieuw /= 2 / np.pi * 360 * 3600 plt.hist(nieuw, bins=20) plt.title('RA+DEC Old-New Error (horizontal_to_equatorial)') plt.xlabel('Error (arcsec)') plt.ylabel('Counts') plt.show() return
def oldvsnew_diagram(): """ Visual accuracy comparisons of old and new transformations. Compares the correlations between the transformations: equatorial_to_horizontal and equatorial_to_zenith_azimuth_astropy horizontal_to_equatorial and horizontal_to_zenith_azimuth_astropy Makes a histogram of the error differences between these two functions as well. The errors seem to be in the order of 1000 arcsec :return: None Ethan van Woerkom is responsible for the benchmarking functions; refer to him for when something is unclear """ # make random frames, in correct angle range and from utc time 2000-2020 frames = [] # boxes for the four different transformation results etoha = [] etoh = [] htoe = [] htoea = [] straight = lambda x: x # straight trendline function # Create the data sets for eq to az for i in range(100): frames.append( (r.uniform(-90, 90), r.uniform(-180, 180), r.randint(946684800, 1577836800), r.uniform(0, 2 * np.pi), r.uniform(-0.5 * np.pi, 0.5 * np.pi))) for i in frames: etoha.append( celestial.equatorial_to_zenithazimuth_astropy( i[0], i[1], i[2], [(i[3], i[4])])[0]) etoh.append( celestial.equatorial_to_zenithazimuth(i[0], i[1], clock.utc_to_gps(i[2]), i[3], i[4])) # Data sets for hor to eq for i in frames: htoe.append( celestial.horizontal_to_equatorial( i[0], clock.utc_to_lst(datetime.datetime.utcfromtimestamp(i[2]), i[1]), i[4], i[3])) htoea.extend( celestial.horizontal_to_equatorial_astropy(i[0], i[1], i[2], [(i[3], i[4])])) # Make figs eq -> zenaz plt.figure(1) plt.suptitle('Zen/Az correlation in rads (equatorial_to_zenithazimuth)') zenrange = [0, np.pi] plt.subplot(211) plt.title('Zenith') plt.axis(zenrange * 2) plt.xlabel('New (Astropy)') plt.ylabel('Old') # Make figure and add 1:1 trendline plt.plot([co[0] for co in etoha], [co[0] for co in etoh], 'r.', zenrange, straight(zenrange), '-') plt.subplot(212) plt.title('Azimuth') azrange = [-np.pi, np.pi] plt.axis(azrange * 2) plt.xlabel('New (Astropy)') plt.ylabel('Old') # Make figure and add 1:1 trendline plt.plot([co[1] for co in etoha], [co[1] for co in etoh], 'b.', azrange, straight(azrange), '-') plt.tight_layout() # Prevent titles merging plt.subplots_adjust(top=0.85) # Make histogram of differences plt.figure(2) # Take diff. and convert to arcsec nieuw = (np.array(etoh) - np.array(etoha)) nieuw *= 360 * 3600 / (2 * np.pi) plt.hist([i[0] for i in nieuw], bins=20) plt.title('Zenith Old-New Error (equatorial_to_zenithazimuth)') plt.xlabel('Error (arcsec)') plt.ylabel('Counts') plt.figure(3) plt.hist([i[1] for i in nieuw], bins=20) plt.title('Azimuth Old-New Error (equatorial_to_zenithazimuth)') plt.xlabel('Error (arcsec)') plt.ylabel('Counts') # Make histogram of differences using the absolute distance in arcsec # this graph has no wrapping issues plt.figure(7) nieuw = np.array([ angle_between(etoh[i][0], etoh[i][1], etoha[i][0], etoha[i][1]) for i in range(len(etoh)) ]) nieuw *= 360 * 3600 / (2 * np.pi) plt.hist(nieuw, bins=20) plt.title('ZEN+AZ Old-New Error (equatorial_to_zenithazimuth)') plt.xlabel('Error (arcsec)') plt.ylabel('Counts') # Make figs hor - > eq plt.figure(4) plt.suptitle('RA/DEC correlation in rads (horizontal_to_equatorial)') altrange = [-0.5 * np.pi, 0.5 * np.pi] plt.subplot(211) plt.title('Declination') plt.axis(altrange * 2) plt.xlabel('New (Astropy)') plt.ylabel('Old') # Make figure and add 1:1 trendline plt.plot([co[1] for co in htoea], [co[1] for co in htoe], 'r.', altrange, straight(altrange), '-') plt.subplot(212) plt.title('Right Ascension') azrange = [0, 2 * np.pi] plt.axis(azrange * 2) plt.xlabel('New (Astropy)') plt.ylabel('Old') # Make figure and add 1:1 trendline plt.plot([co[0] for co in htoea], [co[0] for co in htoe], 'b.', azrange, straight(azrange), '-') plt.tight_layout() # Prevent titles merging plt.subplots_adjust(top=0.85) # Make histogram of differences plt.figure(5) # Take diff. and convert to arcsec nieuw = (np.array(htoe) - np.array(htoea)) nieuw *= 360 * 3600 / (2 * np.pi) plt.hist([i[1] for i in nieuw], bins=20) plt.title('Declination Old-New Error (horizontal_to_equatorial)') plt.xlabel('Error (arcsec)') plt.ylabel('Counts') plt.figure(6) # Take diff. and convert to arcsec nieuw = (np.array(htoe) - np.array(htoea)) nieuw *= 360 * 3600 / (2 * np.pi) plt.hist([i[0] for i in nieuw], bins=20) plt.title('Right Ascension Old-New Error (horizontal_to_equatorial)') plt.xlabel('Error (arcsec)') plt.ylabel('Counts') # Make histogram of differences using the absolute distance in arcsec # this graph has no wrapping issues plt.figure(8) nieuw = np.array([ angle_between_horizontal(htoe[i][0], htoe[i][1], htoea[i][0], htoea[i][1]) for i in range(len(htoe)) ]) # Take diff. and convert to arcsec nieuw = nieuw / 2 / np.pi * 360 * 3600 plt.hist(nieuw, bins=20) plt.title('RA+DEC Old-New Error (horizontal_to_equatorial)') plt.xlabel('Error (arcsec)') plt.ylabel('Counts') plt.show() return