예제 #1
0
 def __call__(self, npts = 101):
     """ 
         Perform test and produce output file
         @param npts: number of points to average over
         @return: True if the test passed, otherwise False
     """
     passed = True
     
     model = EllipticalCylinderModel()
     
     theta_label = 'cyl_theta'
     if not model.params.has_key(theta_label):
         theta_label = 'axis_theta'
         
     phi_label = 'cyl_phi'
     if not model.params.has_key(phi_label):
         phi_label = 'axis_phi'
     
     output_f = open("average_func.txt",'w')    
     output_f.write("<q_average> <2d_average> <1d_average>\n")
         
     for i_q in range(1, 15):
         q = 0.3/15.0*i_q
         value = self.average_point_3D(model, q, npts)
         ana = model.run(q)
         if q<0.3 and (value-ana)/ana>0.05:
             passed = False
         output_f.write("%10g %10g %10g\n" % (q, value, ana))
         if self.verbose:
             print "Q=%g: %10g %10g %10g %10g" % (q, value, ana, value-ana, value/ana)
     
     output_f.close()
     return passed
예제 #2
0
 def setUp(self):
     from sas.models.EllipticalCylinderModel import EllipticalCylinderModel
     self.model= EllipticalCylinderModel()
     
     self.model.setParam('scale', 1.0)
     self.model.setParam('r_minor', 20.0)
     self.model.setParam('r_ratio', 1.5)
     self.model.setParam('length', 400.0)
     self.model.setParam('sldCyl', 4.0e-6)
     self.model.setParam('sldSolv', 1.0e-6)
     self.model.setParam('background', 0.0)
     self.model.setParam('cyl_theta', 90)
     self.model.setParam('cyl_phi', 0.0)
     self.model.setParam('cyl_psi', 0.0)
예제 #3
0
    def checkCylinder(self, points):
        """
            Compare the average over all orientations
            of the main cylinder axis for a cylinder
            and the elliptical cylinder with r_ratio = 1
            
            @param points: number of points to average over
            @return: True if the test passed, otherwise False
        """
        from sas.models.CylinderModel import CylinderModel
        
        passed = True
        
        npts =points
        model = EllipticalCylinderModel()
        model.setParam('r_ratio', 1.0)
        model.setParam("r_minor", 20)
        model.setParam("cyl_theta", 90)
        model.setParam("cyl_phi", 0.0)
        model.setParam("length", 400)
        model.setParam("sldEll", 2.0e-6)
        model.setParam("sldSolv", 1.0e-6)
        
        cyl = CylinderModel()
        cyl.setParam("cyl_theta", 90)
        cyl.setParam("cyl_phi", 0.0)
        cyl.setParam("radius", 20)
        cyl.setParam("length", 400)
        cyl.setParam("sldCyl", 2.0e-6)
        cyl.setParam("sldSolv", 1.0e-6)

        
        output_f = open("average_func.txt",'w')    
        output_f.write("<q_average> <2d_average> <1d_average>\n")
            
        for i_q in range(1, 15):
            q = 0.3/15.0*i_q
            value = self.average_point_2D(model, q, npts)
            
            ana = cyl.run(q)
            if q<0.3 and math.fabs(value-ana)/ana>0.05:
                passed = False
            output_f.write("%10g %10g %10g\n" % (q, value, ana))
            if self.verbose:
                print "Q=%g: %10g %10g %10g %10g" % (q, value, ana, value-ana, value/ana)
        
        output_f.close()
        return passed
    def checkCylinder2D(self, phi):
        """ 
            Check that the 2D scattering intensity reduces
            to a cylinder when r_ratio = 1.0
            @param phi: angle of the vector q on the detector
            @return: True if the test passed, otherwise False
        """
        from sas.models.CylinderModel import CylinderModel

        cyl = CylinderModel()
        cyl.setParam("cyl_theta", 90)
        cyl.setParam("cyl_phi", 0.0)
        cyl.setParam("radius", 20)
        cyl.setParam("length", 400)
        cyl.setParam("sldCyl", 2.0e-6)
        cyl.setParam("sldSolv", 1.0e-6)

        ell = EllipticalCylinderModel()
        ell.setParam("r_ratio", 1.0)
        ell.setParam("r_minor", 20)
        ell.setParam("cyl_theta", 90)
        ell.setParam("cyl_phi", 0.0)
        ell.setParam("length", 400)
        ell.setParam("sldCyl", 2.0e-6)
        ell.setParam("sldSolv", 1.0e-6)

        passed = True
        for i_q in range(1, 30):
            q = 0.025 * i_q
            ell_val = ell.run([q, phi])
            cyl_val = cyl.run([q, phi])
            if self.verbose:
                print "Q=%g    Ell=%g    Cyl=%g   R=%g" % (q, ell_val, cyl_val,
                                                           ell_val / cyl_val)
            if math.fabs(ell_val - cyl_val) / cyl_val > 0.05:
                passed = False

        return passed
 def setUp(self):
     from sas.models.EllipticalCylinderModel import EllipticalCylinderModel
     from sas.models.DiamCylFunc import DiamCylFunc
     self.comp = EllipticalCylinderModel()
     self.diam = DiamCylFunc()