def satoshiConditions(N): s0STLM0 = 0 s1STLM0 = 0 s0STLM1 = 0 s1STLM1 = 0 for i in range(N): if i % 100 == 0: print(f'{i+1}/{N}') theta = np.random.rand() * np.pi / 4 a0 = np.random.rand() * 2 * np.pi a1 = np.random.rand() * 2 * np.pi b0 = np.random.rand() * 2 * np.pi b1 = np.random.rand() * 2 * np.pi P = T.find_P(theta, a0, a1, b0, b1) correct1, realisation, wholeSp = T.twoQubitRepresentation(P) theta = realisation[0] correct2 = St.STLM(P, theta) if not correct1: print("no 2-qubit realisation????") if correct2 and wholeSp: s1STLM1 += 1 elif correct2 and (not wholeSp): s0STLM1 += 1 elif (not correct2) and wholeSp: s1STLM0 += 1 elif (not correct2) and (not wholeSp): s0STLM0 += 1 print(s0STLM0, s0STLM1, s1STLM0, s1STLM1)
def research(theta, a0, a1, b0, b1): def maximum(S): m = 0 for x in range(2): for y in range(2): if S[x][y] > m: m = S[x][y] return m def getThetaFromSinSquared(s): return np.arccos(np.sqrt(1 - s)) P = T.find_P(theta, a0, a1, b0, b1) S_p, S_m = St.SPlusTemp(P) print(S_p) print(S_m) flag = False for x in range(2): for y in range(2): thetaNew = getThetaFromSinSquared(S_p[x][y]) Pnew = T.find_P(thetaNew, a0, a1, b0, b1) stlm = St.STLM(Pnew, thetaNew) print(stlm, "STLM") Qs = St.satoshiTest(Pnew) print(Qs, thetaNew) if Qs: flag = True for x in range(2): for y in range(2): thetaNew = getThetaFromSinSquared(S_m[x][y]) Pnew = T.find_P(thetaNew, a0, a1, b0, b1) stlm = St.STLM(Pnew, thetaNew) print(stlm, "STLM") Qs = St.satoshiTest(Pnew) print(Qs, thetaNew) if Qs: flag = True print("i co?", flag)
def testWagnerPoints(N): for theta in np.linspace(0, np.pi / 4, N): P = Pp.WagnerPoints(theta) b = Pp.getWagnerB(theta) _, a0, a1, b0, b1 = Pp.WagnerRealisation(theta) wholeSp, theta = St.SPlusCondition(P) stlm = St.STLM(P, theta) if wholeSp and stlm: Qs = 1 else: Qs = 0 accuracy = 0.001 Qn = T.is_exposed(theta, a0, a1, b0, b1, accuracy, limit=1) print(Qn, Qs)
def notUniquePointsInvestigating(N): for i in range(N): P = np.round(T.notUniquePoints(), 6) correct, realisation, wholeSp = T.twoQubitRepresentationSpecial(P) if correct: print(P, "point") theta, a0, a1, b0, b1 = realisation # print(correct, theta, a0/np.pi, a1/np.pi, b0/np.pi, b1/np.pi, wholeSp, np.sin(theta)**2, "tu") # print(P[0]/np.cos(theta), P[1]/np.cos(theta), P[2]/np.cos(theta), P[3]/np.cos(theta), "cosinusy prawdziwe") print(St.STLM(P, theta), "stlm") Ptlm = T.find_P(np.pi / 2, a0, a1, b0, b1) print(T.find_P(theta, a0, a1, b0, b1), "Punkt zwrotny") print(T.is_nonlocalPoint(P), "is nonlocal?") print(T.TLM(Ptlm), "Tlm") print(T.is_exposed(theta, a0, a1, b0, b1, 0.001), "exposed")
def notUniquePoint(): # P = [0.4445537842667646, 0.24544802147218514, 0.734354006208671, 0.734354006208671, 0.542908951128687, 0.542908951128687, 0.3966948365612542, 0.3966948365612542] P5 = [0.024973, 0.058992, 0.5, 0.5, 0.07546, 0.07546, 0.092469, 0.092469] P4 = [ 0.25, 0.125, -0.262176, -0.0930301, -0.731555, -0.689269, -0.698783, 0.654382 ] P2 = [ 0.5, 0.5, -np.sqrt(2 / 5), 0, -np.sqrt(5 / 2) / 2, -np.sqrt(5 / 2) / 2 + 1 / np.sqrt(10), -np.sqrt(5 / 2) / 2, np.sqrt(5 / 2) / 2 - 1 / np.sqrt(10) ] P3 = [ 1 / 4, 1 / 2, -np.sqrt(7 / 3) / 3, 1 / np.sqrt(21), -37 / (12 * np.sqrt(21)), -37 / (12 * np.sqrt(21)) + 1 / 4 * (np.sqrt(7 / 3) / 3 + 1 / np.sqrt(21)), -np.sqrt(7 / 3) / 12 - 37 / (12 * np.sqrt(21)), -np.sqrt(7 / 3) / 12 + 43 / (12 * np.sqrt(21)) ] b = np.random.rand() a1 = np.random.rand() a0 = np.random.rand() b = 0.5 a0 = 0.25 a1 = 0.5 A0B0 = (a0 + a1 + a0 * b**2 - a1 * b**2) / (2 * b) A0B1 = A0B0 A1B0 = A0B0 - b * (a0 - a1) A1B1 = A0B0 - b * (a0 - a1) P = [a0, a1, b, b, A0B0, A0B1, A1B0, A1B1] # if A0B0 < 1: print(P, "punkt") correct, realisation, wholeSp = T.twoQubitRepresentation(P) theta, a0, a1, b0, b1 = realisation # print(correct, theta, a0/np.pi, a1/np.pi, b0/np.pi, b1/np.pi, wholeSp, np.sin(theta)**2, "tu") # print(P[0]/np.cos(theta), P[1]/np.cos(theta), P[2]/np.cos(theta), P[3]/np.cos(theta), "cosinusy prawdziwe") print(St.STLM(P, theta), "stlm") Ptlm = T.find_P(np.pi / 2, a0, a1, b0, b1) print(T.find_P(theta, a0, a1, b0, b1), "Punkt zwrotny") print(T.TLM(Ptlm), "Tlm") print(T.is_exposed(theta, a0, a1, b0, b1, 0.001), "exposed")
def tlmVSstlm(N): for i in range(N): if i % 100 == 0: print(f'{i+1}/{N}') a0 = np.random.rand() * 2 * np.pi a1 = np.random.rand() * 2 * np.pi b0 = np.random.rand() * 2 * np.pi b1 = np.random.rand() * 2 * np.pi theta = np.random.rand() * np.pi / 2 P1 = T.find_P(np.pi / 2, a0, a1, b0, b1) P2 = T.find_P(theta, a0, a1, b0, b1) tlm = T.TLM(P1) stlm = St.STLM(P2, theta) wholeSp, theta = St.SPlusCondition(P2) # print(tlm, stlm) if stlm and (not tlm): print(tlm, stlm) if stlm and (not tlm) and wholeSp: print(tlm, stlm, wholeSp) print("aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa")
def nonnegativitySingularity(N): for i in range(1): a0 = 0 a1 = np.random.rand() * 2 * np.pi b0 = 0 b1 = np.random.rand() * 2 * np.pi P = T.find_P(np.pi / 2, a0, a1, b0, b1) # print(P) tlm = T.TLM(P) # Sp, Sm = St.SPlusTemp(P) # print(Sp) # print(Sm) # theta = np.random.rand()*np.pi/2 # thetaB = np.arcsin(T.hypoTreshold(a0,a1,b0,b1)) # print(thetaB) thetaGr = np.arcsin(T.hypoTresholdImproved(a0, a1, b0, b1)) print(thetaGr) Theta = np.linspace(0, np.pi / 2, N) for theta in Theta: # print(theta) # if i%100 == 0: # print(i) P = T.find_P(theta, a0, a1, b0, b1) stlm = St.STLM(P, theta) c1, thetan = St.SPlusCondition(P) if theta >= thetaGr: c2 = 1 else: c2 = 0 # sat = St.satoshiTest(P) # ex = T.is_exposed(theta,a0,a1,b0,b1, 0.001) if c1 and (not stlm): stlm2 = St.STLMComment(P, theta) print(tlm, stlm, c1, c2)
def plotExposed(D): acc = 1e-4 x0 = 0 x_end = np.pi / 2 y0 = 0 y_end = 1 Y = np.linspace(y0, y_end, D) X = np.linspace(x0, x_end, D) Map = np.zeros((D, D)) for y, CosA in enumerate(Y): for x, theta in enumerate(X): a0 = 0 b0 = 0 a1 = np.arccos(CosA) b1 = -np.arccos(CosA) + 2 * np.pi P = T.find_P(theta, a0, a1, b0, b1) P2 = symmetricPoint2(theta, CosA) # print(np.round(P-P2,7)) # exp1 = T.is_exposed(theta, a0, a1, b0, b1, acc) exp2 = T.is_exposed_hypo(theta, a0, a1, b0, b1) exp3 = St.satoshiTest(P) nonloc = T.is_nonlocalPoint(P) print(exp2) stlm = St.STLM(P, theta) Ptlm = T.find_P(np.pi / 2, a0, a1, b0, b1) tlm = T.TLM(Ptlm) print(stlm, tlm) Map[x][D - y - 1] = exp2 plt.imshow(Map.T, extent=[x0, x_end, y0, y_end]) plt.colorbar() plt.xlabel("theta") plt.ylabel("cos(a)") plt.savefig("symmetric.png") plt.show()
def research2(theta, a0, a1, b0, b1): def maximum(S): m = 0 for x in range(2): for y in range(2): if S[x][y] > m: m = S[x][y] return m def getThetaFromSinSquared(s): return np.arccos(np.sqrt(1 - s)) def largerTheta(theta): P = T.find_P(theta, a0, a1, b0, b1) S_p, S_m = St.SPlusTemp(P) # print(S_p) # print(S_m) thetaNew = getThetaFromSinSquared(maximum(S_p)) return thetaNew print("Optimal theta start") optTheta = optimalTheta(a0, a1, b0, b1) print("Optimal theta end") flag = False while (theta < optTheta - acc) and (not flag): Pnew = T.find_P(theta, a0, a1, b0, b1) stlm = St.STLM(Pnew, theta) Qs = St.satoshiTest(Pnew) print(Qs, stlm, theta) thetaNew = largerTheta(theta) if Qs: flag = True if abs(thetaNew - theta) < acc: flag = True theta = thetaNew print("Next")
def hypothesis(N): def research(theta, a0, a1, b0, b1): def maximum(S): m = 0 for x in range(2): for y in range(2): if S[x][y] > m: m = S[x][y] return m def getThetaFromSinSquared(s): return np.arccos(np.sqrt(1 - s)) P = T.find_P(theta, a0, a1, b0, b1) S_p, S_m = St.SPlusTemp(P) print(S_p) print(S_m) flag = False for x in range(2): for y in range(2): thetaNew = getThetaFromSinSquared(S_p[x][y]) Pnew = T.find_P(thetaNew, a0, a1, b0, b1) stlm = St.STLM(Pnew, thetaNew) print(stlm, "STLM") Qs = St.satoshiTest(Pnew) print(Qs, thetaNew) if Qs: flag = True for x in range(2): for y in range(2): thetaNew = getThetaFromSinSquared(S_m[x][y]) Pnew = T.find_P(thetaNew, a0, a1, b0, b1) stlm = St.STLM(Pnew, thetaNew) print(stlm, "STLM") Qs = St.satoshiTest(Pnew) print(Qs, thetaNew) if Qs: flag = True print("i co?", flag) def research2(theta, a0, a1, b0, b1): def maximum(S): m = 0 for x in range(2): for y in range(2): if S[x][y] > m: m = S[x][y] return m def getThetaFromSinSquared(s): return np.arccos(np.sqrt(1 - s)) def largerTheta(theta): P = T.find_P(theta, a0, a1, b0, b1) S_p, S_m = St.SPlusTemp(P) # print(S_p) # print(S_m) thetaNew = getThetaFromSinSquared(maximum(S_p)) return thetaNew print("Optimal theta start") optTheta = optimalTheta(a0, a1, b0, b1) print("Optimal theta end") flag = False while (theta < optTheta - acc) and (not flag): Pnew = T.find_P(theta, a0, a1, b0, b1) stlm = St.STLM(Pnew, theta) Qs = St.satoshiTest(Pnew) print(Qs, stlm, theta) thetaNew = largerTheta(theta) if Qs: flag = True if abs(thetaNew - theta) < acc: flag = True theta = thetaNew print("Next") s0STLM0 = 0 s1STLM0 = 0 s0STLM1 = 0 s1STLM1 = 0 for i in range(N): if i % 100 == 0: print(f'{i+1}/{N}') theta = np.random.rand() * np.pi / 4 a0 = np.random.rand() * 2 * np.pi a1 = np.random.rand() * 2 * np.pi b0 = np.random.rand() * 2 * np.pi b1 = np.random.rand() * 2 * np.pi P = T.find_P(theta, a0, a1, b0, b1) correct1, realisation, wholeSp = T.twoQubitRepresentation(P) theta = realisation[0] correct2 = St.STLM(P, theta) if not correct1: print("no 2-qubit realisation????") if correct2 and wholeSp: s1STLM1 += 1 elif correct2 and (not wholeSp): research2(theta, a0, a1, b0, b1) s0STLM1 += 1 elif (not correct2) and wholeSp: s1STLM0 += 1 elif (not correct2) and (not wholeSp): s0STLM0 += 1