def select_matching(texts, labels, words, threshold=1): selected_content = [] for text, label in zip(texts, labels): sent_list = text.split(' ') word_count = [sent_list.count(w) for w in words] word_count = np.array(word_count) occur_times = (word_count >= 1).sum() if occur_times >= threshold: print(label, text, np.array(words)[word_count >= 1]) selected_content.append((label, text)) csv_save(selected_content, './data/traindata/Sentiment140/pre-processed/anew_part_of_nostem_160000.csv') return
def select_matching(texts, labels, words, threshold=1): selected_content = [] for text, label in zip(texts, labels): sent_list = text.split(' ') word_count = [sent_list.count(w) for w in words] word_count = np.array(word_count) occur_times = (word_count >= 1).sum() if occur_times >= threshold: print(label, text, np.array(words)[word_count >= 1]) selected_content.append((label, text)) csv_save( selected_content, './data/traindata/Sentiment140/pre-processed/anew_part_of_nostem_160000.csv' ) return
def preprocess_tweeets(tweets_list, tweets_labels, filename): def isEnglish(s): try: s.encode('ascii') except UnicodeEncodeError: return False else: return True processed_texts = [] for line, l in zip(tweets_list, tweets_labels): if isEnglish(line): processed_texts.append((l, preprocessor(line))) # else: # print or not ? # print(line) os_name = get_os_name() if os_name == 'windows': file_dir = 'C:/Corpus/' elif os_name == 'ubuntu': file_dir = '/home/hs/Data/' else: return csv_save(processed_texts, file_dir + filename)
def evaluate_lenet5(learning_rate=0.1, n_epoches=200, nkerns=[20, 50], batch_size=500): # load data from dataset logging.info('... loading data') from load_data import load_qrcode from sklearn.cross_validation import train_test_split def upToInt(array): array = np.mat(array) m, n = np.shape(array) newArray = np.zeros((m, n)) for i in range(m): for j in range(n): if array[i, j] > 0: newArray[i, j] = 1 return newArray features, labels = load_qrcode() features = upToInt(features) (trainData, trainLabel, testData, testY) = train_test_split(features, labels, test_size=0.2) # trainData, trainLabel = util.load_total_data() # testData = util.loadTestData() train_set_x = theano.shared(np.asarray(trainData, dtype=theano.config.floatX), borrow=True) train_set_y = theano.shared(np.asarray(trainLabel, dtype=theano.config.floatX), borrow=True) test_set_x = theano.shared(np.asarray(testData, dtype=theano.config.floatX), borrow=True) train_set_y = T.cast(train_set_y, 'int32') n_train_batches = train_set_x.get_value(borrow=True).shape[0] n_valid_batches = train_set_x.get_value(borrow=True).shape[0] n_test_batches = test_set_x.get_value(borrow=True).shape[0] n_train_batches /= batch_size n_valid_batches /= batch_size n_test_batches /= batch_size rng = np.random.RandomState(23455) # allocate symbolic variables for the data index = T.lscalar() # index to a [mini]batch # start-snippet-1 x = T.matrix('x') y = T.ivector('y') logging.info('... building the model') layer0_input = x.reshape((batch_size, 1, 28, 28)) # Construct the first convolutional pooling layer: # filtering reduces the image size to (28-5+1 , 28-5+1) = (24, 24) # maxpooling reduces this further to (24/2, 24/2) = (12, 12) # 4D output tensor is thus of shape (batch_size, nkerns[0], 12, 12) layer0 = LeNetConvPoolLayer( rng, input=layer0_input, image_shape=(batch_size, 1, 28, 28), filter_shape=(nkerns[0], 1, 5, 5), poolsize=(2, 2) ) # Construct the second convolutional pooling layer # filtering reduces the image size to (12-5+1, 12-5+1) = (8, 8) # maxpooling reduces this further to (8/2, 8/2) = (4, 4) # 4D output tensor is thus of shape (batch_size, nkerns[1], 4, 4) layer1 = LeNetConvPoolLayer( rng, input=layer0.output, image_shape=(batch_size, nkerns[0], 12, 12), filter_shape=(nkerns[1], nkerns[0], 5, 5), poolsize=(2, 2) ) # the HiddenLayer being fully-connected, it operates on 2D matrices of # shape (batch_size, num_pixels) (i.e matrix of rasterized images). # This will generate a matrix of shape (batch_size, nkerns[1] * 4 * 4), # or (500, 50 * 4 * 4) = (500, 800) with the default values. layer2_input = layer1.output.flatten(2) # construct a fully-connected sigmoidal layer layer2 = HiddenLayer( rng, input=layer2_input, n_in=nkerns[1] * 4 * 4, n_out=500, activation=T.tanh ) # classify the values of the fully-connected sigmoidal layer layer3 = LogisticRegression(input=layer2.output, n_in=500, n_out=10) # the cost we minimize during training is the NLL of the model cost = layer3.negative_log_likelihood(y) # create a function to compute the mistakes that are made by the model validate_model = theano.function( [index], layer3.errors(y), givens={ x: train_set_x[index * batch_size: (index + 1) * batch_size], y: train_set_y[index * batch_size: (index + 1) * batch_size], } ) # create a list of all model parameters to be fit by gradient descent params = layer3.params + layer2.params + layer1.params + layer0.params # create a list of gradients for all model parameters grads = T.grad(cost, params) # train_model is a function that updates the model parameters by # SGD Since this model has many parameters, it would be tedious to # manually create an update rule for each model parameter. We thus # create the updates list by automatically looping over all # (params[i], grads[i]) pairs. updates = [ (param_i, param_i - learning_rate * grad_i) for param_i, grad_i in zip(params, grads) ] train_model = theano.function( [index], cost, updates=updates, givens={ x: train_set_x[index * batch_size: (index + 1) * batch_size], y: train_set_y[index * batch_size: (index + 1) * batch_size] } ) validation_model = theano.function( [index], layer3.errors(y), givens={ x: train_set_x[index * batch_size: (index + 1) * batch_size], y: train_set_y[index * batch_size: (index + 1) * batch_size] } ) logging.info('... training') patience = 10000 patience_increase = 2 improvement_threshold = 0.995 validation_frequency = min(n_train_batches, patience / 2) best_validation_loss = np.inf best_iter = 0 test_score = 0. start_time = time.clock() epoch = 0 done_looping = False while (epoch < n_epoches) and (not done_looping): epoch = epoch + 1 for minibatch_index in range(n_train_batches): iter = (epoch - 1) * n_train_batches + minibatch_index if iter % 100 == 0: logging.info('training @ iter = %d' % (iter)) cost_ij = train_model(minibatch_index) if (iter + 1) % validation_frequency == 0: # compute zero-one loss on validation set validation_losses = [validation_model(i) for i in range(n_valid_batches)] this_validation_loss = np.mean(validation_losses) print('epoch %i, minibatch %i/%i, validation error %f %%' % (epoch, minibatch_index + 1, n_train_batches, this_validation_loss * 100.)) if (this_validation_loss * 100.) < 0.001: done_looping = True break end_time = time.clock() logging.info('The code for file ' + os.path.split(__file__)[1] + ' ran for %.2fm' % ((end_time - start_time) / 60.)) # make a prediction and save file # make a prediction predict_model = theano.function( inputs=[index], outputs=layer3.predict(), givens={ x: test_set_x[index * batch_size: (index + 1) * batch_size] } ) # save the result file testLabel = np.array([]) for test_index in range(n_test_batches): tempLabel = predict_model(test_index) testLabel = np.hstack((testLabel, tempLabel)) from save_data import csv_save csv_save(testLabel, './data/cnn_result.csv')
def evaluate_lenet5(learning_rate=0.1, n_epoches=200, nkerns=[20, 50], batch_size=500): # load data from dataset logging.info("... loading data") from load_data import load_qrcode from sklearn.cross_validation import train_test_split def upToInt(array): array = np.mat(array) m, n = np.shape(array) newArray = np.zeros((m, n)) for i in range(m): for j in range(n): if array[i, j] > 0: newArray[i, j] = 1 return newArray features, labels = load_qrcode() features = upToInt(features) (trainData, trainLabel, testData, testY) = train_test_split(features, labels, test_size=0.2) # trainData, trainLabel = util.load_total_data() # testData = util.loadTestData() train_set_x = theano.shared(np.asarray(trainData, dtype=theano.config.floatX), borrow=True) train_set_y = theano.shared(np.asarray(trainLabel, dtype=theano.config.floatX), borrow=True) test_set_x = theano.shared(np.asarray(testData, dtype=theano.config.floatX), borrow=True) train_set_y = T.cast(train_set_y, "int32") n_train_batches = train_set_x.get_value(borrow=True).shape[0] n_valid_batches = train_set_x.get_value(borrow=True).shape[0] n_test_batches = test_set_x.get_value(borrow=True).shape[0] n_train_batches /= batch_size n_valid_batches /= batch_size n_test_batches /= batch_size rng = np.random.RandomState(23455) # allocate symbolic variables for the data index = T.lscalar() # index to a [mini]batch # start-snippet-1 x = T.matrix("x") y = T.ivector("y") logging.info("... building the model") layer0_input = x.reshape((batch_size, 1, 28, 28)) # Construct the first convolutional pooling layer: # filtering reduces the image size to (28-5+1 , 28-5+1) = (24, 24) # maxpooling reduces this further to (24/2, 24/2) = (12, 12) # 4D output tensor is thus of shape (batch_size, nkerns[0], 12, 12) layer0 = LeNetConvPoolLayer( rng, input=layer0_input, image_shape=(batch_size, 1, 28, 28), filter_shape=(nkerns[0], 1, 5, 5), poolsize=(2, 2) ) # Construct the second convolutional pooling layer # filtering reduces the image size to (12-5+1, 12-5+1) = (8, 8) # maxpooling reduces this further to (8/2, 8/2) = (4, 4) # 4D output tensor is thus of shape (batch_size, nkerns[1], 4, 4) layer1 = LeNetConvPoolLayer( rng, input=layer0.output, image_shape=(batch_size, nkerns[0], 12, 12), filter_shape=(nkerns[1], nkerns[0], 5, 5), poolsize=(2, 2), ) # the HiddenLayer being fully-connected, it operates on 2D matrices of # shape (batch_size, num_pixels) (i.e matrix of rasterized images). # This will generate a matrix of shape (batch_size, nkerns[1] * 4 * 4), # or (500, 50 * 4 * 4) = (500, 800) with the default values. layer2_input = layer1.output.flatten(2) # construct a fully-connected sigmoidal layer layer2 = HiddenLayer(rng, input=layer2_input, n_in=nkerns[1] * 4 * 4, n_out=500, activation=T.tanh) # classify the values of the fully-connected sigmoidal layer layer3 = LogisticRegression(input=layer2.output, n_in=500, n_out=10) # the cost we minimize during training is the NLL of the model cost = layer3.negative_log_likelihood(y) # create a function to compute the mistakes that are made by the model validate_model = theano.function( [index], layer3.errors(y), givens={ x: train_set_x[index * batch_size : (index + 1) * batch_size], y: train_set_y[index * batch_size : (index + 1) * batch_size], }, ) # create a list of all model parameters to be fit by gradient descent params = layer3.params + layer2.params + layer1.params + layer0.params # create a list of gradients for all model parameters grads = T.grad(cost, params) # train_model is a function that updates the model parameters by # SGD Since this model has many parameters, it would be tedious to # manually create an update rule for each model parameter. We thus # create the updates list by automatically looping over all # (params[i], grads[i]) pairs. updates = [(param_i, param_i - learning_rate * grad_i) for param_i, grad_i in zip(params, grads)] train_model = theano.function( [index], cost, updates=updates, givens={ x: train_set_x[index * batch_size : (index + 1) * batch_size], y: train_set_y[index * batch_size : (index + 1) * batch_size], }, ) validation_model = theano.function( [index], layer3.errors(y), givens={ x: train_set_x[index * batch_size : (index + 1) * batch_size], y: train_set_y[index * batch_size : (index + 1) * batch_size], }, ) logging.info("... training") patience = 10000 patience_increase = 2 improvement_threshold = 0.995 validation_frequency = min(n_train_batches, patience / 2) best_validation_loss = np.inf best_iter = 0 test_score = 0.0 start_time = time.clock() epoch = 0 done_looping = False while (epoch < n_epoches) and (not done_looping): epoch = epoch + 1 for minibatch_index in range(n_train_batches): iter = (epoch - 1) * n_train_batches + minibatch_index if iter % 100 == 0: logging.info("training @ iter = %d" % (iter)) cost_ij = train_model(minibatch_index) if (iter + 1) % validation_frequency == 0: # compute zero-one loss on validation set validation_losses = [validation_model(i) for i in range(n_valid_batches)] this_validation_loss = np.mean(validation_losses) print( "epoch %i, minibatch %i/%i, validation error %f %%" % (epoch, minibatch_index + 1, n_train_batches, this_validation_loss * 100.0) ) if (this_validation_loss * 100.0) < 0.001: done_looping = True break end_time = time.clock() logging.info( "The code for file " + os.path.split(__file__)[1] + " ran for %.2fm" % ((end_time - start_time) / 60.0) ) # make a prediction and save file # make a prediction predict_model = theano.function( inputs=[index], outputs=layer3.predict(), givens={x: test_set_x[index * batch_size : (index + 1) * batch_size]} ) # save the result file testLabel = np.array([]) for test_index in range(n_test_batches): tempLabel = predict_model(test_index) testLabel = np.hstack((testLabel, tempLabel)) from save_data import csv_save csv_save(testLabel, "./data/cnn_result.csv")
from load_data import load_processed_data from qrcode_generator import to_qrcode import numpy as np texts, labels = load_processed_data(data_type='train', stem=False) feature_vec = [] i = 0 for text, label in zip(texts, labels): text_qrcode = to_qrcode(text) text_qrcode = np.array(list(text_qrcode.getdata())) text_qrcode[text_qrcode > 0] = 1 feature_vec.append(np.append(label, text_qrcode)) from save_data import csv_save csv_save(feature_vec, './data/traindata/qrcode_20000.csv')