def test_sawatabi_solver_with_initial_states_reverse(): model = LogicalModel(mtype="ising") x = model.variables("x", shape=(6,)) for i in range(6): model.add_interaction(x[i], coefficient=10.0) solver = SawatabiSolver() initial_states = [ { "x[0]": -1, "x[1]": -1, "x[2]": -1, "x[3]": -1, "x[4]": -1, "x[5]": -1, }, ] sampleset = solver.solve( model.to_physical(), num_reads=1, num_sweeps=10, initial_states=initial_states, reverse_options={"reverse_period": 5, "reverse_temperature": 10.0}, seed=12345, ) assert len(sampleset.record) == 1 # Check the ground state assert np.array_equal(sampleset.record[0].sample, [1, 1, 1, 1, 1, 1]) assert sampleset.record[0].energy == -60.0 assert sampleset.record[0].num_occurrences == 1
def test_sawatabi_solver_with_initial_states_ising(): model = LogicalModel(mtype="ising") x = model.variables("x", shape=(12,)) for i in range(12): model.add_interaction(x[i], coefficient=-1.0) solver = SawatabiSolver() initial_states = [ { "x[0]": 1, "x[1]": -1, "x[2]": -1, "x[3]": -1, "x[4]": -1, "x[5]": -1, "x[6]": -1, "x[7]": -1, "x[8]": -1, "x[9]": -1, "x[10]": -1, "x[11]": -1, }, ] sampleset = solver.solve(model.to_physical(), num_reads=1, num_sweeps=1, pickup_mode="sequential", initial_temperature=1e-9, initial_states=initial_states) assert len(sampleset.record) == 1 # Check the ground state assert np.array_equal(sampleset.record[0].sample, [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1]) assert sampleset.record[0].energy == -12.0 assert sampleset.record[0].num_occurrences == 1
def test_sawatabi_solver_with_initial_states_qubo(): model = LogicalModel(mtype="qubo") x = model.variables("x", shape=(6,)) for i in range(6): model.add_interaction(x[i], coefficient=-1.0) solver = SawatabiSolver() initial_states = [ { "x[0]": 1, "x[1]": 0, "x[2]": 1, "x[3]": 0, "x[4]": 1, "x[5]": 0, }, ] sampleset = solver.solve(model.to_physical(), num_reads=1, num_sweeps=10, cooling_rate=0.5, initial_states=initial_states, seed=12345) assert len(sampleset.record) == 1 # Check the ground state assert np.array_equal(sampleset.record[0].sample, [0, 0, 0, 0, 0, 0]) assert sampleset.record[0].energy == 0.0 assert sampleset.record[0].num_occurrences == 1
def test_sawatabi_solver_invalid_pickup_mode(): model = LogicalModel(mtype="ising") x = model.variables("x", shape=(2,)) for i in range(2): model.add_interaction(x[i], coefficient=-1.0) solver = SawatabiSolver() with pytest.raises(ValueError): solver.solve(model.to_physical(), pickup_mode="invalid")
def test_sawatabi_solver_with_initial_states_fails(): model = LogicalModel(mtype="ising") x = model.variables("x", shape=(2,)) for i in range(2): model.add_interaction(x[i], coefficient=-1.0) solver = SawatabiSolver() initial_states = [{"x[0]": 1, "x[1]": 1}] with pytest.raises(ValueError): solver.solve(model.to_physical(), num_reads=2, initial_states=initial_states)
def test_sawatabi_solver_with_stats(): model = LogicalModel(mtype="ising") x = model.variables("x", shape=(2,)) for i in range(2): model.add_interaction(x[i], coefficient=-1.0) solver = SawatabiSolver() sampleset, stats = solver.solve(model.to_physical(), num_reads=1, num_sweeps=10, cooling_rate=0.5, seed=12345, need_stats=True) assert stats[0]["acceptance_history"][-1] == 0 assert stats[0]["energy_history"][-1] == -2.0 assert stats[0]["temperature_history"] == [100.0, 50.0, 25.0, 12.5, 6.25, 3.125, 1.5625, 0.78125, 0.390625, 0.1953125]
def test_sawatabi_solver_n_hot_ising_with_deleting(n, s, i): # n out of (s - 1) variables should be 1 model = LogicalModel(mtype="ising") x = model.variables("x", shape=(s,)) model.add_constraint(NHotConstraint(variables=x, n=n)) model.delete_variable(x[i]) solver = SawatabiSolver() sampleset = solver.solve(model.to_physical(), seed=12345) result = np.array(sampleset.record[0].sample) assert np.count_nonzero(result == 1) == n assert np.count_nonzero(result == -1) == s - n - 1
def test_sawatabi_solver_reuse_solver_instance(): model = LogicalModel(mtype="ising") x = model.variables("x", shape=(2,)) for i in range(2): model.add_interaction(x[i], coefficient=-1.0) solver = SawatabiSolver() sampleset_1 = solver.solve(model.to_physical(), num_reads=1, num_sweeps=10, cooling_rate=0.5, seed=12345) assert np.array_equal(sampleset_1.record[0].sample, [-1, -1]) assert sampleset_1.record[0].energy == -2.0 sampleset_2 = solver.solve(model.to_physical(), num_reads=1, num_sweeps=10, cooling_rate=0.5, seed=12345) assert np.array_equal(sampleset_2.record[0].sample, [-1, -1]) assert sampleset_2.record[0].energy == -2.0
def test_sawatabi_solver_n_hot_qubo(n, s): # n out of s variables should be 1 model = LogicalModel(mtype="qubo") x = model.variables("x", shape=(s,)) model.add_constraint(NHotConstraint(variables=x, n=n)) solver = SawatabiSolver() sampleset = solver.solve(model.to_physical(), seed=12345) result = np.array(sampleset.record[0].sample) assert np.count_nonzero(result == 1) == n assert np.count_nonzero(result == 0) == s - n # Execution time should be within practical seconds (20 sec). assert sampleset.info["timing"]["execution_sec"] <= 20.0
def test_sawatabi_solver_qubo(): model = LogicalModel(mtype="qubo") x = model.variables("x", shape=(2,)) model.add_interaction(x[0], coefficient=1.0) model.add_interaction(x[1], coefficient=2.0) model.add_interaction((x[0], x[1]), coefficient=-5.0) model.offset(10.0) solver = SawatabiSolver() sampleset = solver.solve(model.to_physical(), num_reads=1, num_sweeps=10, cooling_rate=0.55, seed=12345) assert sampleset.variables == ["x[0]", "x[1]"] assert len(sampleset.record) == 1 # Check the ground state record = sorted(sampleset.record, key=lambda r: r.energy) # sort by energy assert np.array_equal(record[0].sample, [0, 1]) assert record[0].energy == 8.0
def test_sawatabi_solver_ising(): model = LogicalModel(mtype="ising") s = model.variables("s", shape=(2,)) model.add_interaction(s[0], coefficient=1.0) model.add_interaction(s[1], coefficient=2.0) model.add_interaction((s[0], s[1]), coefficient=-3.0) model.offset(10.0) solver = SawatabiSolver() sampleset = solver.solve(model.to_physical(), num_reads=2, num_sweeps=10, cooling_rate=0.5, initial_temperature=10.0, seed=12345) assert sampleset.variables == ["s[0]", "s[1]"] assert len(sampleset.record) == 1 # Check the ground state assert np.array_equal(sampleset.record[0].sample, [-1, 1]) assert sampleset.record[0].energy == 6.0 assert sampleset.record[0].num_occurrences == 2
def test_sawatabi_solver_qubo_without_active_var(): model = LogicalModel(mtype="qubo") x = model.variables("x", shape=(2, 2)) model.add_interaction(x[0, 1], coefficient=1.0) model.add_interaction((x[1, 0], x[1, 1]), coefficient=2.0) physical = model.to_physical() assert len(physical._label_to_index) == 3 assert len(physical._index_to_label) == 3 solver = SawatabiSolver() sampleset = solver.solve(physical, seed=12345) assert sampleset.variables == ["x[0][1]", "x[1][0]", "x[1][1]"] assert len(sampleset.record) == 1 # Check the ground state assert np.array_equal(sampleset.record[0].sample, [1, 1, 1]) assert sampleset.record[0].energy == -3.0 assert sampleset.record[0].num_occurrences == 1
def test_sawatabi_solver_ising_without_active_var(): model = LogicalModel(mtype="ising") s = model.variables("s", shape=(2, 2)) model.add_interaction(s[0, 1], coefficient=1.0) model.add_interaction((s[1, 0], s[1, 1]), coefficient=2.0) physical = model.to_physical() assert len(physical._label_to_index) == 3 assert len(physical._index_to_label) == 3 solver = SawatabiSolver() sampleset = solver.solve(physical, num_reads=10, seed=12345) assert sampleset.variables == ["s[0][1]", "s[1][0]", "s[1][1]"] assert len(sampleset.record) == 2 # Check the ground state assert np.array_equal(sampleset.record[0].sample, [1, -1, -1]) assert np.array_equal(sampleset.record[1].sample, [1, 1, 1]) assert sampleset.record[0].energy == -3 assert sampleset.record[1].energy == -3 assert sampleset.record[0].num_occurrences + sampleset.record[1].num_occurrences == 10
def test_sawatabi_solver_invalid_reverse_options(): model = LogicalModel(mtype="ising") x = model.variables("x", shape=(2,)) for i in range(2): model.add_interaction(x[i], coefficient=-1.0) solver = SawatabiSolver() with pytest.raises(ValueError): solver.solve(model.to_physical(), reverse_options={"reverse_period": 5}) with pytest.raises(ValueError): solver.solve(model.to_physical(), reverse_options={"reverse_temperature": 10.0})
def test_sawatabi_solver_with_empty_model_fails(): model = LogicalModel(mtype="ising") physical = model.to_physical() solver = SawatabiSolver() with pytest.raises(ValueError): solver.solve(physical, seed=12345)
def test_sawatabi_solver_with_logical_model_fails(): model = LogicalModel(mtype="ising") solver = SawatabiSolver() with pytest.raises(TypeError): solver.solve(model, seed=12345)