예제 #1
0
            out = self.model(inp)[0]  #another [0]- when the n=2
            return out

    return VisualTrans('/home/mvasist/scripts_new/model/model_vit.pth')


with h5py.File('/home/mvasist/scripts_new/datasets/dataset/_/test.h5',
               'r') as f:
    spec = torch.Tensor(f.get('spectra'))
    th = torch.Tensor(f.get('theta_reduced'))
    #         l = torch.Tensor(f.get('label'))
    f.close()

#posterior = inference.build_posterior(build_den().to(device))
posterior = RatioBasedPosterior(method_family = 'snre_a', neural_net=build_den().to(device), \
                                prior= Prior, x_shape = torch.Size([1,947]))

observation = torch.load('/home/mvasist/scripts_new/observation/obs.pt')

start = time.time()
sampls = 10  #200000

samples = posterior.sample((sampls, ), x=observation)

end = time.time()
time_taken = (end - start) / 3600  #hrs

log_probability = posterior.log_prob(samples, x=observation)

# # Saving the samples file
예제 #2
0
파일: snre_base.py 프로젝트: ulamaca/sbi
    def __call__(
        self,
        num_simulations: int,
        proposal: Optional[Any] = None,
        num_atoms: int = 10,
        training_batch_size: int = 50,
        learning_rate: float = 5e-4,
        validation_fraction: float = 0.1,
        stop_after_epochs: int = 20,
        max_num_epochs: Optional[int] = None,
        clip_max_norm: Optional[float] = 5.0,
        exclude_invalid_x: bool = True,
        discard_prior_samples: bool = False,
        retrain_from_scratch_each_round: bool = False,
    ) -> RatioBasedPosterior:
        r"""Run SNRE.

        Return posterior $p(\theta|x)$ after inference.

        Args:
            num_atoms: Number of atoms to use for classification.
            exclude_invalid_x: Whether to exclude simulation outputs `x=NaN` or `x=±∞`
                during training. Expect errors, silent or explicit, when `False`.
            discard_prior_samples: Whether to discard samples simulated in round 1, i.e.
                from the prior. Training may be sped up by ignoring such less targeted
                samples.
            retrain_from_scratch_each_round: Whether to retrain the conditional density
                estimator for the posterior from scratch each round.

        Returns:
            Posterior $p(\theta|x)$ that can be sampled and evaluated.
        """

        max_num_epochs = 2**31 - 1 if max_num_epochs is None else max_num_epochs

        self._check_proposal(proposal)
        self._round = self._round + 1 if (proposal is not None) else 0

        # If presimulated data was provided from a later round, set the self._round to
        # this value. Otherwise, we would rely on the user to _additionally_ provide the
        # proposal that the presimulated data was sampled from in order for self._round
        # to become larger than 0.
        if self._data_round_index:
            self._round = max(self._round, max(self._data_round_index))

        # Run simulations for the round.
        theta, x = self._run_simulations(proposal, num_simulations)
        self._append_to_data_bank(theta, x, self._round)

        # Load data from most recent round.
        theta, x, _ = self._get_from_data_bank(self._round, exclude_invalid_x,
                                               False)

        # First round or if retraining from scratch:
        # Call the `self._build_neural_net` with the rounds' thetas and xs as
        # arguments, which will build the neural network
        # This is passed into NeuralPosterior, to create a neural posterior which
        # can `sample()` and `log_prob()`. The network is accessible via `.net`.
        if self._posterior is None or retrain_from_scratch_each_round:
            x_shape = x_shape_from_simulation(x)
            self._posterior = RatioBasedPosterior(
                method_family=self.__class__.__name__.lower(),
                neural_net=self._build_neural_net(theta, x),
                prior=self._prior,
                x_shape=x_shape,
                mcmc_method=self._mcmc_method,
                mcmc_parameters=self._mcmc_parameters,
                get_potential_function=PotentialFunctionProvider(),
            )

        # Fit posterior using newly aggregated data set.
        self._train(
            num_atoms=num_atoms,
            training_batch_size=training_batch_size,
            learning_rate=learning_rate,
            validation_fraction=validation_fraction,
            stop_after_epochs=stop_after_epochs,
            max_num_epochs=max_num_epochs,
            clip_max_norm=clip_max_norm,
            exclude_invalid_x=exclude_invalid_x,
            discard_prior_samples=discard_prior_samples,
        )

        # Update description for progress bar.
        if self._show_round_summary:
            print(self._describe_round(self._round, self._summary))

        # Update tensorboard and summary dict.
        self._summarize(
            round_=self._round,
            x_o=self._posterior.default_x,
            theta_bank=theta,
            x_bank=x,
        )

        self._posterior._num_trained_rounds = self._round + 1

        return deepcopy(self._posterior)
예제 #3
0
    def build_posterior(
        self,
        density_estimator: Optional[TorchModule] = None,
        mcmc_method: str = "slice_np",
        mcmc_parameters: Optional[Dict[str, Any]] = None,
    ) -> RatioBasedPosterior:
        r"""
        Build posterior from the neural density estimator.

        SNRE trains a neural network to approximate likelihood ratios, which in turn
        can be used obtain an unnormalized posterior
        $p(\theta|x) \propto p(x|\theta) \cdot p(\theta)$. The posterior returned here
        wraps the trained network such that one can directly evaluate the unnormalized
        posterior log-probability $p(\theta|x) \propto p(x|\theta) \cdot p(\theta)$ and
        draw samples from the posterior with MCMC. Note that, in the case of
        single-round SNRE_A / AALR, it is possible to evaluate the log-probability of
        the **normalized** posterior, but sampling still requires MCMC.

        Args:
            density_estimator: The density estimator that the posterior is based on.
                If `None`, use the latest neural density estimator that was trained.
            mcmc_method: Method used for MCMC sampling, one of `slice_np`, `slice`,
                `hmc`, `nuts`. Currently defaults to `slice_np` for a custom numpy
                implementation of slice sampling; select `hmc`, `nuts` or `slice` for
                Pyro-based sampling.
            mcmc_parameters: Dictionary overriding the default parameters for MCMC.
                The following parameters are supported: `thin` to set the thinning
                factor for the chain, `warmup_steps` to set the initial number of
                samples to discard, `num_chains` for the number of chains,
                `init_strategy` for the initialisation strategy for chains; `prior` will
                draw init locations from prior, whereas `sir` will use
                Sequential-Importance-Resampling using `init_strategy_num_candidates`
                to find init locations.

        Returns:
            Posterior $p(\theta|x)$  with `.sample()` and `.log_prob()` methods
            (the returned log-probability is unnormalized).
        """

        if density_estimator is None:
            density_estimator = self._neural_net
            # If internal net is used device is defined.
            device = self._device
        else:
            # Otherwise, infer it from the device of the net parameters.
            device = next(density_estimator.parameters()).device

        self._posterior = RatioBasedPosterior(
            method_family=self.__class__.__name__.lower(),
            neural_net=density_estimator,
            prior=self._prior,
            x_shape=self._x_shape,
            mcmc_method=mcmc_method,
            mcmc_parameters=mcmc_parameters,
            device=device,
        )

        self._posterior._num_trained_rounds = self._round + 1

        # Store models at end of each round.
        self._model_bank.append(deepcopy(self._posterior))
        self._model_bank[-1].net.eval()

        return deepcopy(self._posterior)
예제 #4
0
파일: snre_base.py 프로젝트: ulamaca/sbi
class RatioEstimator(NeuralInference, ABC):
    def __init__(
        self,
        simulator: Callable,
        prior,
        num_workers: int = 1,
        simulation_batch_size: int = 1,
        classifier: Union[str, Callable] = "resnet",
        mcmc_method: str = "slice_np",
        mcmc_parameters: Optional[Dict[str, Any]] = None,
        device: str = "cpu",
        logging_level: Union[int, str] = "warning",
        summary_writer: Optional[SummaryWriter] = None,
        show_progress_bars: bool = True,
        show_round_summary: bool = False,
    ):
        r"""Sequential Neural Ratio Estimation.

        We implement two inference methods in the respective subclasses.

        - SNRE_A / AALR is limited to `num_atoms=2`, but allows for density evaluation
          when training for one round.
        - SNRE_B / SRE can use more than two atoms, potentially boosting performance,
          but allows for posterior evaluation **only up to a normalizing constant**,
          even when training only one round.

        Args:
            classifier: Classifier trained to approximate likelihood ratios. If it is
                a string, use a pre-configured network of the provided type (one of
                linear, mlp, resnet). Alternatively, a function that builds a custom
                neural network can be provided. The function will be called with the
                first batch of simulations (theta, x), which can thus be used for shape
                inference and potentially for z-scoring. It needs to return a PyTorch
                `nn.Module` implementing the classifier.
            mcmc_method: Method used for MCMC sampling, one of `slice_np`, `slice`, `hmc`, `nuts`.
                Currently defaults to `slice_np` for a custom numpy implementation of
                slice sampling; select `hmc`, `nuts` or `slice` for Pyro-based sampling.
            mcmc_parameters: Dictionary overriding the default parameters for MCMC.
                The following parameters are supported: `thin` to set the thinning
                factor for the chain, `warmup_steps` to set the initial number of
                samples to discard, `num_chains` for the number of chains, `init_strategy`
                for the initialisation strategy for chains; `prior` will draw init
                locations from prior, whereas `sir` will use Sequential-Importance-
                Resampling using `init_strategy_num_candidates` to find init
                locations.

        See docstring of `NeuralInference` class for all other arguments.
        """

        super().__init__(
            simulator=simulator,
            prior=prior,
            num_workers=num_workers,
            simulation_batch_size=simulation_batch_size,
            device=device,
            logging_level=logging_level,
            summary_writer=summary_writer,
            show_progress_bars=show_progress_bars,
            show_round_summary=show_round_summary,
        )

        # As detailed in the docstring, `density_estimator` is either a string or
        # a callable. The function creating the neural network is attached to
        # `_build_neural_net`. It will be called in the first round and receive
        # thetas and xs as inputs, so that they can be used for shape inference and
        # potentially for z-scoring.
        check_estimator_arg(classifier)
        if isinstance(classifier, str):
            self._build_neural_net = utils.classifier_nn(model=classifier)
        else:
            self._build_neural_net = classifier
        self._posterior = None
        self._mcmc_method = mcmc_method
        self._mcmc_parameters = mcmc_parameters

        # Ratio-based-specific summary_writer fields.
        self._summary.update({"mcmc_times": []})  # type: ignore

    def __call__(
        self,
        num_simulations: int,
        proposal: Optional[Any] = None,
        num_atoms: int = 10,
        training_batch_size: int = 50,
        learning_rate: float = 5e-4,
        validation_fraction: float = 0.1,
        stop_after_epochs: int = 20,
        max_num_epochs: Optional[int] = None,
        clip_max_norm: Optional[float] = 5.0,
        exclude_invalid_x: bool = True,
        discard_prior_samples: bool = False,
        retrain_from_scratch_each_round: bool = False,
    ) -> RatioBasedPosterior:
        r"""Run SNRE.

        Return posterior $p(\theta|x)$ after inference.

        Args:
            num_atoms: Number of atoms to use for classification.
            exclude_invalid_x: Whether to exclude simulation outputs `x=NaN` or `x=±∞`
                during training. Expect errors, silent or explicit, when `False`.
            discard_prior_samples: Whether to discard samples simulated in round 1, i.e.
                from the prior. Training may be sped up by ignoring such less targeted
                samples.
            retrain_from_scratch_each_round: Whether to retrain the conditional density
                estimator for the posterior from scratch each round.

        Returns:
            Posterior $p(\theta|x)$ that can be sampled and evaluated.
        """

        max_num_epochs = 2**31 - 1 if max_num_epochs is None else max_num_epochs

        self._check_proposal(proposal)
        self._round = self._round + 1 if (proposal is not None) else 0

        # If presimulated data was provided from a later round, set the self._round to
        # this value. Otherwise, we would rely on the user to _additionally_ provide the
        # proposal that the presimulated data was sampled from in order for self._round
        # to become larger than 0.
        if self._data_round_index:
            self._round = max(self._round, max(self._data_round_index))

        # Run simulations for the round.
        theta, x = self._run_simulations(proposal, num_simulations)
        self._append_to_data_bank(theta, x, self._round)

        # Load data from most recent round.
        theta, x, _ = self._get_from_data_bank(self._round, exclude_invalid_x,
                                               False)

        # First round or if retraining from scratch:
        # Call the `self._build_neural_net` with the rounds' thetas and xs as
        # arguments, which will build the neural network
        # This is passed into NeuralPosterior, to create a neural posterior which
        # can `sample()` and `log_prob()`. The network is accessible via `.net`.
        if self._posterior is None or retrain_from_scratch_each_round:
            x_shape = x_shape_from_simulation(x)
            self._posterior = RatioBasedPosterior(
                method_family=self.__class__.__name__.lower(),
                neural_net=self._build_neural_net(theta, x),
                prior=self._prior,
                x_shape=x_shape,
                mcmc_method=self._mcmc_method,
                mcmc_parameters=self._mcmc_parameters,
                get_potential_function=PotentialFunctionProvider(),
            )

        # Fit posterior using newly aggregated data set.
        self._train(
            num_atoms=num_atoms,
            training_batch_size=training_batch_size,
            learning_rate=learning_rate,
            validation_fraction=validation_fraction,
            stop_after_epochs=stop_after_epochs,
            max_num_epochs=max_num_epochs,
            clip_max_norm=clip_max_norm,
            exclude_invalid_x=exclude_invalid_x,
            discard_prior_samples=discard_prior_samples,
        )

        # Update description for progress bar.
        if self._show_round_summary:
            print(self._describe_round(self._round, self._summary))

        # Update tensorboard and summary dict.
        self._summarize(
            round_=self._round,
            x_o=self._posterior.default_x,
            theta_bank=theta,
            x_bank=x,
        )

        self._posterior._num_trained_rounds = self._round + 1

        return deepcopy(self._posterior)

    def _train(
        self,
        num_atoms: int,
        training_batch_size: int,
        learning_rate: float,
        validation_fraction: float,
        stop_after_epochs: int,
        max_num_epochs: int,
        clip_max_norm: Optional[float],
        exclude_invalid_x: bool,
        discard_prior_samples: bool,
    ) -> None:
        r"""
        Trains the neural classifier.

        Update the classifier weights by maximizing a Bernoulli likelihood which
        distinguishes between jointly distributed $(\theta, x)$ pairs and randomly
        chosen $(\theta, x)$ pairs.

        Uses performance on a held-out validation set as a terminating condition (early
        stopping).
        """

        # Starting index for the training set (1 = discard round-0 samples).
        start_idx = int(discard_prior_samples and self._round > 0)
        theta, x, _ = self._get_from_data_bank(start_idx, exclude_invalid_x)

        # Get total number of training examples.
        num_examples = len(theta)

        # Select random train and validation splits from (theta, x) pairs.
        permuted_indices = torch.randperm(num_examples)
        num_training_examples = int((1 - validation_fraction) * num_examples)
        num_validation_examples = num_examples - num_training_examples
        train_indices, val_indices = (
            permuted_indices[:num_training_examples],
            permuted_indices[num_training_examples:],
        )

        clipped_batch_size = min(training_batch_size, num_validation_examples)

        # num_atoms = theta.shape[0]
        clamp_and_warn("num_atoms",
                       num_atoms,
                       min_val=2,
                       max_val=clipped_batch_size)

        # Dataset is shared for training and validation loaders.
        dataset = data.TensorDataset(theta, x)

        # Create neural net and validation loaders using a subset sampler.
        train_loader = data.DataLoader(
            dataset,
            batch_size=clipped_batch_size,
            drop_last=True,
            sampler=SubsetRandomSampler(train_indices),
        )
        val_loader = data.DataLoader(
            dataset,
            batch_size=clipped_batch_size,
            shuffle=False,
            drop_last=False,
            sampler=SubsetRandomSampler(val_indices),
        )

        optimizer = optim.Adam(
            list(self._posterior.net.parameters()),
            lr=learning_rate,
        )

        epoch, self._val_log_prob = 0, float("-Inf")

        while epoch <= max_num_epochs and not self._converged(
                epoch, stop_after_epochs):

            # Train for a single epoch.
            self._posterior.net.train()
            for batch in train_loader:
                optimizer.zero_grad()
                theta_batch, x_batch = (
                    batch[0].to(self._device),
                    batch[1].to(self._device),
                )
                loss = self._loss(theta_batch, x_batch, num_atoms)
                loss.backward()
                if clip_max_norm is not None:
                    clip_grad_norm_(
                        self._posterior.net.parameters(),
                        max_norm=clip_max_norm,
                    )
                optimizer.step()

            epoch += 1

            # Calculate validation performance.
            self._posterior.net.eval()
            log_prob_sum = 0
            with torch.no_grad():
                for batch in val_loader:
                    theta_batch, x_batch = (
                        batch[0].to(self._device),
                        batch[1].to(self._device),
                    )
                    log_prob = self._loss(theta_batch, x_batch, num_atoms)
                    log_prob_sum -= log_prob.sum().item()
                self._val_log_prob = log_prob_sum / num_validation_examples

            self._maybe_show_progress(self._show_progress_bars, epoch)

        self._report_convergence_at_end(epoch, stop_after_epochs,
                                        max_num_epochs)

        # Update summary.
        self._summary["epochs"].append(epoch)
        self._summary["best_validation_log_probs"].append(
            self._best_val_log_prob)

    def _classifier_logits(self, theta: Tensor, x: Tensor,
                           num_atoms: int) -> Tensor:
        """Return logits obtained through classifier forward pass.

        The logits are obtained from atomic sets of (theta,x) pairs.
        """
        batch_size = theta.shape[0]
        repeated_x = utils.repeat_rows(x, num_atoms)

        # Choose `1` or `num_atoms - 1` thetas from the rest of the batch for each x.
        probs = ones(batch_size,
                     batch_size) * (1 - eye(batch_size)) / (batch_size - 1)

        choices = torch.multinomial(probs,
                                    num_samples=num_atoms - 1,
                                    replacement=False)

        contrasting_theta = theta[choices]

        atomic_theta = torch.cat((theta[:, None, :], contrasting_theta),
                                 dim=1).reshape(batch_size * num_atoms, -1)

        theta_and_x = torch.cat((atomic_theta, repeated_x), dim=1)

        return self._posterior.net(theta_and_x)

    @abstractmethod
    def _loss(self, theta: Tensor, x: Tensor, num_atoms: int) -> Tensor:
        raise NotImplementedError