# layer_0 model_0 = ConvAutoEncoder( layers=[layer_0_en, MaxPoolingSameSize(pool_size=(4, 4)), layer_0_de]) out_0 = model_0.fprop(images, corruption_level=corruption_level) cost_0 = mean_square_cost(out_0[-1], images) + L2_regularization( model_0.params, 0.005) updates_0 = gd_updates(cost=cost_0, params=model_0.params, method="sgd", learning_rate=0.1) # layer_0 --> layer_1 model_0_to_1 = FeedForward( layers=[layer_0_en, MaxPooling(pool_size=(4, 4))]) out_0_to_1 = model_0_to_1.fprop(images) # layer_1 model_1 = ConvAutoEncoder( layers=[layer_1_en, MaxPoolingSameSize(pool_size=(2, 2)), layer_1_de]) out_1 = model_1.fprop(out_0_to_1[-1], corruption_level=corruption_level) cost_1 = mean_square_cost(out_1[-1], out_0_to_1[-1]) + L2_regularization( model_1.params, 0.005) updates_1 = gd_updates(cost=cost_1, params=model_1.params, method="sgd", learning_rate=0.1) # layer_1 --> layer_2
batch_size=batch_size, border_mode="same") # learning rate formula: # r = 1 - 0.5*(ni/ntot)*(ni/ntot) # ni = ith layer; ntot = number of layers # layer_0 model_0=ConvAutoEncoder(layers=[layer_0_en, MaxPoolingSameSize(pool_size=(4,4)), layer_0_de]) out_0=model_0.fprop(images, corruption_level=corruption_level) cost_0=mean_square_cost(out_0[-1], images)+L2_regularization(model_0.params, 0.005) updates_0=gd_updates(cost=cost_0, params=model_0.params, method="sgd", learning_rate=0.1) # layer_0 --> layer_1 model_0_to_1=FeedForward(layers=[layer_0_en, MaxPooling(pool_size=(2,2))]); out_0_to_1=model_0_to_1.fprop(images); # layer_1 model_1=ConvAutoEncoder(layers=[layer_1_en, MaxPoolingSameSize(pool_size=(2,2)), layer_1_de]) out_1=model_1.fprop(out_0_to_1[-1], corruption_level=corruption_level) cost_1=mean_square_cost(out_1[-1], out_0_to_1[-1])+L2_regularization(model_1.params, 0.005) updates_1=gd_updates(cost=cost_1, params=model_1.params, method="sgd", learning_rate=0.1) # layer_1 --> layer_2 model_1_to_2=FeedForward(layers=[layer_1_en, MaxPooling(pool_size=(4,4))]); out_1_to_2=model_1_to_2.fprop(images); # layer_2 model_2=ConvAutoEncoder(layers=[layer_2_en, MaxPoolingSameSize(pool_size=(2,2)), layer_2_de]) out_2=model_2.fprop(out_1_to_2[-1], corruption_level=corruption_level)
print "[MESSAGE] The data is loaded" X = T.matrix("data") y = T.ivector("label") idx = T.lscalar() images = X.reshape((batch_size, 1, 32, 32)) layer_0 = LCNLayer(filter_size=(7, 7), num_filters=64, num_channels=1, fm_size=(32, 32), batch_size=batch_size, border_mode="full") pool_0 = MaxPooling(pool_size=(2, 2)) layer_1 = LCNLayer(filter_size=(5, 5), num_filters=32, num_channels=64, fm_size=(16, 16), batch_size=batch_size, border_mode="full") pool_1 = MaxPooling(pool_size=(2, 2)) flattener = Flattener() layer_2 = ReLULayer(in_dim=32 * 64, out_dim=800) layer_3 = SoftmaxLayer(in_dim=800, out_dim=10)
# batch_size=batch_size, # border_mode="full") model_0 = ConvAutoEncoder(layers=[layer_0_en, layer_0_de]) out_0 = model_0.fprop(images, corruption_level=corruption_level) cost_0 = mean_square_cost(out_0[-1], images) + L2_regularization( model_0.params, 0.005) updates_0 = gd_updates(cost=cost_0, params=model_0.params, method="sgd", learning_rate=0.1) ## append a max-pooling layer model_trans = FeedForward( layers=[layer_0_en, MaxPooling(pool_size=(2, 2))]) out_trans = model_trans.fprop(images) model_1 = ConvAutoEncoder(layers=[layer_1_en, layer_1_de]) out_1 = model_1.fprop(out_trans[-1], corruption_level=corruption_level) cost_1 = mean_square_cost(out_1[-1], out_trans[-1]) + L2_regularization( model_1.params, 0.005) updates_1 = gd_updates(cost=cost_1, params=model_1.params, method="sgd", learning_rate=0.1) # model_2=ConvAutoEncoder(layers=[layer_2_en, layer_2_de]) # out_2=model_2.fprop(out_1[0], corruption_level=corruption_level) # cost_2=mean_square_cost(out_2[-1], out_1[0])+L2_regularization(model_2.params, 0.005) # updates_2=gd_updates(cost=cost_2, params=model_2.params, method="sgd", learning_rate=0.1)
layer_1_de=SigmoidConvLayer(filter_size=(2,2), num_filters=50, num_channels=50, fm_size=(8,8), batch_size=batch_size, border_mode="same") model_0=ConvAutoEncoder(layers=[layer_0_en, MaxPoolingSameSize(pool_size=(4,4)), layer_0_de]) out_0=model_0.fprop(images, corruption_level=corruption_level) cost_0=mean_square_cost(out_0[-1], images)+L2_regularization(model_0.params, 0.005) updates_0=gd_updates(cost=cost_0, params=model_0.params, method="sgd", learning_rate=0.1) ## append a max-pooling layer model_trans=FeedForward(layers=[layer_0_en, MaxPooling(pool_size=(4,4))]); out_trans=model_trans.fprop(images); model_1=ConvAutoEncoder(layers=[layer_1_en, MaxPoolingSameSize(pool_size=(2,2)), layer_1_de]) out_1=model_1.fprop(out_trans[-1], corruption_level=corruption_level) cost_1=mean_square_cost(out_1[-1], out_trans[-1])+L2_regularization(model_1.params, 0.005) updates_1=gd_updates(cost=cost_1, params=model_1.params, method="sgd", learning_rate=0.1) train_0=theano.function(inputs=[idx, corruption_level], outputs=[cost_0], updates=updates_0, givens={X: train_set_x[idx * batch_size: (idx + 1) * batch_size]}) train_1=theano.function(inputs=[idx, corruption_level],