def initialize(self, weight_type="none"): """Initialize weights and bias Parameters ---------- weight_type : string type of weights: "none", "tanh", "sigmoid" """ if self.W==None: self.W=util.init_weights("W", self.out_dim, self.in_dim, weight_type=weight_type); if self.use_bias==True and self.bias==None: self.bias=util.init_weights("bias", self.out_dim, weight_type=weight_type);
def initialize(self, weight_type="none"): """Initialize weights and bias Parameters ---------- weight_type : string type of weights: "none", "tanh", "sigmoid" """ # should have better implementation for convnet weights fan_in = self.num_channels * np.prod(self.filter_size) fan_out = self.num_filters * np.prod(self.filter_size) filter_bound = np.sqrt(6. / (fan_in + fan_out)) filter_shape = (self.num_filters, self.num_channels) + (self.filter_size) self.filters = theano.shared(np.asarray(np.random.uniform( low=-filter_bound, high=filter_bound, size=filter_shape), dtype='float32'), borrow=True) if self.use_bias == True: self.bias = util.init_weights("bias", self.num_filters, weight_type=weight_type)
def initialize(self, weight_type="none"): """Initialize weights and bias Parameters ---------- weight_type : string type of weights: "none", "tanh", "sigmoid" """ # should have better implementation for convnet weights fan_in = self.num_channels*np.prod(self.filter_size); fan_out = self.num_filters*np.prod(self.filter_size); filter_bound=np.sqrt(6./(fan_in + fan_out)); filter_shape=(self.num_filters, self.num_channels)+(self.filter_size); self.filters = theano.shared(np.asarray(np.random.uniform(low=-filter_bound, high=filter_bound, size=filter_shape), dtype='float32'), borrow=True); if self.use_bias==True: self.bias=util.init_weights("bias", self.num_filters, weight_type=weight_type);