def generateBaseMesh(cls, region, options): """ Generate the base tricubic Hermite mesh. See also generateMesh(). :param region: Zinc region to define model in. Must be empty. :param options: Dict containing options. See getDefaultOptions(). :return: list of AnnotationGroup """ # set dependent outer diameter used in atria2 options['LV outlet outer diameter'] = options[ 'LV outlet inner diameter'] + 2.0 * options[ 'LV outlet wall thickness'] fm = region.getFieldmodule() fm.beginChange() coordinates = zinc_utils.getOrCreateCoordinateField(fm) cache = fm.createFieldcache() # generate heartventriclesbase2 model and put atria2 on it annotationGroups = MeshType_3d_heartventriclesbase2.generateBaseMesh( region, options) annotationGroups += MeshType_3d_heartatria2.generateBaseMesh( region, options) fm.endChange() return annotationGroups
def generateBaseMesh(cls, region, options): """ Generate the base tricubic Hermite mesh. See also generateMesh(). :param region: Zinc region to define model in. Must be empty. :param options: Dict containing options. See getDefaultOptions(). :return: None """ options['Diameter'] = 1.0 radiusSphere = options['Diameter'] * 0.5 radiusAnt = options['Anterior radius of curvature'] radiusPos = options['Posterior radius of curvature'] lensThickness = options['Axial thickness'] sphereSphericalRadiusFraction = options[ 'Sphere spherical radius fraction'] lensSphericalRadiusFraction = options['Lens spherical radius fraction'] fm = region.getFieldmodule() fm.beginChange() cache = fm.createFieldcache() # generate solidsphere with unit diameter MeshType_3d_solidsphere1.generateBaseMesh(region, options) sphereCoordinates = zinc_utils.getOrCreateCoordinateField(fm) # Morph sphere surface to lens surface lensRC = getSphereToLensCoordinates(sphereCoordinates, radiusSphere, radiusAnt, radiusPos, lensThickness, sphereSphericalRadiusFraction, lensSphericalRadiusFraction) # Assign Field fieldassignment = sphereCoordinates.createFieldassignment(lensRC) result = fieldassignment.assign() fm.endChange()
def generateBaseMesh(cls, region, options, baseCentre=[0.0, 0.0, 0.0], axisSide1=[0.0, -1.0, 0.0], axisUp=[0.0, 0.0, 1.0]): """ Generate the base bicubic-linear Hermite mesh. See also generateMesh(). Optional extra parameters allow centre and axes to be set. :param region: Zinc region to define model in. Must be empty. :param options: Dict containing options. See getDefaultOptions(). :param baseCentre: Centre of valve on ventriculo-arterial junction. :param axisSide: Unit vector in first side direction where angle around starts. :param axisUp: Unit vector in outflow direction of valve. :return: list of AnnotationGroup """ unitScale = options['Unit scale'] outerHeight = unitScale * options['Outer height'] innerDepth = unitScale * options['Inner depth'] cuspHeight = unitScale * options['Cusp height'] innerRadius = unitScale * 0.5 * options['Inner diameter'] sinusRadialDisplacement = unitScale * options[ 'Sinus radial displacement'] wallThickness = unitScale * options['Wall thickness'] cuspThickness = unitScale * options['Cusp thickness'] aorticNotPulmonary = options['Aortic not pulmonary'] useCrossDerivatives = False fm = region.getFieldmodule() fm.beginChange() coordinates = zinc_utils.getOrCreateCoordinateField(fm) cache = fm.createFieldcache() if aorticNotPulmonary: arterialRootGroup = AnnotationGroup(region, 'root of aorta', FMANumber=3740, lyphID='Lyph ID unknown') cuspGroups = [ AnnotationGroup(region, 'posterior cusp of aortic valve', FMANumber=7253, lyphID='Lyph ID unknown'), AnnotationGroup(region, 'right cusp of aortic valve', FMANumber=7252, lyphID='Lyph ID unknown'), AnnotationGroup(region, 'left cusp of aortic valve', FMANumber=7251, lyphID='Lyph ID unknown') ] else: arterialRootGroup = AnnotationGroup(region, 'root of pulmonary trunk', FMANumber=8612, lyphID='Lyph ID unknown') cuspGroups = [ AnnotationGroup(region, 'right cusp of pulmonary valve', FMANumber=7250, lyphID='Lyph ID unknown'), AnnotationGroup(region, 'anterior cusp of pulmonary valve', FMANumber=7249, lyphID='Lyph ID unknown'), AnnotationGroup(region, 'left cusp of pulmonary valve', FMANumber=7247, lyphID='Lyph ID unknown') ] allGroups = [arterialRootGroup ] # groups that all elements in scaffold will go in annotationGroups = allGroups + cuspGroups # annotation fiducial points fiducialGroup = zinc_utils.getOrCreateGroupField(fm, 'fiducial') fiducialCoordinates = zinc_utils.getOrCreateCoordinateField( fm, 'fiducial_coordinates') fiducialLabel = zinc_utils.getOrCreateLabelField(fm, 'fiducial_label') #fiducialElementXi = zinc_utils.getOrCreateElementXiField(fm, 'fiducial_element_xi') datapoints = fm.findNodesetByFieldDomainType( Field.DOMAIN_TYPE_DATAPOINTS) fiducialPoints = zinc_utils.getOrCreateNodesetGroup( fiducialGroup, datapoints) datapointTemplateExternal = datapoints.createNodetemplate() datapointTemplateExternal.defineField(fiducialCoordinates) datapointTemplateExternal.defineField(fiducialLabel) ################# # Create nodes ################# nodes = fm.findNodesetByFieldDomainType(Field.DOMAIN_TYPE_NODES) nodetemplate = nodes.createNodetemplate() nodetemplate.defineField(coordinates) nodetemplate.setValueNumberOfVersions(coordinates, -1, Node.VALUE_LABEL_VALUE, 1) nodetemplate.setValueNumberOfVersions(coordinates, -1, Node.VALUE_LABEL_D_DS1, 1) nodetemplate.setValueNumberOfVersions(coordinates, -1, Node.VALUE_LABEL_D_DS2, 1) nodetemplate.setValueNumberOfVersions(coordinates, -1, Node.VALUE_LABEL_D_DS3, 1) # most nodes in this scaffold do not have a DS3 derivative nodetemplateLinearS3 = nodes.createNodetemplate() nodetemplateLinearS3.defineField(coordinates) nodetemplateLinearS3.setValueNumberOfVersions(coordinates, -1, Node.VALUE_LABEL_VALUE, 1) nodetemplateLinearS3.setValueNumberOfVersions(coordinates, -1, Node.VALUE_LABEL_D_DS1, 1) nodetemplateLinearS3.setValueNumberOfVersions(coordinates, -1, Node.VALUE_LABEL_D_DS2, 1) # several only have a DS1 derivative nodetemplateLinearS2S3 = nodes.createNodetemplate() nodetemplateLinearS2S3.defineField(coordinates) nodetemplateLinearS2S3.setValueNumberOfVersions( coordinates, -1, Node.VALUE_LABEL_VALUE, 1) nodetemplateLinearS2S3.setValueNumberOfVersions( coordinates, -1, Node.VALUE_LABEL_D_DS1, 1) nodeIdentifier = max(1, zinc_utils.getMaximumNodeIdentifier(nodes) + 1) elementsCountAround = 6 radiansPerElementAround = 2.0 * math.pi / elementsCountAround axisSide2 = vector.crossproduct3(axisUp, axisSide1) outerRadius = innerRadius + wallThickness cuspOuterLength2 = 0.5 * getApproximateEllipsePerimeter( innerRadius, cuspHeight) cuspOuterWallArcLength = cuspOuterLength2 * innerRadius / ( innerRadius + cuspHeight) noduleOuterAxialArcLength = cuspOuterLength2 - cuspOuterWallArcLength noduleOuterRadialArcLength = innerRadius cuspOuterWalld1 = interp.interpolateLagrangeHermiteDerivative( [innerRadius, outerHeight + innerDepth - cuspHeight], [0.0, 0.0], [-innerRadius, 0.0], 0.0) sin60 = math.sin(math.pi / 3.0) cuspThicknessLowerFactor = 4.5 # GRC fudge factor cuspInnerLength2 = 0.5 * getApproximateEllipsePerimeter( innerRadius - cuspThickness / sin60, cuspHeight - cuspThicknessLowerFactor * cuspThickness) noduleInnerAxialArcLength = cuspInnerLength2 * ( cuspHeight - cuspThicknessLowerFactor * cuspThickness) / ( innerRadius - cuspThickness / sin60 + cuspHeight - cuspThicknessLowerFactor * cuspThickness) noduleInnerRadialArcLength = innerRadius - cuspThickness / math.tan( math.pi / 3.0) nMidCusp = 0 if aorticNotPulmonary else 1 # lower points ix, id1 = createCirclePoints( [(baseCentre[c] - axisUp[c] * innerDepth) for c in range(3)], [axisSide1[c] * innerRadius for c in range(3)], [axisSide2[c] * innerRadius for c in range(3)], elementsCountAround) ox, od1 = getSemilunarValveSinusPoints(baseCentre, axisSide1, axisSide2, outerRadius, sinusRadialDisplacement, startMidCusp=aorticNotPulmonary) lowerx, lowerd1 = [ix, ox], [id1, od1] # upper points topCentre = [(baseCentre[c] + axisUp[c] * outerHeight) for c in range(3)] # twice as many on inner: ix, id1 = createCirclePoints( topCentre, [axisSide1[c] * innerRadius for c in range(3)], [axisSide2[c] * innerRadius for c in range(3)], elementsCountAround * 2) # tweak inner points so elements attached to cusps are narrower cuspRadiansFactor = 0.25 # GRC fudge factor midDerivativeFactor = 1.0 + 0.5 * (1.0 - cuspRadiansFactor ) # GRC test compromise cuspAttachmentRadians = cuspRadiansFactor * radiansPerElementAround cuspAttachmentRadialDisplacement = wallThickness * 0.333 # GRC fudge factor cuspAttachmentRadius = innerRadius - cuspAttachmentRadialDisplacement for cusp in range(3): n1 = cusp * 2 - 1 + nMidCusp n2 = n1 * 2 id1[n2 + 2] = [2.0 * d for d in id1[n2 + 2]] # side 1 radiansAround = n1 * radiansPerElementAround + cuspAttachmentRadians rcosRadiansAround = cuspAttachmentRadius * math.cos(radiansAround) rsinRadiansAround = cuspAttachmentRadius * math.sin(radiansAround) ix[n2 + 1] = [(topCentre[c] + rcosRadiansAround * axisSide1[c] + rsinRadiansAround * axisSide2[c]) for c in range(3)] id1[n2 + 1] = interp.interpolateLagrangeHermiteDerivative( ix[n2 + 1], ix[n2 + 2], id1[n2 + 2], 0.0) # side 2 n1 = ((cusp + 1) * 2 - 1 + nMidCusp) % elementsCountAround n2 = n1 * 2 radiansAround = n1 * radiansPerElementAround - cuspAttachmentRadians rcosRadiansAround = cuspAttachmentRadius * math.cos(radiansAround) rsinRadiansAround = cuspAttachmentRadius * math.sin(radiansAround) ix[n2 - 1] = [(topCentre[c] + rcosRadiansAround * axisSide1[c] + rsinRadiansAround * axisSide2[c]) for c in range(3)] id1[n2 - 1] = interp.interpolateHermiteLagrangeDerivative( ix[n2 - 2], id1[n2 - 2], ix[n2 - 1], 1.0) ox, od1 = createCirclePoints( topCentre, [axisSide1[c] * outerRadius for c in range(3)], [axisSide2[c] * outerRadius for c in range(3)], elementsCountAround) upperx, upperd1 = [ix, ox], [id1, od1] # get lower and upper derivative 2 zero = [0.0, 0.0, 0.0] upperd2factor = outerHeight upd2 = [d * upperd2factor for d in axisUp] lowerOuterd2 = interp.smoothCubicHermiteDerivativesLine( [lowerx[1][nMidCusp], upperx[1][nMidCusp]], [upd2, upd2], fixStartDirection=True, fixEndDerivative=True)[0] lowerd2factor = 2.0 * (outerHeight + innerDepth) - upperd2factor lowerInnerd2 = [d * lowerd2factor for d in axisUp] lowerd2 = [[lowerInnerd2] * elementsCountAround, [lowerOuterd2] * elementsCountAround ] # some lowerd2[0] to be fitted below upperd2 = [[upd2] * (elementsCountAround * 2), [upd2] * elementsCountAround] # get lower and upper derivative 1 or 2 pointing to/from cusps for n1 in range(elementsCountAround): radiansAround = n1 * radiansPerElementAround cosRadiansAround = math.cos(radiansAround) sinRadiansAround = math.sin(radiansAround) if (n1 % 2) == nMidCusp: lowerd2[0][n1] = [ -cuspOuterWallArcLength * (cosRadiansAround * axisSide1[c] + sinRadiansAround * axisSide2[c]) for c in range(3) ] else: upperd1[0][n1 * 2] = [ (cuspOuterWalld1[0] * (cosRadiansAround * axisSide1[c] + sinRadiansAround * axisSide2[c]) + cuspOuterWalld1[1] * axisUp[c]) for c in range(3) ] # inner wall and mid sinus points; only every second one is used sinusDepth = innerDepth - cuspThicknessLowerFactor * cuspThickness # GRC test sinusCentre = [(baseCentre[c] - sinusDepth * axisUp[c]) for c in range(3)] sinusx, sinusd1 = createCirclePoints( sinusCentre, [axisSide1[c] * innerRadius for c in range(3)], [axisSide2[c] * innerRadius for c in range(3)], elementsCountAround) # get sinusd2, parallel to lower inclined lines sd2 = interp.smoothCubicHermiteDerivativesLine( [[innerRadius, -sinusDepth], [innerRadius, outerHeight]], [[wallThickness + sinusRadialDisplacement, innerDepth], [0.0, upperd2factor]], fixStartDirection=True, fixEndDerivative=True)[0] sinusd2 = [None] * elementsCountAround for cusp in range(3): n1 = cusp * 2 + nMidCusp radiansAround = n1 * radiansPerElementAround cosRadiansAround = math.cos(radiansAround) sinRadiansAround = math.sin(radiansAround) sinusd2[n1] = [(sd2[0] * (cosRadiansAround * axisSide1[c] + sinRadiansAround * axisSide2[c]) + sd2[1] * axisUp[c]) for c in range(3)] # get points on arc between mid sinus and upper cusp points arcx = [] arcd1 = [] scaled1 = 2.5 # GRC fudge factor for cusp in range(3): n1 = cusp * 2 + nMidCusp n1m = n1 - 1 n1p = (n1 + 1) % elementsCountAround n2m = n1m * 2 + 1 n2p = n1p * 2 - 1 ax, ad1 = interp.sampleCubicHermiteCurves( [upperx[0][n2m], sinusx[n1]], [[-scaled1 * d for d in upperd2[0][n2m]], [scaled1 * d for d in sinusd1[n1]]], elementsCountOut=2, addLengthStart=0.5 * vector.magnitude(upperd2[0][n2m]), lengthFractionStart=0.5, addLengthEnd=0.5 * vector.magnitude(sinusd1[n1]), lengthFractionEnd=0.5, arcLengthDerivatives=False)[0:2] arcx.append(ax[1]) arcd1.append(ad1[1]) ax, ad1 = interp.sampleCubicHermiteCurves( [ sinusx[n1], upperx[0][n2p], ], [[scaled1 * d for d in sinusd1[n1]], [scaled1 * d for d in upperd2[0][n2p]]], elementsCountOut=2, addLengthStart=0.5 * vector.magnitude(sinusd1[n1]), lengthFractionStart=0.5, addLengthEnd=0.5 * vector.magnitude(upperd2[0][n2p]), lengthFractionEnd=0.5, arcLengthDerivatives=False)[0:2] arcx.append(ax[1]) arcd1.append(ad1[1]) if nMidCusp == 0: arcx.append(arcx.pop(0)) arcd1.append(arcd1.pop(0)) # cusp nodule points noduleCentre = [(baseCentre[c] + axisUp[c] * (cuspHeight - innerDepth)) for c in range(3)] nodulex = [[], []] noduled1 = [[], []] noduled2 = [[], []] noduled3 = [[], []] cuspRadialThickness = cuspThickness / sin60 for i in range(3): nodulex[0].append(noduleCentre) n1 = i * 2 + nMidCusp radiansAround = n1 * radiansPerElementAround cosRadiansAround = math.cos(radiansAround) sinRadiansAround = math.sin(radiansAround) nodulex[1].append([(noduleCentre[c] + cuspRadialThickness * (cosRadiansAround * axisSide1[c] + sinRadiansAround * axisSide2[c])) for c in range(3)]) n1 = i * 2 - 1 + nMidCusp radiansAround = n1 * radiansPerElementAround cosRadiansAround = math.cos(radiansAround) sinRadiansAround = math.sin(radiansAround) noduled1[0].append([ noduleOuterRadialArcLength * (cosRadiansAround * axisSide1[c] + sinRadiansAround * axisSide2[c]) for c in range(3) ]) noduled1[1].append( vector.setMagnitude(noduled1[0][i], noduleInnerRadialArcLength)) n1 = i * 2 + 1 + nMidCusp radiansAround = n1 * radiansPerElementAround cosRadiansAround = math.cos(radiansAround) sinRadiansAround = math.sin(radiansAround) noduled2[0].append([ noduleOuterRadialArcLength * (cosRadiansAround * axisSide1[c] + sinRadiansAround * axisSide2[c]) for c in range(3) ]) noduled2[1].append( vector.setMagnitude(noduled2[0][i], noduleInnerRadialArcLength)) noduled3[0].append( [noduleOuterAxialArcLength * axisUp[c] for c in range(3)]) noduled3[1].append( [noduleInnerAxialArcLength * axisUp[c] for c in range(3)]) # Create nodes lowerNodeId = [[], []] for n3 in range(2): for n1 in range(elementsCountAround): node = nodes.createNode(nodeIdentifier, nodetemplateLinearS3) cache.setNode(node) coordinates.setNodeParameters(cache, -1, Node.VALUE_LABEL_VALUE, 1, lowerx[n3][n1]) coordinates.setNodeParameters(cache, -1, Node.VALUE_LABEL_D_DS1, 1, lowerd1[n3][n1]) coordinates.setNodeParameters(cache, -1, Node.VALUE_LABEL_D_DS2, 1, lowerd2[n3][n1]) lowerNodeId[n3].append(nodeIdentifier) nodeIdentifier += 1 sinusNodeId = [] for n1 in range(elementsCountAround): if (n1 % 2) != nMidCusp: sinusNodeId.append(None) continue node = nodes.createNode(nodeIdentifier, nodetemplateLinearS3) cache.setNode(node) coordinates.setNodeParameters(cache, -1, Node.VALUE_LABEL_VALUE, 1, sinusx[n1]) coordinates.setNodeParameters(cache, -1, Node.VALUE_LABEL_D_DS1, 1, sinusd1[n1]) coordinates.setNodeParameters(cache, -1, Node.VALUE_LABEL_D_DS2, 1, sinusd2[n1]) sinusNodeId.append(nodeIdentifier) nodeIdentifier += 1 arcNodeId = [] for n1 in range(elementsCountAround): node = nodes.createNode(nodeIdentifier, nodetemplateLinearS2S3) cache.setNode(node) coordinates.setNodeParameters(cache, -1, Node.VALUE_LABEL_VALUE, 1, arcx[n1]) coordinates.setNodeParameters(cache, -1, Node.VALUE_LABEL_D_DS1, 1, arcd1[n1]) arcNodeId.append(nodeIdentifier) nodeIdentifier += 1 noduleNodeId = [[], []] for n3 in range(2): for n1 in range(3): node = nodes.createNode(nodeIdentifier, nodetemplate) cache.setNode(node) coordinates.setNodeParameters(cache, -1, Node.VALUE_LABEL_VALUE, 1, nodulex[n3][n1]) coordinates.setNodeParameters(cache, -1, Node.VALUE_LABEL_D_DS1, 1, noduled1[n3][n1]) coordinates.setNodeParameters(cache, -1, Node.VALUE_LABEL_D_DS2, 1, noduled2[n3][n1]) coordinates.setNodeParameters(cache, -1, Node.VALUE_LABEL_D_DS3, 1, noduled3[n3][n1]) noduleNodeId[n3].append(nodeIdentifier) nodeIdentifier += 1 upperNodeId = [[], []] for n3 in range(2): for n1 in range(len(upperx[n3])): node = nodes.createNode(nodeIdentifier, nodetemplateLinearS3) cache.setNode(node) coordinates.setNodeParameters(cache, -1, Node.VALUE_LABEL_VALUE, 1, upperx[n3][n1]) coordinates.setNodeParameters(cache, -1, Node.VALUE_LABEL_D_DS1, 1, upperd1[n3][n1]) coordinates.setNodeParameters(cache, -1, Node.VALUE_LABEL_D_DS2, 1, upperd2[n3][n1]) upperNodeId[n3].append(nodeIdentifier) nodeIdentifier += 1 ################# # Create elements ################# mesh = fm.findMeshByDimension(3) allMeshGroups = [allGroup.getMeshGroup(mesh) for allGroup in allGroups] cuspMeshGroups = [ cuspGroup.getMeshGroup(mesh) for cuspGroup in cuspGroups ] linearHermiteLinearBasis = fm.createElementbasis( 3, Elementbasis.FUNCTION_TYPE_LINEAR_LAGRANGE) linearHermiteLinearBasis.setFunctionType( 2, Elementbasis.FUNCTION_TYPE_CUBIC_HERMITE) hermiteLinearLinearBasis = fm.createElementbasis( 3, Elementbasis.FUNCTION_TYPE_LINEAR_LAGRANGE) hermiteLinearLinearBasis.setFunctionType( 1, Elementbasis.FUNCTION_TYPE_CUBIC_HERMITE) bicubichermitelinear = eftfactory_bicubichermitelinear( mesh, useCrossDerivatives) eftDefault = bicubichermitelinear.createEftNoCrossDerivatives() elementIdentifier = max( 1, zinc_utils.getMaximumElementIdentifier(mesh) + 1) elementtemplate1 = mesh.createElementtemplate() elementtemplate1.setElementShapeType(Element.SHAPE_TYPE_CUBE) # wall elements for cusp in range(3): n1 = cusp * 2 - 1 + nMidCusp n2 = n1 * 2 for e in range(6): eft1 = None scalefactors = None if (e == 0) or (e == 5): # 6 node linear-hermite-linear collapsed wedge element expanding from zero width on outer wall of root, attaching to vertical part of cusp eft1 = mesh.createElementfieldtemplate( linearHermiteLinearBasis) # switch mappings to use DS2 instead of default DS1 remapEftNodeValueLabel(eft1, [1, 2, 3, 4, 5, 6, 7, 8], Node.VALUE_LABEL_D_DS1, [(Node.VALUE_LABEL_D_DS2, [])]) if e == 0: nids = [ lowerNodeId[0][n1], arcNodeId[n1], upperNodeId[0][n2], upperNodeId[0][n2 + 1], lowerNodeId[1][n1], upperNodeId[1][n1] ] setEftScaleFactorIds(eft1, [1], []) scalefactors = [-1.0] remapEftNodeValueLabel(eft1, [2], Node.VALUE_LABEL_D_DS2, [(Node.VALUE_LABEL_D_DS1, [1])]) else: nids = [ arcNodeId[n1 + 1], lowerNodeId[0][n1 - 4], upperNodeId[0][n2 + 3], upperNodeId[0][n2 - 8], lowerNodeId[1][n1 - 4], upperNodeId[1][n1 - 4] ] remapEftNodeValueLabel(eft1, [1], Node.VALUE_LABEL_D_DS2, [(Node.VALUE_LABEL_D_DS1, [])]) ln_map = [1, 2, 3, 4, 5, 5, 6, 6] remapEftLocalNodes(eft1, 6, ln_map) elif (e == 1) or (e == 4): # 6 node hermite-linear-linear collapsed wedge element on lower wall eft1 = mesh.createElementfieldtemplate( hermiteLinearLinearBasis) if e == 1: nids = [ lowerNodeId[0][n1], lowerNodeId[0][n1 + 1], arcNodeId[n1], sinusNodeId[n1 + 1], lowerNodeId[1][n1], lowerNodeId[1][n1 + 1] ] else: nids = [ lowerNodeId[0][n1 + 1], lowerNodeId[0][n1 - 4], sinusNodeId[n1 + 1], arcNodeId[n1 + 1], lowerNodeId[1][n1 + 1], lowerNodeId[1][n1 - 4] ] ln_map = [1, 2, 3, 4, 5, 6, 5, 6] remapEftLocalNodes(eft1, 6, ln_map) else: # 8 node elements with wedges on two sides if e == 2: eft1 = bicubichermitelinear.createEftNoCrossDerivatives( ) setEftScaleFactorIds(eft1, [1], []) scalefactors = [-1.0] nids = [ arcNodeId[n1], sinusNodeId[n1 + 1], upperNodeId[0][n2 + 1], upperNodeId[0][n2 + 2], lowerNodeId[1][n1], lowerNodeId[1][n1 + 1], upperNodeId[1][n1], upperNodeId[1][n1 + 1] ] remapEftNodeValueLabel(eft1, [1], Node.VALUE_LABEL_D_DS2, [(Node.VALUE_LABEL_D_DS1, [1])]) else: eft1 = eftDefault nids = [ sinusNodeId[n1 + 1], arcNodeId[n1 + 1], upperNodeId[0][n2 + 2], upperNodeId[0][n2 + 3], lowerNodeId[1][n1 + 1], lowerNodeId[1][n1 - 4], upperNodeId[1][n1 + 1], upperNodeId[1][n1 - 4] ] remapEftNodeValueLabel(eft1, [2], Node.VALUE_LABEL_D_DS2, [(Node.VALUE_LABEL_D_DS1, [])]) result = elementtemplate1.defineField(coordinates, -1, eft1) element = mesh.createElement(elementIdentifier, elementtemplate1) result2 = element.setNodesByIdentifier(eft1, nids) if scalefactors: result3 = element.setScaleFactors(eft1, scalefactors) else: result3 = 7 #print('create arterial root wall', cusp, e, 'element',elementIdentifier, result, result2, result3, nids) elementIdentifier += 1 for meshGroup in allMeshGroups: meshGroup.addElement(element) # cusps (leaflets) for cusp in range(3): n1 = cusp * 2 - 1 + nMidCusp n2 = n1 * 2 meshGroups = allMeshGroups + [cuspMeshGroups[cusp]] for e in range(2): eft1 = bicubichermitelinear.createEftNoCrossDerivatives() setEftScaleFactorIds(eft1, [1], []) scalefactors = [-1.0] if e == 0: nids = [ lowerNodeId[0][n1], lowerNodeId[0][n1 + 1], upperNodeId[0][n2], noduleNodeId[0][cusp], arcNodeId[n1], sinusNodeId[n1 + 1], upperNodeId[0][n2 + 1], noduleNodeId[1][cusp] ] remapEftNodeValueLabel(eft1, [4, 8], Node.VALUE_LABEL_D_DS1, [(Node.VALUE_LABEL_D_DS1, [1])]) remapEftNodeValueLabel(eft1, [4, 8], Node.VALUE_LABEL_D_DS2, [(Node.VALUE_LABEL_D_DS3, [])]) remapEftNodeValueLabel(eft1, [5], Node.VALUE_LABEL_D_DS2, [(Node.VALUE_LABEL_D_DS1, [1])]) remapEftNodeValueLabel(eft1, [6], Node.VALUE_LABEL_D_DS2, [(Node.VALUE_LABEL_D_DS2, [1])]) remapEftNodeValueLabel(eft1, [7], Node.VALUE_LABEL_D_DS1, [(Node.VALUE_LABEL_D_DS1, [1])]) else: nids = [ lowerNodeId[0][n1 + 1], lowerNodeId[0][n1 - 4], noduleNodeId[0][cusp], upperNodeId[0][n2 - 8], sinusNodeId[n1 + 1], arcNodeId[n1 + 1], noduleNodeId[1][cusp], upperNodeId[0][n2 + 3] ] remapEftNodeValueLabel(eft1, [3, 7], Node.VALUE_LABEL_D_DS2, [(Node.VALUE_LABEL_D_DS3, [])]) remapEftNodeValueLabel(eft1, [3, 7], Node.VALUE_LABEL_D_DS1, [(Node.VALUE_LABEL_D_DS2, [])]) remapEftNodeValueLabel(eft1, [4, 8], Node.VALUE_LABEL_D_DS1, [(Node.VALUE_LABEL_D_DS1, [1])]) remapEftNodeValueLabel(eft1, [5], Node.VALUE_LABEL_D_DS2, [(Node.VALUE_LABEL_D_DS2, [1])]) remapEftNodeValueLabel(eft1, [6], Node.VALUE_LABEL_D_DS2, [(Node.VALUE_LABEL_D_DS1, [])]) result = elementtemplate1.defineField(coordinates, -1, eft1) element = mesh.createElement(elementIdentifier, elementtemplate1) result2 = element.setNodesByIdentifier(eft1, nids) if scalefactors: result3 = element.setScaleFactors(eft1, scalefactors) else: result3 = 7 #print('create semilunar cusp', cusp, e, 'element',elementIdentifier, result, result2, result3, nids) elementIdentifier += 1 for meshGroup in meshGroups: meshGroup.addElement(element) # create annotation points datapoint = fiducialPoints.createNode(-1, datapointTemplateExternal) cache.setNode(datapoint) fiducialCoordinates.setNodeParameters(cache, -1, Node.VALUE_LABEL_VALUE, 1, noduleCentre) fiducialLabel.assignString( cache, 'aortic valve ctr' if aorticNotPulmonary else 'pulmonary valve ctr') fm.endChange() return annotationGroups
def generateMesh(region, options): """ :param region: Zinc region to define model in. Must be empty. :param options: Dict containing options. See getDefaultOptions(). :return: None """ elementsCount1 = options['Number of elements 1'] elementsCount2 = options['Number of elements 2'] elementsCount3 = options['Number of elements 3'] elementsCountThroughWall = options['Number of elements through wall'] elementsCountAround = 2 * (elementsCount1 + elementsCount2) holeRadius = options['Hole diameter'] * 0.5 useCrossDerivatives = options['Use cross derivatives'] fm = region.getFieldmodule() fm.beginChange() coordinates = zinc_utils.getOrCreateCoordinateField(fm) nodes = fm.findNodesetByFieldDomainType(Field.DOMAIN_TYPE_NODES) nodetemplate = nodes.createNodetemplate() nodetemplate.defineField(coordinates) nodetemplate.setValueNumberOfVersions(coordinates, -1, Node.VALUE_LABEL_VALUE, 1) nodetemplate.setValueNumberOfVersions(coordinates, -1, Node.VALUE_LABEL_D_DS1, 1) nodetemplate.setValueNumberOfVersions(coordinates, -1, Node.VALUE_LABEL_D_DS2, 1) if useCrossDerivatives: nodetemplate.setValueNumberOfVersions(coordinates, -1, Node.VALUE_LABEL_D2_DS1DS2, 1) nodetemplate.setValueNumberOfVersions(coordinates, -1, Node.VALUE_LABEL_D_DS3, 1) if useCrossDerivatives: nodetemplate.setValueNumberOfVersions(coordinates, -1, Node.VALUE_LABEL_D2_DS1DS3, 1) nodetemplate.setValueNumberOfVersions(coordinates, -1, Node.VALUE_LABEL_D2_DS2DS3, 1) nodetemplate.setValueNumberOfVersions( coordinates, -1, Node.VALUE_LABEL_D3_DS1DS2DS3, 1) mesh = fm.findMeshByDimension(3) tricubichermite = eftfactory_tricubichermite(mesh, useCrossDerivatives) eft = tricubichermite.createEftBasic() tricubicHermiteBasis = fm.createElementbasis( 3, Elementbasis.FUNCTION_TYPE_CUBIC_HERMITE) # note I'm cheating here by using element-based scale factors # i.e. not shared by neighbouring elements, and I'm also using the same scale # factors for the bottom and top of each element eftOuter1 = mesh.createElementfieldtemplate(tricubicHermiteBasis) eftOuter2 = mesh.createElementfieldtemplate(tricubicHermiteBasis) i = 0 for eftOuter in [eftOuter1, eftOuter2]: i += 1 eftOuter.setNumberOfLocalScaleFactors(10) eft.setScaleFactorType( 1, Elementfieldtemplate.SCALE_FACTOR_TYPE_GLOBAL_GENERAL) # GRC: allow scale factor identifier for global -1 to be prescribed eft.setScaleFactorIdentifier(1, 1) # Global scale factor 4 to subtract lateral derivative term from cross derivative to fix edges eft.setScaleFactorType( 2, Elementfieldtemplate.SCALE_FACTOR_TYPE_GLOBAL_GENERAL) eft.setScaleFactorIdentifier(2, 2) nonCrossDerivativesNodes = [0, 1, 4, 5 ] if useCrossDerivatives else range(8) for n in nonCrossDerivativesNodes: eftOuter.setFunctionNumberOfTerms(n * 8 + 4, 0) eftOuter.setFunctionNumberOfTerms(n * 8 + 6, 0) eftOuter.setFunctionNumberOfTerms(n * 8 + 7, 0) eftOuter.setFunctionNumberOfTerms(n * 8 + 8, 0) # nodes 1,2,5,6: general map dxi1, dsxi2 from ds1, ds2 for n in [0, 1, 4, 5]: ln = n + 1 sfo = (n % 2) * 4 + 2 eftOuter.setFunctionNumberOfTerms(n * 8 + 2, 2) eftOuter.setTermNodeParameter(n * 8 + 2, 1, ln, Node.VALUE_LABEL_D_DS1, 1) eftOuter.setTermScaling(n * 8 + 2, 1, [1 + sfo]) eftOuter.setTermNodeParameter(n * 8 + 2, 2, ln, Node.VALUE_LABEL_D_DS2, 1) eftOuter.setTermScaling(n * 8 + 2, 2, [2 + sfo]) eftOuter.setFunctionNumberOfTerms(n * 8 + 3, 2) eftOuter.setTermNodeParameter(n * 8 + 3, 1, ln, Node.VALUE_LABEL_D_DS1, 1) eftOuter.setTermScaling(n * 8 + 3, 1, [3 + sfo]) eftOuter.setTermNodeParameter(n * 8 + 3, 2, ln, Node.VALUE_LABEL_D_DS2, 1) eftOuter.setTermScaling(n * 8 + 3, 2, [4 + sfo]) # map d2_dxi1dxi2 to subtract corner angle terms to fix edge continuity eftOuter.setFunctionNumberOfTerms(n * 8 + 4, 1) if i == 1: eftOuter.setTermNodeParameter(n * 8 + 4, 1, ln, Node.VALUE_LABEL_D_DS1, 1) if (n % 2) == 0: eftOuter.setTermScaling(n * 8 + 4, 1, [1, 2, 3 + sfo]) else: eftOuter.setTermScaling(n * 8 + 4, 1, [2, 3 + sfo]) else: eftOuter.setTermNodeParameter(n * 8 + 4, 1, ln, Node.VALUE_LABEL_D_DS2, 1) if (n % 2) == 0: eftOuter.setTermScaling(n * 8 + 4, 1, [1, 2, 4 + sfo]) else: eftOuter.setTermScaling(n * 8 + 4, 1, [2, 4 + sfo]) elementtemplate = mesh.createElementtemplate() elementtemplate.setElementShapeType(Element.SHAPE_TYPE_CUBE) result = elementtemplate.defineField(coordinates, -1, eft) elementtemplateOuter1 = mesh.createElementtemplate() elementtemplateOuter1.setElementShapeType(Element.SHAPE_TYPE_CUBE) result = elementtemplateOuter1.defineField(coordinates, -1, eftOuter1) elementtemplateOuter2 = mesh.createElementtemplate() elementtemplateOuter2.setElementShapeType(Element.SHAPE_TYPE_CUBE) result = elementtemplateOuter2.defineField(coordinates, -1, eftOuter2) cache = fm.createFieldcache() # create nodes radiansPerElementAround = 2.0 * math.pi / elementsCountAround wallThicknessMin = (0.5 - holeRadius) wallThicknessMax = math.sqrt(0.5) - holeRadius wallThicknessPerElement = wallThicknessMin / elementsCountThroughWall radius = holeRadius inner_x = [] inner_d1 = [] inner_d2 = [] startRadians = math.pi * (-0.5 - elementsCount1 / elementsCountAround) for n1 in range(elementsCountAround): radiansAround = startRadians + n1 * radiansPerElementAround cosRadiansAround = math.cos(radiansAround) sinRadiansAround = math.sin(radiansAround) inner_x.append( (radius * cosRadiansAround, radius * sinRadiansAround)) inner_d1.append( (radiansPerElementAround * radius * -sinRadiansAround, radiansPerElementAround * radius * cosRadiansAround)) #inner_d2.append((wallThicknessPerElement*cosRadiansAround, wallThicknessPerElement*sinRadiansAround)) inner_d2.append((wallThicknessMin * cosRadiansAround, wallThicknessMin * sinRadiansAround)) outer_x = [] outer_d1 = [] outer_d2 = [] mag = math.sqrt(elementsCount1 * elementsCount1 + elementsCount2 * elementsCount2) outer_dx1_ds1 = 1.0 / elementsCount1 outer_dx2_ds2 = 1.0 / elementsCount2 #cornerScale1 = 1.0 / max(elementsCount1 + 1, elementsCount2 + 1) #cornerScale1 = 1.0 / min(2, max(elementsCount1, elementsCount2)) cornerScale1 = 1.0 / max(elementsCount1 + elementsCountThroughWall, elementsCount2 + elementsCountThroughWall) sqrt05 = math.sqrt(0.5) wallThicknessMax = sqrt05 - holeRadius for n in range(elementsCount1): x = -0.5 + n / elementsCount1 outer_x.append((x, -0.5)) if n == 0: rx = x / sqrt05 ry = -0.5 / sqrt05 scale2 = wallThicknessMax outer_d1.append((-ry * cornerScale1, rx * cornerScale1)) outer_d2.append((rx * scale2, ry * scale2)) else: scale2 = wallThicknessMin outer_d1.append((outer_dx1_ds1, 0.0)) outer_d2.append((0.0, -scale2)) for n in range(elementsCount2): y = -0.5 + n / elementsCount2 outer_x.append((0.5, y)) if n == 0: rx = 0.5 / sqrt05 ry = y / sqrt05 scale2 = wallThicknessMax outer_d1.append((-ry * cornerScale1, rx * cornerScale1)) outer_d2.append((rx * scale2, ry * scale2)) else: scale2 = wallThicknessMin outer_d1.append((0.0, outer_dx2_ds2)) outer_d2.append((scale2, 0.0)) for n in range(elementsCount1): x = 0.5 - n / elementsCount1 outer_x.append((x, 0.5)) if n == 0: rx = x / sqrt05 ry = 0.5 / sqrt05 scale2 = wallThicknessMax outer_d1.append((-ry * cornerScale1, rx * cornerScale1)) outer_d2.append((rx * scale2, ry * scale2)) else: scale2 = wallThicknessMin outer_d1.append((-outer_dx1_ds1, 0.0)) outer_d2.append((0.0, scale2)) for n in range(elementsCount2): y = 0.5 - n / elementsCount2 outer_x.append((-0.5, y)) if n == 0: rx = -0.5 / sqrt05 ry = y / sqrt05 scale2 = wallThicknessMax outer_d1.append((-ry * cornerScale1, rx * cornerScale1)) outer_d2.append((rx * scale2, ry * scale2)) else: scale2 = wallThicknessMin outer_d1.append((0.0, -outer_dx2_ds2)) outer_d2.append((-scale2, 0.0)) nodeIdentifier = 1 x = [0.0, 0.0, 0.0] dx_ds1 = [0.0, 0.0, 0.0] dx_ds2 = [0.0, 0.0, 0.0] dx_ds3 = [0.0, 0.0, 1.0 / elementsCount3] outer_dx_ds1 = [1.0 / elementsCount1, 0.0, 0.0] outer_dx_ds2 = [0.0, 1.0 / elementsCount2, 0.0] outer_dx_ds3 = [0.0, 0.0, 1.0 / elementsCount3] zero = [0.0, 0.0, 0.0] for n3 in range(elementsCount3 + 1): x[2] = n3 / elementsCount3 # outer nodes for n1 in range(elementsCountAround): x[0] = outer_x[n1][0] x[1] = outer_x[n1][1] node = nodes.createNode(nodeIdentifier, nodetemplate) cache.setNode(node) coordinates.setNodeParameters(cache, -1, Node.VALUE_LABEL_VALUE, 1, x) coordinates.setNodeParameters(cache, -1, Node.VALUE_LABEL_D_DS1, 1, outer_dx_ds1) coordinates.setNodeParameters(cache, -1, Node.VALUE_LABEL_D_DS2, 1, outer_dx_ds2) #coordinates.setNodeParameters(cache, -1, Node.VALUE_LABEL_D_DS1, 1, [ outer_d1[n1][0], outer_d1[n1][1], 0.0 ]) #coordinates.setNodeParameters(cache, -1, Node.VALUE_LABEL_D_DS2, 1, [ outer_d2[n1][0], outer_d2[n1][1], 0.0 ]) coordinates.setNodeParameters(cache, -1, Node.VALUE_LABEL_D_DS3, 1, outer_dx_ds3) if useCrossDerivatives: coordinates.setNodeParameters(cache, -1, Node.VALUE_LABEL_D2_DS1DS2, 1, zero) coordinates.setNodeParameters(cache, -1, Node.VALUE_LABEL_D2_DS1DS3, 1, zero) coordinates.setNodeParameters(cache, -1, Node.VALUE_LABEL_D2_DS2DS3, 1, zero) coordinates.setNodeParameters( cache, -1, Node.VALUE_LABEL_D3_DS1DS2DS3, 1, zero) nodeIdentifier = nodeIdentifier + 1 # inner nodes for n2 in range(elementsCountThroughWall): xir = (n2 + 1) / elementsCountThroughWall xi = 1.0 - xir for n1 in range(elementsCountAround): node = nodes.createNode(nodeIdentifier, nodetemplate) cache.setNode(node) v = interpolateCubicHermite(inner_x[n1], inner_d2[n1], outer_x[n1], outer_d2[n1], xi) x[0] = v[0] x[1] = v[1] dx_ds1[0] = xir * inner_d1[n1][0] + xi * outer_d1[n1][0] dx_ds1[1] = xir * inner_d1[n1][1] + xi * outer_d1[n1][1] d2 = interpolateCubicHermiteDerivative( inner_x[n1], inner_d2[n1], outer_x[n1], outer_d2[n1], xi) dx_ds2[0] = -d2[ 0] / elementsCountThroughWall # *wallThicknessPerElement dx_ds2[1] = -d2[ 1] / elementsCountThroughWall # *wallThicknessPerElement coordinates.setNodeParameters(cache, -1, Node.VALUE_LABEL_VALUE, 1, x) coordinates.setNodeParameters(cache, -1, Node.VALUE_LABEL_D_DS1, 1, dx_ds1) coordinates.setNodeParameters(cache, -1, Node.VALUE_LABEL_D_DS2, 1, dx_ds2) coordinates.setNodeParameters(cache, -1, Node.VALUE_LABEL_D_DS3, 1, dx_ds3) if useCrossDerivatives: coordinates.setNodeParameters( cache, -1, Node.VALUE_LABEL_D2_DS1DS2, 1, zero) coordinates.setNodeParameters( cache, -1, Node.VALUE_LABEL_D2_DS1DS3, 1, zero) coordinates.setNodeParameters( cache, -1, Node.VALUE_LABEL_D2_DS2DS3, 1, zero) coordinates.setNodeParameters( cache, -1, Node.VALUE_LABEL_D3_DS1DS2DS3, 1, zero) nodeIdentifier = nodeIdentifier + 1 # create elements elementIdentifier = 1 no3 = (elementsCountThroughWall + 1) * elementsCountAround for e3 in range(elementsCount3): # first row general maps ds1, ds2 to dxi1, dxi2 for e1 in range(elementsCountAround): en = (e1 + 1) % elementsCountAround onX = (e1 % (elementsCount1 + elementsCount2)) < elementsCount1 elementtemplateOuter = elementtemplateOuter1 if onX else elementtemplateOuter2 eftOuter = eftOuter1 if onX else eftOuter2 element = mesh.createElement(elementIdentifier, elementtemplateOuter) bni11 = e3 * no3 + e1 + 1 bni12 = e3 * no3 + en + 1 bni21 = e3 * no3 + elementsCountAround + e1 + 1 bni22 = e3 * no3 + elementsCountAround + en + 1 nodeIdentifiers = [ bni11, bni12, bni21, bni22, bni11 + no3, bni12 + no3, bni21 + no3, bni22 + no3 ] result = element.setNodesByIdentifier(eftOuter, nodeIdentifiers) rev = e1 >= (elementsCount1 + elementsCount2) one = -1.0 if rev else 1.0 vx = one if onX else 0.0 vy = 0.0 if onX else one scaleFactors = [ -1.0, 4.0, vx, vy, -outer_d2[e1][0] / outer_dx_ds1[0] / elementsCountThroughWall, -outer_d2[e1][1] / outer_dx_ds2[1] / elementsCountThroughWall, vx, vy, -outer_d2[en][0] / outer_dx_ds1[0] / elementsCountThroughWall, -outer_d2[en][1] / outer_dx_ds2[1] / elementsCountThroughWall ] element.setScaleFactors(eftOuter, scaleFactors) elementIdentifier = elementIdentifier + 1 # remaining rows for e2 in range(1, elementsCountThroughWall): for e1 in range(elementsCountAround): element = mesh.createElement(elementIdentifier, elementtemplate) bni11 = e3 * no3 + e2 * elementsCountAround + e1 + 1 bni12 = e3 * no3 + e2 * elementsCountAround + ( e1 + 1) % elementsCountAround + 1 bni21 = e3 * no3 + (e2 + 1) * elementsCountAround + e1 + 1 bni22 = e3 * no3 + (e2 + 1) * elementsCountAround + ( e1 + 1) % elementsCountAround + 1 nodeIdentifiers = [ bni11, bni12, bni21, bni22, bni11 + no3, bni12 + no3, bni21 + no3, bni22 + no3 ] result = element.setNodesByIdentifier(eft, nodeIdentifiers) elementIdentifier = elementIdentifier + 1 fm.endChange()
def generateMesh(region, options): """ :param region: Zinc region to define model in. Must be empty. :param options: Dict containing options. See getDefaultOptions(). :return: None """ coordinateDimensions = options['Coordinate dimensions'] length = options['Length'] elementsCount = options['Number of elements'] fm = region.getFieldmodule() fm.beginChange() coordinates = zinc_utils.getOrCreateCoordinateField( fm, componentsCount=coordinateDimensions) cache = fm.createFieldcache() ################# # Create nodes ################# nodes = fm.findNodesetByFieldDomainType(Field.DOMAIN_TYPE_NODES) nodetemplate = nodes.createNodetemplate() nodetemplate.defineField(coordinates) nodetemplate.setValueNumberOfVersions(coordinates, -1, Node.VALUE_LABEL_VALUE, 1) nodetemplate.setValueNumberOfVersions(coordinates, -1, Node.VALUE_LABEL_D_DS1, 1) nodetemplate.setValueNumberOfVersions(coordinates, -1, Node.VALUE_LABEL_D_DS2, 1) nodetemplate.setValueNumberOfVersions(coordinates, -1, Node.VALUE_LABEL_D2_DS1DS2, 1) nodeIdentifier = 1 x = [0.0, 0.0, 0.0] dx_ds1 = [length / elementsCount, 0.0, 0.0] dx_ds2 = [0.0, 1.0, 0.0] d2x_ds1ds2 = [0.0, 0.0, 0.0] for n in range(elementsCount + 1): x[0] = length * n / elementsCount node = nodes.createNode(nodeIdentifier, nodetemplate) cache.setNode(node) coordinates.setNodeParameters(cache, -1, Node.VALUE_LABEL_VALUE, 1, x) coordinates.setNodeParameters(cache, -1, Node.VALUE_LABEL_D_DS1, 1, dx_ds1) coordinates.setNodeParameters(cache, -1, Node.VALUE_LABEL_D_DS2, 1, dx_ds2) coordinates.setNodeParameters(cache, -1, Node.VALUE_LABEL_D2_DS1DS2, 1, d2x_ds1ds2) nodeIdentifier = nodeIdentifier + 1 ################# # Create elements ################# mesh = fm.findMeshByDimension(1) cubicHermiteBasis = fm.createElementbasis( 1, Elementbasis.FUNCTION_TYPE_CUBIC_HERMITE) eft = mesh.createElementfieldtemplate(cubicHermiteBasis) elementtemplate = mesh.createElementtemplate() elementtemplate.setElementShapeType(Element.SHAPE_TYPE_LINE) result = elementtemplate.defineField(coordinates, -1, eft) elementIdentifier = 1 for e in range(elementsCount): element = mesh.createElement(elementIdentifier, elementtemplate) element.setNodesByIdentifier(eft, [e + 1, e + 2]) elementIdentifier = elementIdentifier + 1 fm.endChange()
def generateBaseMesh(region, options): """ Generate the base tricubic Hermite mesh. See also generateMesh(). :param region: Zinc region to define model in. Must be empty. :param options: Dict containing options. See getDefaultOptions(). :return: None """ elementsCount1 = options['Number of elements 1'] elementsCount2 = options['Number of elements 2'] elementsCount3 = options['Number of elements 3'] useCrossDerivatives = options['Use cross derivatives'] fm = region.getFieldmodule() fm.beginChange() coordinates = zinc_utils.getOrCreateCoordinateField(fm) nodes = fm.findNodesetByFieldDomainType(Field.DOMAIN_TYPE_NODES) nodetemplate = nodes.createNodetemplate() nodetemplate.defineField(coordinates) nodetemplate.setValueNumberOfVersions(coordinates, -1, Node.VALUE_LABEL_VALUE, 1) nodetemplate.setValueNumberOfVersions(coordinates, -1, Node.VALUE_LABEL_D_DS1, 1) nodetemplate.setValueNumberOfVersions(coordinates, -1, Node.VALUE_LABEL_D_DS2, 1) if useCrossDerivatives: nodetemplate.setValueNumberOfVersions(coordinates, -1, Node.VALUE_LABEL_D2_DS1DS2, 1) nodetemplate.setValueNumberOfVersions(coordinates, -1, Node.VALUE_LABEL_D_DS3, 1) if useCrossDerivatives: nodetemplate.setValueNumberOfVersions(coordinates, -1, Node.VALUE_LABEL_D2_DS1DS3, 1) nodetemplate.setValueNumberOfVersions(coordinates, -1, Node.VALUE_LABEL_D2_DS2DS3, 1) nodetemplate.setValueNumberOfVersions( coordinates, -1, Node.VALUE_LABEL_D3_DS1DS2DS3, 1) mesh = fm.findMeshByDimension(3) tricubichermite = eftfactory_tricubichermite(mesh, useCrossDerivatives) eft = tricubichermite.createEftBasic() elementtemplate = mesh.createElementtemplate() elementtemplate.setElementShapeType(Element.SHAPE_TYPE_CUBE) result = elementtemplate.defineField(coordinates, -1, eft) cache = fm.createFieldcache() # create nodes nodeIdentifier = 1 x = [0.0, 0.0, 0.0] dx_ds1 = [1.0 / elementsCount1, 0.0, 0.0] dx_ds2 = [0.0, 1.0 / elementsCount2, 0.0] dx_ds3 = [0.0, 0.0, 1.0 / elementsCount3] zero = [0.0, 0.0, 0.0] for n3 in range(elementsCount3 + 1): x[2] = n3 / elementsCount3 for n2 in range(elementsCount2 + 1): x[1] = n2 / elementsCount2 for n1 in range(elementsCount1 + 1): x[0] = n1 / elementsCount1 node = nodes.createNode(nodeIdentifier, nodetemplate) cache.setNode(node) coordinates.setNodeParameters(cache, -1, Node.VALUE_LABEL_VALUE, 1, x) coordinates.setNodeParameters(cache, -1, Node.VALUE_LABEL_D_DS1, 1, dx_ds1) coordinates.setNodeParameters(cache, -1, Node.VALUE_LABEL_D_DS2, 1, dx_ds2) coordinates.setNodeParameters(cache, -1, Node.VALUE_LABEL_D_DS3, 1, dx_ds3) if useCrossDerivatives: coordinates.setNodeParameters( cache, -1, Node.VALUE_LABEL_D2_DS1DS2, 1, zero) coordinates.setNodeParameters( cache, -1, Node.VALUE_LABEL_D2_DS1DS3, 1, zero) coordinates.setNodeParameters( cache, -1, Node.VALUE_LABEL_D2_DS2DS3, 1, zero) coordinates.setNodeParameters( cache, -1, Node.VALUE_LABEL_D3_DS1DS2DS3, 1, zero) nodeIdentifier = nodeIdentifier + 1 # create elements elementIdentifier = 1 no2 = (elementsCount1 + 1) no3 = (elementsCount2 + 1) * no2 for e3 in range(elementsCount3): for e2 in range(elementsCount2): for e1 in range(elementsCount1): element = mesh.createElement(elementIdentifier, elementtemplate) bni = e3 * no3 + e2 * no2 + e1 + 1 nodeIdentifiers = [ bni, bni + 1, bni + no2, bni + no2 + 1, bni + no3, bni + no3 + 1, bni + no2 + no3, bni + no2 + no3 + 1 ] result = element.setNodesByIdentifier(eft, nodeIdentifiers) elementIdentifier = elementIdentifier + 1 fm.endChange()
def generateMesh(region, options): """ :param region: Zinc region to define model in. Must be empty. :param options: Dict containing options. See getDefaultOptions(). :return: None """ elementsCountUp = options['Number of elements up'] elementsCountAround = options['Number of elements around'] useCrossDerivatives = options['Use cross derivatives'] fm = region.getFieldmodule() fm.beginChange() coordinates = zinc_utils.getOrCreateCoordinateField(fm) nodes = fm.findNodesetByFieldDomainType(Field.DOMAIN_TYPE_NODES) nodetemplateApex = nodes.createNodetemplate() nodetemplateApex.defineField(coordinates) nodetemplateApex.setValueNumberOfVersions(coordinates, -1, Node.VALUE_LABEL_VALUE, 1) nodetemplateApex.setValueNumberOfVersions(coordinates, -1, Node.VALUE_LABEL_D_DS1, 1) nodetemplateApex.setValueNumberOfVersions(coordinates, -1, Node.VALUE_LABEL_D_DS2, 1) if useCrossDerivatives: nodetemplate = nodes.createNodetemplate() nodetemplate.defineField(coordinates) nodetemplate.setValueNumberOfVersions(coordinates, -1, Node.VALUE_LABEL_VALUE, 1) nodetemplate.setValueNumberOfVersions(coordinates, -1, Node.VALUE_LABEL_D_DS1, 1) nodetemplate.setValueNumberOfVersions(coordinates, -1, Node.VALUE_LABEL_D_DS2, 1) nodetemplate.setValueNumberOfVersions(coordinates, -1, Node.VALUE_LABEL_D2_DS1DS2, 1) else: nodetemplate = nodetemplateApex mesh = fm.findMeshByDimension(2) bicubicHermiteBasis = fm.createElementbasis( 2, Elementbasis.FUNCTION_TYPE_CUBIC_HERMITE) eft = mesh.createElementfieldtemplate(bicubicHermiteBasis) if not useCrossDerivatives: for n in range(4): eft.setFunctionNumberOfTerms(n * 4 + 4, 0) # Apex1: collapsed on xi2 = 0 eftApex1 = mesh.createElementfieldtemplate(bicubicHermiteBasis) eftApex1.setNumberOfLocalNodes(3) eftApex1.setNumberOfLocalScaleFactors(7) # GRC: allow scale factor identifier for global -1.0 to be prescribed eftApex1.setScaleFactorType( 1, Elementfieldtemplate.SCALE_FACTOR_TYPE_GLOBAL_GENERAL) eftApex1.setScaleFactorIdentifier(1, 1) for s in range(6): si = s + 2 # 3 scale factors per node: cos(theta), sin(theta), arc angle radians sid = (s // 3) * 100 + (s % 3) + 1 # add 100 for different 'version' eftApex1.setScaleFactorType( si, Elementfieldtemplate.SCALE_FACTOR_TYPE_NODE_GENERAL) eftApex1.setScaleFactorIdentifier(si, sid) # basis nodes 1, 2 -> local node 1 ln = 1 eftApex1.setTermNodeParameter(1, 1, ln, Node.VALUE_LABEL_VALUE, 1) # 0 terms = zero parameter for d/dxi1 basis eftApex1.setFunctionNumberOfTerms(2, 0) # 2 terms for d/dxi2 via general linear map: eftApex1.setFunctionNumberOfTerms(3, 2) eftApex1.setTermNodeParameter(3, 1, ln, Node.VALUE_LABEL_D_DS1, 1) eftApex1.setTermScaling(3, 1, [2]) eftApex1.setTermNodeParameter(3, 2, ln, Node.VALUE_LABEL_D_DS2, 1) eftApex1.setTermScaling(3, 2, [3]) # 2 terms for cross derivative 1 2 to correct circular apex: -sin(theta).phi, cos(theta).phi eftApex1.setFunctionNumberOfTerms(4, 2) eftApex1.setTermNodeParameter(4, 1, ln, Node.VALUE_LABEL_D_DS1, 1) eftApex1.setTermScaling(4, 1, [3, 4]) eftApex1.setTermNodeParameter(4, 2, ln, Node.VALUE_LABEL_D_DS2, 1) eftApex1.setTermScaling(4, 2, [1, 2, 4]) # basis node 2 -> local node 1 eftApex1.setTermNodeParameter(5, 1, ln, Node.VALUE_LABEL_VALUE, 1) # 0 terms = zero parameter for d/dxi1 basis eftApex1.setFunctionNumberOfTerms(6, 0) # 2 terms for d/dxi2 via general linear map: eftApex1.setFunctionNumberOfTerms(7, 2) eftApex1.setTermNodeParameter(7, 1, ln, Node.VALUE_LABEL_D_DS1, 1) eftApex1.setTermScaling(7, 1, [5]) eftApex1.setTermNodeParameter(7, 2, ln, Node.VALUE_LABEL_D_DS2, 1) eftApex1.setTermScaling(7, 2, [6]) # 2 terms for cross derivative 1 2 to correct circular apex: -sin(theta).phi, cos(theta).phi eftApex1.setFunctionNumberOfTerms(8, 2) eftApex1.setTermNodeParameter(8, 1, ln, Node.VALUE_LABEL_D_DS1, 1) eftApex1.setTermScaling(8, 1, [6, 7]) eftApex1.setTermNodeParameter(8, 2, ln, Node.VALUE_LABEL_D_DS2, 1) eftApex1.setTermScaling(8, 2, [1, 5, 7]) # basis nodes 3, 4 -> regular local nodes 2, 3 for bn in range(2, 4): fo = bn * 4 ni = bn eftApex1.setTermNodeParameter(fo + 1, 1, ni, Node.VALUE_LABEL_VALUE, 1) eftApex1.setTermNodeParameter(fo + 2, 1, ni, Node.VALUE_LABEL_D_DS1, 1) eftApex1.setTermNodeParameter(fo + 3, 1, ni, Node.VALUE_LABEL_D_DS2, 1) if useCrossDerivatives: eftApex1.setTermNodeParameter(fo + 4, 1, ni, Node.VALUE_LABEL_D2_DS1DS2, 1) else: eftApex1.setFunctionNumberOfTerms(fo + 4, 0) # Apex2: collapsed on xi2 = 1 eftApex2 = mesh.createElementfieldtemplate(bicubicHermiteBasis) eftApex2.setNumberOfLocalNodes(3) eftApex2.setNumberOfLocalScaleFactors(7) # GRC: allow scale factor identifier for global -1.0 to be prescribed eftApex2.setScaleFactorType( 1, Elementfieldtemplate.SCALE_FACTOR_TYPE_GLOBAL_GENERAL) eftApex2.setScaleFactorIdentifier(1, 1) for s in range(6): si = s + 2 # 3 scale factors per node: cos(theta), sin(theta), arc angle radians sid = (s // 3) * 100 + (s % 3) + 1 # add 100 for different 'version' eftApex2.setScaleFactorType( si, Elementfieldtemplate.SCALE_FACTOR_TYPE_NODE_GENERAL) eftApex2.setScaleFactorIdentifier(si, sid) # basis nodes 1, 2 -> regular local nodes 1, 2 (for each layer) for bn in range(2): fo = bn * 4 ni = bn + 1 eftApex2.setTermNodeParameter(fo + 1, 1, ni, Node.VALUE_LABEL_VALUE, 1) eftApex2.setTermNodeParameter(fo + 2, 1, ni, Node.VALUE_LABEL_D_DS1, 1) eftApex2.setTermNodeParameter(fo + 3, 1, ni, Node.VALUE_LABEL_D_DS2, 1) if useCrossDerivatives: eftApex2.setTermNodeParameter(fo + 4, 1, ni, Node.VALUE_LABEL_D2_DS1DS2, 1) else: eftApex2.setFunctionNumberOfTerms(fo + 4, 0) # basis nodes 3, 4 -> local node 3 ln = 3 fo3 = 8 eftApex2.setTermNodeParameter(fo3 + 1, 1, ln, Node.VALUE_LABEL_VALUE, 1) # 0 terms = zero parameter for d/dxi1 basis eftApex2.setFunctionNumberOfTerms(fo3 + 2, 0) # 2 terms for d/dxi2 via general linear map: eftApex2.setFunctionNumberOfTerms(fo3 + 3, 2) eftApex2.setTermNodeParameter(fo3 + 3, 1, ln, Node.VALUE_LABEL_D_DS1, 1) eftApex2.setTermScaling(fo3 + 3, 1, [2]) eftApex2.setTermNodeParameter(fo3 + 3, 2, ln, Node.VALUE_LABEL_D_DS2, 1) eftApex2.setTermScaling(fo3 + 3, 2, [3]) # 2 terms for cross derivative 1 2 to correct circular apex: -sin(theta).phi, cos(theta).phi eftApex2.setFunctionNumberOfTerms(fo3 + 4, 2) eftApex2.setTermNodeParameter(fo3 + 4, 1, ln, Node.VALUE_LABEL_D_DS1, 1) eftApex2.setTermScaling(fo3 + 4, 1, [1, 3, 4]) eftApex2.setTermNodeParameter(fo3 + 4, 2, ln, Node.VALUE_LABEL_D_DS2, 1) eftApex2.setTermScaling(fo3 + 4, 2, [2, 4]) # basis node 4 -> local node 3 eftApex2.setTermNodeParameter(fo3 + 5, 1, ln, Node.VALUE_LABEL_VALUE, 1) # 0 terms = zero parameter for d/dxi1 basis eftApex2.setFunctionNumberOfTerms(fo3 + 6, 0) # 2 terms for d/dxi2 via general linear map: eftApex2.setFunctionNumberOfTerms(fo3 + 7, 2) eftApex2.setTermNodeParameter(fo3 + 7, 1, ln, Node.VALUE_LABEL_D_DS1, 1) eftApex2.setTermScaling(fo3 + 7, 1, [5]) eftApex2.setTermNodeParameter(fo3 + 7, 2, ln, Node.VALUE_LABEL_D_DS2, 1) eftApex2.setTermScaling(fo3 + 7, 2, [6]) # 2 terms for cross derivative 1 2 to correct circular apex: -sin(theta).phi, cos(theta).phi eftApex2.setFunctionNumberOfTerms(fo3 + 8, 2) eftApex2.setTermNodeParameter(fo3 + 8, 1, ln, Node.VALUE_LABEL_D_DS1, 1) eftApex2.setTermScaling(fo3 + 8, 1, [1, 6, 7]) eftApex2.setTermNodeParameter(fo3 + 8, 2, ln, Node.VALUE_LABEL_D_DS2, 1) eftApex2.setTermScaling(fo3 + 8, 2, [5, 7]) elementtemplate = mesh.createElementtemplate() elementtemplate.setElementShapeType(Element.SHAPE_TYPE_SQUARE) elementtemplate.defineField(coordinates, -1, eft) elementtemplateApex1 = mesh.createElementtemplate() elementtemplateApex1.setElementShapeType(Element.SHAPE_TYPE_SQUARE) elementtemplateApex1.defineField(coordinates, -1, eftApex1) elementtemplateApex2 = mesh.createElementtemplate() elementtemplateApex2.setElementShapeType(Element.SHAPE_TYPE_SQUARE) elementtemplateApex2.defineField(coordinates, -1, eftApex2) cache = fm.createFieldcache() # create nodes nodeIdentifier = 1 radiansPerElementAround = 2.0 * math.pi / elementsCountAround radiansPerElementUp = math.pi / elementsCountUp x = [0.0, 0.0, 0.0] dx_ds1 = [0.0, 0.0, 0.0] dx_ds2 = [0.0, 0.0, 0.0] zero = [0.0, 0.0, 0.0] radius = 0.5 # create apex1 node node = nodes.createNode(nodeIdentifier, nodetemplateApex) cache.setNode(node) coordinates.setNodeParameters(cache, -1, Node.VALUE_LABEL_VALUE, 1, [0.0, 0.0, -radius]) coordinates.setNodeParameters(cache, -1, Node.VALUE_LABEL_D_DS1, 1, [0.0, radius * radiansPerElementUp, 0.0]) coordinates.setNodeParameters(cache, -1, Node.VALUE_LABEL_D_DS2, 1, [radius * radiansPerElementUp, 0.0, 0.0]) nodeIdentifier = nodeIdentifier + 1 # create regular rows between apexes for n2 in range(1, elementsCountUp): radiansUp = n2 * radiansPerElementUp cosRadiansUp = math.cos(radiansUp) sinRadiansUp = math.sin(radiansUp) for n1 in range(elementsCountAround): radiansAround = n1 * radiansPerElementAround cosRadiansAround = math.cos(radiansAround) sinRadiansAround = math.sin(radiansAround) x = [ radius * cosRadiansAround * sinRadiansUp, radius * sinRadiansAround * sinRadiansUp, -radius * cosRadiansUp ] dx_ds1 = [ radius * -sinRadiansAround * sinRadiansUp * radiansPerElementAround, radius * cosRadiansAround * sinRadiansUp * radiansPerElementAround, 0.0 ] dx_ds2 = [ radius * cosRadiansAround * cosRadiansUp * radiansPerElementUp, radius * sinRadiansAround * cosRadiansUp * radiansPerElementUp, radius * sinRadiansUp * radiansPerElementUp ] node = nodes.createNode(nodeIdentifier, nodetemplate) cache.setNode(node) coordinates.setNodeParameters(cache, -1, Node.VALUE_LABEL_VALUE, 1, x) coordinates.setNodeParameters(cache, -1, Node.VALUE_LABEL_D_DS1, 1, dx_ds1) coordinates.setNodeParameters(cache, -1, Node.VALUE_LABEL_D_DS2, 1, dx_ds2) if useCrossDerivatives: coordinates.setNodeParameters(cache, -1, Node.VALUE_LABEL_D2_DS1DS2, 1, zero) nodeIdentifier = nodeIdentifier + 1 # create apex2 node node = nodes.createNode(nodeIdentifier, nodetemplateApex) cache.setNode(node) coordinates.setNodeParameters(cache, -1, Node.VALUE_LABEL_VALUE, 1, [0.0, 0.0, radius]) coordinates.setNodeParameters( cache, -1, Node.VALUE_LABEL_D_DS1, 1, [0.0, -radius * radiansPerElementUp, 0.0]) coordinates.setNodeParameters(cache, -1, Node.VALUE_LABEL_D_DS2, 1, [radius * radiansPerElementUp, 0.0, 0.0]) nodeIdentifier = nodeIdentifier + 1 # create elements elementIdentifier = 1 # create Apex1 elements, editing eft scale factor identifiers around apex # scale factor identifiers follow convention of offsetting by 100 for each 'version' bni1 = 1 for e1 in range(elementsCountAround): va = e1 vb = (e1 + 1) % elementsCountAround eftApex1.setScaleFactorIdentifier(2, va * 100 + 1) eftApex1.setScaleFactorIdentifier(3, va * 100 + 2) eftApex1.setScaleFactorIdentifier(4, va * 100 + 3) eftApex1.setScaleFactorIdentifier(5, vb * 100 + 1) eftApex1.setScaleFactorIdentifier(6, vb * 100 + 2) eftApex1.setScaleFactorIdentifier(7, vb * 100 + 3) # redefine field in template for changes to eftApex1: elementtemplateApex1.defineField(coordinates, -1, eftApex1) element = mesh.createElement(elementIdentifier, elementtemplateApex1) bni2 = e1 + 2 bni3 = (e1 + 1) % elementsCountAround + 2 nodeIdentifiers = [bni1, bni2, bni3] element.setNodesByIdentifier(eftApex1, nodeIdentifiers) # set general linear map coefficients radiansAround = e1 * radiansPerElementAround radiansAroundNext = ( (e1 + 1) % elementsCountAround) * radiansPerElementAround scalefactors = [ -1.0, math.sin(radiansAround), math.cos(radiansAround), radiansPerElementAround, math.sin(radiansAroundNext), math.cos(radiansAroundNext), radiansPerElementAround ] result = element.setScaleFactors(eftApex1, scalefactors) elementIdentifier = elementIdentifier + 1 # create regular rows between apexes for e2 in range(elementsCountUp - 2): for e1 in range(elementsCountAround): element = mesh.createElement(elementIdentifier, elementtemplate) bni1 = e2 * elementsCountAround + e1 + 2 bni2 = e2 * elementsCountAround + (e1 + 1) % elementsCountAround + 2 nodeIdentifiers = [ bni1, bni2, bni1 + elementsCountAround, bni2 + elementsCountAround ] result = element.setNodesByIdentifier(eft, nodeIdentifiers) elementIdentifier = elementIdentifier + 1 # create Apex2 elements, editing eft scale factor identifiers around apex # scale factor identifiers follow convention of offsetting by 100 for each 'version' bni3 = 2 + (elementsCountUp - 1) * elementsCountAround for e1 in range(elementsCountAround): va = e1 vb = (e1 + 1) % elementsCountAround eftApex2.setScaleFactorIdentifier(2, va * 100 + 1) eftApex2.setScaleFactorIdentifier(3, va * 100 + 2) eftApex2.setScaleFactorIdentifier(4, va * 100 + 3) eftApex2.setScaleFactorIdentifier(5, vb * 100 + 1) eftApex2.setScaleFactorIdentifier(6, vb * 100 + 2) eftApex2.setScaleFactorIdentifier(7, vb * 100 + 3) # redefine field in template for changes to eftApex2: elementtemplateApex1.defineField(coordinates, -1, eftApex2) element = mesh.createElement(elementIdentifier, elementtemplateApex1) bni1 = bni3 - elementsCountAround + e1 bni2 = bni3 - elementsCountAround + (e1 + 1) % elementsCountAround nodeIdentifiers = [bni1, bni2, bni3] result = element.setNodesByIdentifier(eftApex2, nodeIdentifiers) # set general linear map coefficients radiansAround = math.pi + e1 * radiansPerElementAround radiansAroundNext = math.pi + ( (e1 + 1) % elementsCountAround) * radiansPerElementAround scalefactors = [ -1.0, -math.sin(radiansAround), math.cos(radiansAround), radiansPerElementAround, -math.sin(radiansAroundNext), math.cos(radiansAroundNext), radiansPerElementAround ] result = element.setScaleFactors(eftApex2, scalefactors) elementIdentifier = elementIdentifier + 1 fm.endChange()
def generateBaseMesh(cls, region, options): """ Generate the base tricubic Hermite mesh. See also generateMesh(). :param region: Zinc region to define model in. Must be empty. :param options: Dict containing options. See getDefaultOptions(). :return: None """ elementsCountAround = options['Number of elements around'] elementsCountUp = options['Number of elements up'] elementsCountRadial = options['Number of elements radial'] useCrossDerivatives = options['Use cross derivatives'] radius = 0.5*options['Diameter'] fm = region.getFieldmodule() fm.beginChange() coordinates = zinc_utils.getOrCreateCoordinateField(fm) nodes = fm.findNodesetByFieldDomainType(Field.DOMAIN_TYPE_NODES) nodetemplateApex = nodes.createNodetemplate() nodetemplateApex.defineField(coordinates) nodetemplateApex.setValueNumberOfVersions(coordinates, -1, Node.VALUE_LABEL_VALUE, 1) nodetemplateApex.setValueNumberOfVersions(coordinates, -1, Node.VALUE_LABEL_D_DS1, 1) nodetemplateApex.setValueNumberOfVersions(coordinates, -1, Node.VALUE_LABEL_D_DS2, 1) nodetemplateApex.setValueNumberOfVersions(coordinates, -1, Node.VALUE_LABEL_D_DS3, 1) if useCrossDerivatives: nodetemplate = nodes.createNodetemplate() nodetemplate.defineField(coordinates) nodetemplate.setValueNumberOfVersions(coordinates, -1, Node.VALUE_LABEL_VALUE, 1) nodetemplate.setValueNumberOfVersions(coordinates, -1, Node.VALUE_LABEL_D_DS1, 1) nodetemplate.setValueNumberOfVersions(coordinates, -1, Node.VALUE_LABEL_D_DS2, 1) nodetemplate.setValueNumberOfVersions(coordinates, -1, Node.VALUE_LABEL_D2_DS1DS2, 1) nodetemplate.setValueNumberOfVersions(coordinates, -1, Node.VALUE_LABEL_D_DS3, 1) nodetemplate.setValueNumberOfVersions(coordinates, -1, Node.VALUE_LABEL_D2_DS1DS3, 1) nodetemplate.setValueNumberOfVersions(coordinates, -1, Node.VALUE_LABEL_D2_DS2DS3, 1) nodetemplate.setValueNumberOfVersions(coordinates, -1, Node.VALUE_LABEL_D3_DS1DS2DS3, 1) else: nodetemplate = nodetemplateApex cache = fm.createFieldcache() ################# # Create nodes ################# nodeIdentifier = 1 radiansPerElementAround = 2.0*math.pi/elementsCountAround radiansPerElementUp = math.pi/elementsCountUp x = [ 0.0, 0.0, 0.0 ] dx_ds1 = [ 0.0, 0.0, 0.0 ] dx_ds2 = [ 0.0, 0.0, 0.0 ] dx_ds3 = [ 0.0, 0.0, 0.0 ] zero = [ 0.0, 0.0, 0.0 ] cubicArcLengthList = [0.0]*(elementsCountUp+1) # Pre-calculate cubicArcLength along elementsCountUp for n2 in range(1,elementsCountUp + 1): radiansUp = n2*radiansPerElementUp cosRadiansUp = math.cos(radiansUp) sinRadiansUp = math.sin(radiansUp) # Calculate cubic hermite arclength linking point on axis to surface on sphere v1 = [0.0, 0.0, -radius+n2*2.0*radius/elementsCountUp] d1 = [0.0, 1.0, 0.0] v2 = [ radius*math.cos(math.pi/2.0)*sinRadiansUp, radius*math.sin(math.pi/2.0)*sinRadiansUp, -radius*cosRadiansUp ] d2 = [math.cos(math.pi/2.0)*sinRadiansUp,math.sin(math.pi/2.0)*sinRadiansUp,-cosRadiansUp] cubicArcLengthList[n2] = interp.computeCubicHermiteArcLength(v1, d1, v2, d2, True) # Create node for bottom pole node = nodes.createNode(nodeIdentifier, nodetemplate) cache.setNode(node) coordinates.setNodeParameters(cache, -1, Node.VALUE_LABEL_VALUE, 1, [ 0.0, 0.0, -radius ]) coordinates.setNodeParameters(cache, -1, Node.VALUE_LABEL_D_DS1, 1, [ radius*radiansPerElementUp, 0.0, 0.0 ]) coordinates.setNodeParameters(cache, -1, Node.VALUE_LABEL_D_DS2, 1, [ 0.0, radius*radiansPerElementUp, 0.0 ]) coordinates.setNodeParameters(cache, -1, Node.VALUE_LABEL_D_DS3, 1, [ 0.0, 0.0, -radius*2.0/elementsCountUp]) if useCrossDerivatives: coordinates.setNodeParameters(cache, -1, Node.VALUE_LABEL_D2_DS1DS2, 1, zero) coordinates.setNodeParameters(cache, -1, Node.VALUE_LABEL_D2_DS1DS3, 1, zero) coordinates.setNodeParameters(cache, -1, Node.VALUE_LABEL_D2_DS2DS3, 1, zero) coordinates.setNodeParameters(cache, -1, Node.VALUE_LABEL_D3_DS1DS2DS3, 1, zero) nodeIdentifier = nodeIdentifier + 1 # Create nodes along axis between top and bottom poles for n2 in range(1,elementsCountUp): node = nodes.createNode(nodeIdentifier, nodetemplate) cache.setNode(node) coordinates.setNodeParameters(cache, -1, Node.VALUE_LABEL_VALUE, 1, [ 0.0, 0.0, -radius+n2*2.0*radius/elementsCountUp]) coordinates.setNodeParameters(cache, -1, Node.VALUE_LABEL_D_DS1, 1, [ cubicArcLengthList[n2]/elementsCountRadial, 0.0, 0.0 ]) coordinates.setNodeParameters(cache, -1, Node.VALUE_LABEL_D_DS2, 1, [ 0.0, 0.0, radius*2.0/elementsCountUp]) coordinates.setNodeParameters(cache, -1, Node.VALUE_LABEL_D_DS3, 1, [ 0.0, cubicArcLengthList[n2]/elementsCountRadial, 0.0 ]) if useCrossDerivatives: coordinates.setNodeParameters(cache, -1, Node.VALUE_LABEL_D2_DS1DS2, 1, zero) coordinates.setNodeParameters(cache, -1, Node.VALUE_LABEL_D2_DS1DS3, 1, zero) coordinates.setNodeParameters(cache, -1, Node.VALUE_LABEL_D2_DS2DS3, 1, zero) coordinates.setNodeParameters(cache, -1, Node.VALUE_LABEL_D3_DS1DS2DS3, 1, zero) nodeIdentifier = nodeIdentifier + 1 # Create nodes for top pole node = nodes.createNode(nodeIdentifier, nodetemplate) cache.setNode(node) coordinates.setNodeParameters(cache, -1, Node.VALUE_LABEL_VALUE, 1, [ 0.0, 0.0, radius]) coordinates.setNodeParameters(cache, -1, Node.VALUE_LABEL_D_DS1, 1, [ radius*radiansPerElementUp, 0.0, 0.0 ]) coordinates.setNodeParameters(cache, -1, Node.VALUE_LABEL_D_DS2, 1, [ 0.0, radius*radiansPerElementUp, 0.0 ]) coordinates.setNodeParameters(cache, -1, Node.VALUE_LABEL_D_DS3, 1, [ 0.0, 0.0, radius*2.0/elementsCountUp ]) if useCrossDerivatives: coordinates.setNodeParameters(cache, -1, Node.VALUE_LABEL_D2_DS1DS2, 1, zero) coordinates.setNodeParameters(cache, -1, Node.VALUE_LABEL_D2_DS1DS3, 1, zero) coordinates.setNodeParameters(cache, -1, Node.VALUE_LABEL_D2_DS2DS3, 1, zero) coordinates.setNodeParameters(cache, -1, Node.VALUE_LABEL_D3_DS1DS2DS3, 1, zero) nodeIdentifier = nodeIdentifier + 1 # Create other nodes for n3 in range(1,elementsCountRadial+1): xi = 1/elementsCountRadial*n3 radiansUpArcOriginList = [0.0]*(elementsCountUp) # Pre-calculate RC for points on vertical arc running between top and bottom poles pt = [0.0, radius*xi, 0.0] arcOrigin = (radius*radius - pt[2]*pt[2] - pt[1]*pt[1])/(-2.0*pt[1]) RC = math.sqrt(arcOrigin*arcOrigin + radius*radius) radiansUpArcOriginList[0] = math.acos(-radius/RC) # Identify nodes on the vertical arc using radiansAround = pi/2 for n2 in range(1,elementsCountUp): radiansUp = n2*radiansPerElementUp cosRadiansUp = math.cos(radiansUp) sinRadiansUp = math.sin(radiansUp) # Calculate node coordinates on arc using cubic hermite interpolation cubicArcLength = cubicArcLengthList[n2] v1 = [0.0, 0.0, -radius+n2*2.0*radius/elementsCountUp] d1 = [math.cos(math.pi/2.0), math.sin(math.pi/2.0), 0.0] d1 = vector.normalise(d1) d1 = [d*cubicArcLength for d in d1] v2 = [ radius*math.cos(math.pi/2.0)*sinRadiansUp, radius*math.sin(math.pi/2.0)*sinRadiansUp, -radius*cosRadiansUp ] d2 = [math.cos(math.pi/2.0)*sinRadiansUp,math.sin(math.pi/2.0)*sinRadiansUp,-cosRadiansUp] d2 = vector.normalise(d2) d2 = [d*cubicArcLength for d in d2] x = interp.interpolateCubicHermite(v1, d1, v2, d2, xi) # Calculate radiansUp for each point wrt arcOrigin radiansUpArcOriginList[n2] = math.acos(x[2]/RC) for n2 in range(1,elementsCountUp): radiansUp = n2*radiansPerElementUp cosRadiansUp = math.cos(radiansUp) sinRadiansUp = math.sin(radiansUp) for n1 in range(elementsCountAround): radiansAround = n1*radiansPerElementAround cosRadiansAround = math.cos(radiansAround) sinRadiansAround = math.sin(radiansAround) cubicArcLength = cubicArcLengthList[n2] # Calculate node coordinates on arc using cubic hermite interpolation v1 = [0.0, 0.0, -radius+n2*2.0*radius/elementsCountUp] d1 = [cosRadiansAround, sinRadiansAround, 0.0] d1 = vector.normalise(d1) d1 = [d*cubicArcLength for d in d1] v2 = [ radius*cosRadiansAround*sinRadiansUp, radius*sinRadiansAround*sinRadiansUp, -radius*cosRadiansUp ] d2 = [cosRadiansAround*sinRadiansUp,sinRadiansAround*sinRadiansUp,-cosRadiansUp] d2 = vector.normalise(d2) d2 = [d*cubicArcLength for d in d2] x = interp.interpolateCubicHermite(v1, d1, v2, d2, xi) # For dx_ds1 - Calculate radius wrt origin where interpolated points lie on orthoRadius = vector.magnitude(x) orthoRadiansUp = math.pi - math.acos(x[2]/orthoRadius) sinOrthoRadiansUp = math.sin(orthoRadiansUp) cosOrthoRadiansUp = math.cos(orthoRadiansUp) # For dx_ds2 - Assign radiansUp from radiansUpArcOriginList and calculate diff between radiansUp as we move up radiansUpArcOrigin = radiansUpArcOriginList[n2] sinRadiansUpArcOrigin = math.sin(radiansUpArcOrigin) cosRadiansUpArcOrigin = math.cos(radiansUpArcOrigin) radiansPerElementUpArcOrigin = radiansUpArcOriginList[n2]-radiansUpArcOriginList[n2-1] dx_ds1 = [ orthoRadius*-sinRadiansAround*sinOrthoRadiansUp*radiansPerElementAround, orthoRadius*cosRadiansAround*sinOrthoRadiansUp*radiansPerElementAround, 0.0 ] dx_ds2 = [ RC*cosRadiansAround*cosRadiansUpArcOrigin*radiansPerElementUpArcOrigin, RC*sinRadiansAround*cosRadiansUpArcOrigin*radiansPerElementUpArcOrigin, -RC*sinRadiansUpArcOrigin*radiansPerElementUpArcOrigin ] dx_ds3 = interp.interpolateCubicHermiteDerivative(v1, d1, v2, d2, xi) dx_ds3 = vector.normalise(dx_ds3) dx_ds3 = [d*cubicArcLength/elementsCountRadial for d in dx_ds3] node = nodes.createNode(nodeIdentifier, nodetemplate) cache.setNode(node) coordinates.setNodeParameters(cache, -1, Node.VALUE_LABEL_VALUE, 1, x) coordinates.setNodeParameters(cache, -1, Node.VALUE_LABEL_D_DS1, 1, dx_ds1) coordinates.setNodeParameters(cache, -1, Node.VALUE_LABEL_D_DS2, 1, dx_ds2) coordinates.setNodeParameters(cache, -1, Node.VALUE_LABEL_D_DS3, 1, dx_ds3) if useCrossDerivatives: coordinates.setNodeParameters(cache, -1, Node.VALUE_LABEL_D2_DS1DS2, 1, zero) coordinates.setNodeParameters(cache, -1, Node.VALUE_LABEL_D2_DS1DS3, 1, zero) coordinates.setNodeParameters(cache, -1, Node.VALUE_LABEL_D2_DS2DS3, 1, zero) coordinates.setNodeParameters(cache, -1, Node.VALUE_LABEL_D3_DS1DS2DS3, 1, zero) nodeIdentifier = nodeIdentifier + 1 ################# # Create elements ################# mesh = fm.findMeshByDimension(3) tricubichermite = eftfactory_tricubichermite(mesh, useCrossDerivatives) eft = tricubichermite.createEftBasic() tricubicHermiteBasis = fm.createElementbasis(3, Elementbasis.FUNCTION_TYPE_CUBIC_HERMITE) # Regular elements elementtemplate = mesh.createElementtemplate() elementtemplate.setElementShapeType(Element.SHAPE_TYPE_CUBE) elementtemplate.defineField(coordinates, -1, eft) # Bottom tetrahedon elements elementtemplate1 = mesh.createElementtemplate() elementtemplate1.setElementShapeType(Element.SHAPE_TYPE_CUBE) # Axial elements elementtemplate2 = mesh.createElementtemplate() elementtemplate2.setElementShapeType(Element.SHAPE_TYPE_CUBE) # Top tetrahedron elements elementtemplate3 = mesh.createElementtemplate() elementtemplate3.setElementShapeType(Element.SHAPE_TYPE_CUBE) # Bottom pyramid elements elementtemplate4 = mesh.createElementtemplate() elementtemplate4.setElementShapeType(Element.SHAPE_TYPE_CUBE) # Top pyramid elements elementtemplate5 = mesh.createElementtemplate() elementtemplate5.setElementShapeType(Element.SHAPE_TYPE_CUBE) elementIdentifier = 1 no2 = elementsCountAround no3 = elementsCountAround*(elementsCountUp - 1) rni = (1 + elementsCountUp) - no3 - no2 + 1 # regular node identifier radiansPerElementAround = 2.0*math.pi/elementsCountAround for e3 in range(elementsCountRadial): # Create elements on bottom pole radiansIncline = math.pi*0.5*e3/elementsCountRadial radiansInclineNext = math.pi*0.5*(e3 + 1)/elementsCountRadial if e3 == 0: # Create tetrahedron elements on the bottom pole bni1 = elementsCountUp + 2 for e1 in range(elementsCountAround): va = e1 vb = (e1 + 1)%elementsCountAround eft1 = tricubichermite.createEftTetrahedronBottom(va*100, vb*100, 10000) elementtemplate1.defineField(coordinates, -1, eft1) element = mesh.createElement(elementIdentifier, elementtemplate1) nodeIdentifiers = [ 1, 2, bni1 + va, bni1 + vb ] result1 = element.setNodesByIdentifier(eft1, nodeIdentifiers) # set general linear map coefficients radiansAround = va*radiansPerElementAround radiansAroundNext = vb*radiansPerElementAround scalefactors = [ -1.0, math.cos(radiansAround), math.sin(radiansAround), radiansPerElementAround, math.cos(radiansAroundNext), math.sin(radiansAroundNext), radiansPerElementAround, math.cos(radiansAround), math.sin(radiansAround), radiansPerElementAround, math.cos(radiansAroundNext), math.sin(radiansAroundNext), radiansPerElementAround, math.cos(radiansIncline), math.sin(radiansIncline), math.cos(radiansInclineNext), math.sin(radiansInclineNext) ] result2 = element.setScaleFactors(eft1, scalefactors) # print('Tetrahedron Bottom element', elementIdentifier, result1, result2, nodeIdentifiers) elementIdentifier = elementIdentifier + 1 else: # Create pyramid elements on the bottom pole bni4 = elementsCountUp + 1 + (e3-1)*no3 + 1 for e1 in range(elementsCountAround): va = e1 vb = (e1 + 1)%elementsCountAround eft4 = tricubichermite.createEftPyramidBottom(va*100, vb*100, 100000 + e3*2) elementtemplate4.defineField(coordinates, -1, eft4) element = mesh.createElement(elementIdentifier, elementtemplate4) nodeIdentifiers = [ 1, bni4 + va, bni4 + vb, bni4 + no3 + va, bni4 + no3 + vb ] result1 = element.setNodesByIdentifier(eft4, nodeIdentifiers) # set general linear map coefficients radiansAround = va*radiansPerElementAround radiansAroundNext = vb*radiansPerElementAround scalefactors = [ -1.0, math.cos(radiansAround), math.sin(radiansAround), radiansPerElementAround, math.cos(radiansAroundNext), math.sin(radiansAroundNext), radiansPerElementAround, math.cos(radiansIncline), math.sin(radiansIncline), math.cos(radiansInclineNext), math.sin(radiansInclineNext) ] result2 = element.setScaleFactors(eft4, scalefactors) # print('pyramid bottom element', elementIdentifier, result1, result2, nodeIdentifiers) elementIdentifier = elementIdentifier + 1 # create regular radial elements for e2 in range(1, elementsCountUp-1): if e3 == 0: for e1 in range(elementsCountAround): # create central radial elements: 6 node wedges va = e1 vb = (e1 + 1)%elementsCountAround eft2 = tricubichermite.createEftWedgeRadial(va*100, vb*100) elementtemplate2.defineField(coordinates, -1, eft2) element = mesh.createElement(elementIdentifier, elementtemplate2) bni2 = elementsCountUp + 1 + (e2-1) * no2 + 1 nodeIdentifiers = [ e3 + e2 + 1, e3 + e2 + 2, bni2 + va, bni2 + vb, bni2 + va + elementsCountAround, bni2 + vb + elementsCountAround ] result1 = element.setNodesByIdentifier(eft2, nodeIdentifiers) # set general linear map coefficients radiansAround = va*radiansPerElementAround radiansAroundNext = vb*radiansPerElementAround scalefactors = [ -1.0, math.cos(radiansAround), math.sin(radiansAround), radiansPerElementAround, math.cos(radiansAroundNext), math.sin(radiansAroundNext), radiansPerElementAround, math.cos(radiansAround), math.sin(radiansAround), radiansPerElementAround, math.cos(radiansAroundNext), math.sin(radiansAroundNext), radiansPerElementAround ] result2 = element.setScaleFactors(eft2, scalefactors) # print('axis element', elementIdentifier, result1, result2, nodeIdentifiers) elementIdentifier = elementIdentifier + 1 else: # Regular elements bni = rni + e3*no3 + e2*no2 for e1 in range(elementsCountAround): element = mesh.createElement(elementIdentifier, elementtemplate) na = e1 nb = (e1 + 1)%elementsCountAround nodeIdentifiers = [ bni + na, bni + nb, bni + no2 + na, bni + no2 + nb, bni + no3 + na, bni + no3 + nb, bni + no3 + no2 + na, bni + no3 + no2 + nb ] result = element.setNodesByIdentifier(eft, nodeIdentifiers) # print('regular element', elementIdentifier, result, nodeIdentifiers) elementIdentifier = elementIdentifier + 1 # Create elements on top pole radiansIncline = math.pi*0.5*e3/elementsCountRadial radiansInclineNext = math.pi*0.5*(e3 + 1)/elementsCountRadial if e3 == 0: # # Create tetrahedron elements on the top pole bni3 = elementsCountUp + 1 + (elementsCountUp-2) * no2 + 1 for e1 in range(elementsCountAround): va = e1 vb = (e1 + 1)%elementsCountAround eft3 = tricubichermite.createEftTetrahedronTop(va*100, vb*100, 100000) elementtemplate3.defineField(coordinates, -1, eft3) element = mesh.createElement(elementIdentifier, elementtemplate3) nodeIdentifiers = [ elementsCountUp, elementsCountUp + 1, bni3 + va, bni3 + vb ] result1 = element.setNodesByIdentifier(eft3, nodeIdentifiers) # set general linear map coefficients radiansAround = va*radiansPerElementAround radiansAroundNext = vb*radiansPerElementAround scalefactors = [ -1.0, math.cos(radiansAround), math.sin(radiansAround), radiansPerElementAround, math.cos(radiansAroundNext), math.sin(radiansAroundNext), radiansPerElementAround, math.cos(radiansAround), math.sin(radiansAround), radiansPerElementAround, math.cos(radiansAroundNext), math.sin(radiansAroundNext), radiansPerElementAround, math.cos(radiansIncline), math.sin(radiansIncline), math.cos(radiansInclineNext), math.sin(radiansInclineNext) ] result2 = element.setScaleFactors(eft3, scalefactors) # print('Tetrahedron top element', elementIdentifier, result1, result2, nodeIdentifiers) elementIdentifier = elementIdentifier + 1 else: # Create pyramid elements on the top pole bni5 = elementsCountUp + 1 + (e3-1)*no3 + (elementsCountUp-2) * no2 + 1 for e1 in range(elementsCountAround): va = e1 vb = (e1 + 1)%elementsCountAround eft5 = tricubichermite.createEftPyramidTop(va*100, vb*100, 100000 + e3*2) elementtemplate5.defineField(coordinates, -1, eft5) element = mesh.createElement(elementIdentifier, elementtemplate5) nodeIdentifiers = [ bni5 + va, bni5 + vb, elementsCountUp + 1, bni5 + no3 + va, bni5 + no3 + vb ] result1 = element.setNodesByIdentifier(eft5, nodeIdentifiers) # set general linear map coefficients radiansAround = va*radiansPerElementAround radiansAroundNext = vb*radiansPerElementAround scalefactors = [ -1.0, math.cos(radiansAround), math.sin(radiansAround), radiansPerElementAround, math.cos(radiansAroundNext), math.sin(radiansAroundNext), radiansPerElementAround, math.cos(radiansIncline), math.sin(radiansIncline), math.cos(radiansInclineNext), math.sin(radiansInclineNext) ] result2 = element.setScaleFactors(eft5, scalefactors) # print('pyramid top element', elementIdentifier, result1, result2, nodeIdentifiers) elementIdentifier = elementIdentifier + 1 fm.endChange()
def generateMesh(region, options): """ :param region: Zinc region to define model in. Must be empty. :param options: Dict containing options. See getDefaultOptions(). :return: None """ elementsCountAlong = options['Number of elements along'] elementsCountAcross = options['Number of elements across'] wallThickness = [ options['Wall thickness left'], options['Wall thickness right'] ] flangeLength = options['Flange length'] bulgeRadius = options['Bulge radius'] useCrossDerivatives = options['Use cross derivatives'] fm = region.getFieldmodule() fm.beginChange() coordinates = zinc_utils.getOrCreateCoordinateField(fm) nodes = fm.findNodesetByFieldDomainType(Field.DOMAIN_TYPE_NODES) nodetemplate = nodes.createNodetemplate() nodetemplate.defineField(coordinates) nodetemplate.setValueNumberOfVersions(coordinates, -1, Node.VALUE_LABEL_VALUE, 1) nodetemplate.setValueNumberOfVersions(coordinates, -1, Node.VALUE_LABEL_D_DS1, 1) nodetemplate.setValueNumberOfVersions(coordinates, -1, Node.VALUE_LABEL_D_DS2, 1) if useCrossDerivatives: nodetemplate.setValueNumberOfVersions(coordinates, -1, Node.VALUE_LABEL_D2_DS1DS2, 1) nodetemplate.setValueNumberOfVersions(coordinates, -1, Node.VALUE_LABEL_D_DS3, 1) if useCrossDerivatives: nodetemplate.setValueNumberOfVersions(coordinates, -1, Node.VALUE_LABEL_D2_DS1DS3, 1) nodetemplate.setValueNumberOfVersions(coordinates, -1, Node.VALUE_LABEL_D2_DS2DS3, 1) nodetemplate.setValueNumberOfVersions(coordinates, -1, Node.VALUE_LABEL_D3_DS1DS2DS3, 1) mesh = fm.findMeshByDimension(3) tricubichermite = eftfactory_tricubichermite(mesh, useCrossDerivatives) eft = tricubichermite.createEftBasic() eftOuter = tricubichermite.createEftTubeSeptumOuter() eftInner1 = tricubichermite.createEftTubeSeptumInner1() eftInner2 = tricubichermite.createEftTubeSeptumInner2() elementtemplate = mesh.createElementtemplate() elementtemplate.setElementShapeType(Element.SHAPE_TYPE_CUBE) result = elementtemplate.defineField(coordinates, -1, eft) elementtemplateOuter = mesh.createElementtemplate() elementtemplateOuter.setElementShapeType(Element.SHAPE_TYPE_CUBE) result = elementtemplateOuter.defineField(coordinates, -1, eftOuter) elementtemplateInner1 = mesh.createElementtemplate() elementtemplateInner1.setElementShapeType(Element.SHAPE_TYPE_CUBE) result = elementtemplateInner1.defineField(coordinates, -1, eftInner1) elementtemplateInner2 = mesh.createElementtemplate() elementtemplateInner2.setElementShapeType(Element.SHAPE_TYPE_CUBE) result = elementtemplateInner2.defineField(coordinates, -1, eftInner2) cache = fm.createFieldcache() # create nodes nodeIdentifier = 1 #radiansPerElementAcross = math.pi/elementsCountAcross bevelAngle = math.pi/2 sinBevelAngle = math.sin(bevelAngle) cosBevelAngle = math.cos(bevelAngle) x = [ 0.0, 0.0, 0.0 ] dx_ds1 = [ 0.0, 0.0, 0.0 ] dx_ds2 = [ 0.0, 0.0, 1.0 / elementsCountAlong ] dx_ds3 = [ 0.0, 0.0, 0.0 ] zero = [ 0.0, 0.0, 0.0 ] wallThicknessSeptum = wallThickness[0] #wallThicknessMin = min(wallThickness) wallThicknessMax = max(wallThickness) for n3 in range(2): sign = -1.0 if (n3 == 0) else 1.0 radiusY = 0.5*wallThicknessSeptum radiusX = 0.5 - wallThicknessMax for n2 in range(elementsCountAlong + 1): x[2] = n2 / elementsCountAlong for n1 in range(elementsCountAcross + 3): if (n1 == 0) or (n1 == (elementsCountAcross + 2)): flip = -1.0 if (n1 == 0) else 1.0 x[0] = radiusX + wallThickness[n3] if n1 == 0: x[0] = -x[0] x[1] = -sign*(radiusY + flangeLength) #if wallThickness[0] > wallThickness[1]: # x[1] -= flangeLength #elif wallThickness[0] < wallThickness[1]: # x[1] += flangeLength dx_ds1[0] = 0.0 dx_ds1[1] = 2.0*flip*(radiusY + flangeLength) dx_ds3[0] = flip*wallThickness[n3] dx_ds3[1] = 0.0 elif (n1 == 1) or (n1 == (elementsCountAcross + 1)): flip = -1.0 if (n1 == 1) else 1.0 radius = radiusX x[0] = flip*radius x[1] = -sign*(radiusY + flangeLength) #dx_ds1[0] = -sign*2.0*radiusX/elementsCountAcross*cosBevelAngle #dx_ds1[1] = 2.0*radiusX/elementsCountAcross*sinBevelAngle mag1x = radiusX/elementsCountAcross mag1y = flangeLength #mag1min = radiusX/elementsCountAcross + flangeLength + math.sqrt(mag1x*mag1x + mag1y*mag1y) mag1min = 2.0*math.sqrt(mag1x*mag1x + mag1y*mag1y) mag1max = 2.0*(radiusY + flangeLength) mag1 = mag1min if (mag1min < mag1max) else mag1max dx_ds1[0] = -sign*mag1*cosBevelAngle dx_ds1[1] = mag1*sinBevelAngle #if ((n3 == 1) and (wallThickness[0] > wallThickness[1])) or \ # ((n3 == 0) and (wallThickness[0] < wallThickness[1])): dx_ds3[0] = wallThickness[n3] dx_ds3[1] = 0.0 #else: # dx_ds3[0] = wallThickness[n3]*sinBevelAngle # dx_ds3[1] = sign*wallThickness[n3]*cosBevelAngle if n1 == 1: dx_ds1[1] = -dx_ds1[1] dx_ds3[0] = -dx_ds3[0] else: f1 = (n1 - 1)/elementsCountAcross f2 = 1.0 - f1 x[0] = (f1 - f2)*radiusX x[1] = -sign*radiusY dx_ds1[0] = 2.0*radiusX/elementsCountAcross dx_ds1[1] = 0.0 dx_ds3[0] = 0.0 dx_ds3[1] = -wallThicknessSeptum node = nodes.createNode(nodeIdentifier, nodetemplate) cache.setNode(node) coordinates.setNodeParameters(cache, -1, Node.VALUE_LABEL_VALUE, 1, x) coordinates.setNodeParameters(cache, -1, Node.VALUE_LABEL_D_DS1, 1, dx_ds1) coordinates.setNodeParameters(cache, -1, Node.VALUE_LABEL_D_DS2, 1, dx_ds2) coordinates.setNodeParameters(cache, -1, Node.VALUE_LABEL_D_DS3, 1, dx_ds3) if useCrossDerivatives: coordinates.setNodeParameters(cache, -1, Node.VALUE_LABEL_D2_DS1DS2, 1, zero) coordinates.setNodeParameters(cache, -1, Node.VALUE_LABEL_D2_DS1DS3, 1, zero) coordinates.setNodeParameters(cache, -1, Node.VALUE_LABEL_D2_DS2DS3, 1, zero) coordinates.setNodeParameters(cache, -1, Node.VALUE_LABEL_D3_DS1DS2DS3, 1, zero) nodeIdentifier = nodeIdentifier + 1 rimCrossAngle = math.pi/4 sinRimCrossAngle = math.sin(rimCrossAngle) cosRimCrossAngle = math.cos(rimCrossAngle) scaleFactorsOuter = [ cosRimCrossAngle, sinRimCrossAngle, cosRimCrossAngle, -sinRimCrossAngle, cosRimCrossAngle, sinRimCrossAngle, cosRimCrossAngle, -sinRimCrossAngle ] scaleFactorsInner1 = [ -1.0, 4.0, cosRimCrossAngle, sinRimCrossAngle, cosRimCrossAngle, sinRimCrossAngle, cosRimCrossAngle, -sinRimCrossAngle, cosRimCrossAngle, -sinRimCrossAngle ] scaleFactorsInner2 = [ -1.0, 4.0, cosRimCrossAngle, -sinRimCrossAngle, cosRimCrossAngle, -sinRimCrossAngle, cosRimCrossAngle, sinRimCrossAngle, cosRimCrossAngle, sinRimCrossAngle ] # create elements elementIdentifier = 1 rno = elementsCountAcross + 3 wno = (elementsCountAlong + 1)*rno for e2 in range(elementsCountAlong): bn = e2*rno element = mesh.createElement(elementIdentifier, elementtemplateOuter) bni11 = bn + 2 bni12 = bn + wno + 2 bni21 = bn + rno + 2 bni22 = bn + wno + rno + 2 nodeIdentifiers = [ bni11, bni12, bni21, bni22, bni11 - 1, bni12 - 1, bni21 - 1, bni22 - 1 ] result = element.setNodesByIdentifier(eftOuter, nodeIdentifiers) #print(result, 'element', elementIdentifier, nodeIdentifiers) element.setScaleFactors(eftOuter, scaleFactorsOuter) elementIdentifier = elementIdentifier + 1 element = mesh.createElement(elementIdentifier, elementtemplateInner1) bni11 = bn + 2 bni12 = bn + 3 bni21 = bn + rno + 2 bni22 = bn + rno + 3 nodeIdentifiers = [ bni11, bni12, bni21, bni22, bni11 + wno, bni12 + wno, bni21 + wno, bni22 + wno ] result = element.setNodesByIdentifier(eftInner1, nodeIdentifiers) #print(result, 'element', elementIdentifier, 'nodes', nodeIdentifiers) element.setScaleFactors(eftInner1, scaleFactorsInner1) #print(result, 'element', elementIdentifier, 'scale factors', scaleFactorsInner1) elementIdentifier = elementIdentifier + 1 for e1 in range(elementsCountAcross - 2): element = mesh.createElement(elementIdentifier, elementtemplate) bni11 = bn + e1 + 3 bni12 = bn + e1 + 4 bni21 = bn + rno + e1 + 3 bni22 = bn + rno + e1 + 4 nodeIdentifiers = [ bni11, bni12, bni21, bni22, bni11 + wno, bni12 + wno, bni21 + wno, bni22 + wno ] result = element.setNodesByIdentifier(eft, nodeIdentifiers) #print(result, 'element', elementIdentifier, 'nodes', nodeIdentifiers) elementIdentifier = elementIdentifier + 1 element = mesh.createElement(elementIdentifier, elementtemplateInner2) bni11 = bn + rno - 2 bni12 = bn + rno - 1 bni21 = bn + 2*rno -2 bni22 = bn + 2*rno - 1 nodeIdentifiers = [ bni11, bni12, bni21, bni22, bni11 + wno, bni12 + wno, bni21 + wno, bni22 + wno ] result = element.setNodesByIdentifier(eftInner2, nodeIdentifiers) #print(result, 'element', elementIdentifier, 'nodes', nodeIdentifiers) element.setScaleFactors(eftInner2, scaleFactorsInner2) #print(result, 'element', elementIdentifier, 'scale factors', scaleFactorsInner1) elementIdentifier = elementIdentifier + 1 element = mesh.createElement(elementIdentifier, elementtemplateOuter) bni11 = bn + wno + rno - 1 bni12 = bn + rno - 1 bni21 = bn + wno + 2*rno - 1 bni22 = bn + 2*rno - 1 nodeIdentifiers = [ bni11, bni12, bni21, bni22, bni11 + 1, bni12 + 1, bni21 + 1, bni22 + 1 ] result = element.setNodesByIdentifier(eftOuter, nodeIdentifiers) #print(result, 'element', elementIdentifier, nodeIdentifiers) element.setScaleFactors(eftOuter, scaleFactorsOuter) elementIdentifier = elementIdentifier + 1 if bulgeRadius != 0.0: # cylindrical polar coordinates: # r = y - bulgeRadius # theta = -x / bulgeRadius # z = z yxzCoordinates = fm.createFieldComponent(coordinates, [2, 1, 3]) scale = fm.createFieldConstant([1.0, -1.0/bulgeRadius, 1.0 ]) scaleCoordinates = fm.createFieldMultiply(yxzCoordinates, scale) offset = fm.createFieldConstant([-bulgeRadius, 0.0, 0.0 ]) polarCoordinates = fm.createFieldAdd(scaleCoordinates, offset) polarCoordinates.setCoordinateSystemType(Field.COORDINATE_SYSTEM_TYPE_CYLINDRICAL_POLAR) rcCoordinates = fm.createFieldCoordinateTransformation(polarCoordinates) rcCoordinates.setCoordinateSystemType(Field.COORDINATE_SYSTEM_TYPE_RECTANGULAR_CARTESIAN) newyxzCoordinates = fm.createFieldSubtract(rcCoordinates, offset) newCoordinates = fm.createFieldComponent(newyxzCoordinates, [2, 1, 3]) fieldassignment = coordinates.createFieldassignment(newCoordinates) result = fieldassignment.assign() fm.endChange()
def createAnnulusMesh3d(nodes, mesh, nextNodeIdentifier, nextElementIdentifier, startPointsx, startPointsd1, startPointsd2, startPointsd3, startNodeId, startDerivativesMap, endPointsx, endPointsd1, endPointsd2, endPointsd3, endNodeId, endDerivativesMap, forceStartLinearXi3 = False, forceMidLinearXi3 = False, forceEndLinearXi3 = False, maxStartThickness = None, maxEndThickness = None, useCrossDerivatives = False, elementsCountRadial = 1, meshGroups = []): ''' Create an annulus mesh from a loop of start points/nodes with specified derivative mappings to a loop of end points/nodes with specified derivative mappings. Derivative d3 is through the wall. Currently limited to single element layer through wall. Points/nodes order cycles fastest around the annulus, then through the wall. Note doesn't support cross derivatives. Arrays are indexed by n3 (node through wall, size 2), n2 (node along/radial), n1 (node around, variable size) and coordinate component c. :param nodes: The nodeset to create nodes in. :param mesh: The mesh to create elements in. :param nextNodeIdentifier, nextElementIdentifier: Next identifiers to use and increment. :param startPointsx, startPointsd1, startPointsd2, startPointsd3, endPointsx, endPointsd1, endPointsd2, endPointsd3: List array[n3][n1][c] or start/point coordinates and derivatives. To linearise through the wall, pass None to d3. If both ends are linear through the wall, interior points are linear through the wall. :param startNodeId, endNodeId: List array [n3][n1] of existing node identifiers to use at start/end. Pass None for argument if no nodes are specified at end. These arguments are 'all or nothing'. :param startDerivativesMap, endDerivativesMap: List array[n3][n1] of mappings for d/dxi1, d/dxi2, d/dxi3 at start/end of form: ( (1, -1, 0), (1, 0, 0), None ) where the first tuple means d/dxi1 = d/ds1 - d/ds2. Only 0, 1 and -1 may be used. None means use default e.g. d/dxi2 = d/ds2. Pass None for the entire argument to use the defaults d/dxi1 = d/ds1, d/dxi2 = d/ds2, d/dxi3 = d/ds3. Pass a 4th mapping to apply to d/dxi1 on other side of node; if not supplied first mapping applies both sides. :param nodetemplate: Full tricubic Hermite node template, can omit cross derivatives. :param forceStartLinearXi3, forceMidLinearXi3, forceEndLinearXi3: Force start, middle or end elements to be linear through the wall, even if d3 is supplied at either end. Can only use forceMidLinearXi3 only if at least one end is linear in d3. :param maxStartThickness, maxEndThickness: Optional maximum override on start/end thicknesses. :param useCrossDerivatives: May only be True if no derivatives maps are in use. :param elementsCountRadial: Optional number of elements in radial direction between start and end. :param meshGroups: Optional list of Zinc MeshGroup for adding new elements to. :return: Final values of nextNodeIdentifier, nextElementIdentifier ''' assert (elementsCountRadial >= 1), 'createAnnulusMesh3d: Invalid number of radial elements' startLinearXi3 = (not startPointsd3) or forceStartLinearXi3 endLinearXi3 = (not endPointsd3) or forceEndLinearXi3 midLinearXi3 = (startLinearXi3 and endLinearXi3) or ((startLinearXi3 or endLinearXi3) and forceMidLinearXi3) # get list whether each row of nodes in elements is linear in Xi3 # this is for element use; start/end nodes may have d3 even if element is linear rowLinearXi3 = [ startLinearXi3 ] + [ midLinearXi3 ]*(elementsCountRadial - 1) + [ endLinearXi3 ] assert (not useCrossDerivatives) or ((not startDerivativesMap) and (not endDerivativesMap)), \ 'createAnnulusMesh3d: Cannot use cross derivatives with derivatives map' elementsCountWall = 1 nodesCountWall = elementsCountWall + 1 assert (len(startPointsx) == nodesCountWall) and (len(startPointsd1) == nodesCountWall) and (len(startPointsd2) == nodesCountWall) and \ (startLinearXi3 or (len(startPointsd3) == nodesCountWall)) and \ (len(endPointsx) == nodesCountWall) and (len(endPointsd1) == nodesCountWall) and (len(endPointsd2) == nodesCountWall) and \ (endLinearXi3 or (len(endPointsd3) == nodesCountWall)) and \ ((startNodeId is None) or (len(startNodeId) == nodesCountWall)) and \ ((endNodeId is None) or (len(endNodeId) == nodesCountWall)) and \ ((startDerivativesMap is None) or (len(startDerivativesMap) == nodesCountWall)) and \ ((endDerivativesMap is None) or (len(endDerivativesMap) == nodesCountWall)), \ 'createAnnulusMesh3d: Mismatch in number of layers through wall' elementsCountAround = nodesCountAround = len(startPointsx[0]) assert (nodesCountAround > 1), 'createAnnulusMesh3d: Invalid number of points/nodes around annulus' for n3 in range(nodesCountWall): assert (len(startPointsx[n3]) == nodesCountAround) and (len(startPointsd1[n3]) == nodesCountAround) and (len(startPointsd2[n3]) == nodesCountAround) and \ (startLinearXi3 or (len(startPointsd3[n3]) == nodesCountAround)) and \ (len(endPointsx[n3]) == nodesCountAround) and (len(endPointsd1[n3]) == nodesCountAround) and (len(endPointsd2[n3]) == nodesCountAround) and \ (endLinearXi3 or (len(endPointsd3[n3]) == nodesCountAround)) and \ ((startNodeId is None) or (len(startNodeId[n3]) == nodesCountAround)) and \ ((endNodeId is None) or (len(endNodeId[n3]) == nodesCountAround)) and \ ((startDerivativesMap is None) or (len(startDerivativesMap[n3]) == nodesCountAround)) and \ ((endDerivativesMap is None) or (len(endDerivativesMap[n3]) == nodesCountAround)), \ 'createAnnulusMesh3d: Mismatch in number of points/nodes in layers through wall' fm = mesh.getFieldmodule() fm.beginChange() cache = fm.createFieldcache() coordinates = zinc_utils.getOrCreateCoordinateField(fm) # Build arrays of points from start to end px = [ [], [] ] pd1 = [ [], [] ] pd2 = [ [], [] ] pd3 = [ [], [] ] for n3 in range(2): px [n3] = [ startPointsx [n3], endPointsx [n3] ] pd1[n3] = [ startPointsd1[n3], endPointsd1[n3] ] pd2[n3] = [ startPointsd2[n3], endPointsd2[n3] ] pd3[n3] = [ startPointsd3[n3] if (startPointsd3 is not None) else None, \ endPointsd3[n3] if (endPointsd3 is not None) else None ] if elementsCountRadial > 1: # add in-between points startPointsd = [ startPointsd1, startPointsd2, startPointsd3 ] startPointsdslimit = 2 if (startPointsd3 is None) else 3 endPointsd = [ endPointsd1, endPointsd2, endPointsd3 ] endPointsdslimit = 2 if (endPointsd3 is None) else 3 for n3 in range(2): for n2 in range(1, elementsCountRadial): px [n3].insert(n2, [ None ]*nodesCountAround) pd1[n3].insert(n2, [ None ]*nodesCountAround) pd2[n3].insert(n2, [ None ]*nodesCountAround) pd3[n3].insert(n2, None if midLinearXi3 else [ None ]*nodesCountAround) # compute on outside / n3 = 1, then map to inside using thickness thicknesses = [] thicknesses.append([ vector.magnitude([ (startPointsx[1][n1][c] - startPointsx[0][n1][c]) for c in range(3) ]) for n1 in range(nodesCountAround) ]) if maxStartThickness: for n1 in range(nodesCountAround): thicknesses[0][n1] = min(thicknesses[0][n1], maxStartThickness) for n2 in range(1, elementsCountRadial): thicknesses.append([ None ]*nodesCountAround) thicknesses.append([ vector.magnitude([ (endPointsx[1][n1][c] - endPointsx[0][n1][c]) for c in range(3) ]) for n1 in range(nodesCountAround) ]) if maxEndThickness: for n1 in range(nodesCountAround): thicknesses[-1][n1] = min(thicknesses[-1][n1], maxEndThickness) n3 == 1 for n1 in range(nodesCountAround): ax = startPointsx [n3][n1] if (startDerivativesMap is None) or (startDerivativesMap[n3][n1][0] is None): ad1 = startPointsd1[n3][n1] else: derivativesMap = startDerivativesMap[n3][n1][0] ad1 = [ 0.0, 0.0, 0.0 ] for ds in range(startPointsdslimit): if derivativesMap[ds] != 0.0: for c in range(3): ad1[c] += derivativesMap[ds]*startPointsd[ds][n3][n1][c] if len(startDerivativesMap[n3][n1]) > 3: # average with d1 map for other side derivativesMap = startDerivativesMap[n3][n1][3] ad1 = [ 0.5*d for d in ad1 ] if not derivativesMap: for c in range(3): ad1[c] += 0.5*startPointsd[0][n3][n1][c] else: for ds in range(startPointsdslimit): if derivativesMap[ds] != 0.0: for c in range(3): ad1[c] += 0.5*derivativesMap[ds]*startPointsd[ds][n3][n1][c] if (startDerivativesMap is None) or (startDerivativesMap[n3][n1][1] is None): ad2 = startPointsd2[n3][n1] else: derivativesMap = startDerivativesMap[n3][n1][1] ad2 = [ 0.0, 0.0, 0.0 ] for ds in range(startPointsdslimit): if derivativesMap[ds] != 0.0: for c in range(3): ad2[c] += derivativesMap[ds]*startPointsd[ds][n3][n1][c] bx = endPointsx [n3][n1] if (endDerivativesMap is None) or (endDerivativesMap[n3][n1][0] is None): bd1 = endPointsd1[n3][n1] else: derivativesMap = endDerivativesMap[n3][n1][0] bd1 = [ 0.0, 0.0, 0.0 ] for ds in range(endPointsdslimit): if derivativesMap[ds] != 0.0: for c in range(3): bd1[c] += derivativesMap[ds]*endPointsd[ds][n3][n1][c] if len(endDerivativesMap[n3][n1]) > 3: # average with d1 map for other side derivativesMap = endDerivativesMap[n3][n1][3] bd1 = [ 0.5*d for d in bd1 ] if not derivativesMap: for c in range(3): bd1[c] += 0.5*endPointsd[0][n3][n1][c] else: for ds in range(endPointsdslimit): if derivativesMap[ds] != 0.0: for c in range(3): bd1[c] += 0.5*derivativesMap[ds]*endPointsd[ds][n3][n1][c] if (endDerivativesMap is None) or (endDerivativesMap[n3][n1][1] is None): bd2 = endPointsd2[n3][n1] else: derivativesMap = endDerivativesMap[n3][n1][1] bd2 = [ 0.0, 0.0, 0.0 ] for ds in range(endPointsdslimit): if derivativesMap[ds] != 0.0: for c in range(3): bd2[c] += derivativesMap[ds]*endPointsd[ds][n3][n1][c] # scaling end derivatives to arc length gives even curvature along the curve arcLength = interp.computeCubicHermiteArcLength(ax, ad2, bx, bd2, rescaleDerivatives = False) scaledDerivatives = [ vector.setMagnitude(d2, arcLength) for d2 in [ ad2, bd2 ]] mx, md2, me, mxi = interp.sampleCubicHermiteCurvesSmooth([ ax, bx ], scaledDerivatives, elementsCountRadial, derivativeMagnitudeStart = vector.magnitude(ad2), derivativeMagnitudeEnd = vector.magnitude(bd2))[0:4] md1 = interp.interpolateSampleLinear([ ad1, bd1 ], me, mxi) thi = interp.interpolateSampleLinear([ thicknesses[0][n1], thicknesses[-1][n1] ], me, mxi) #md2 = interp.smoothCubicHermiteDerivativesLine(mx, md2, fixStartDerivative = True, fixEndDerivative = True) for n2 in range(1, elementsCountRadial): px [n3][n2][n1] = mx [n2] pd1[n3][n2][n1] = md1[n2] pd2[n3][n2][n1] = md2[n2] thicknesses[n2][n1] = thi[n2] # now get inner positions from normal and thickness, derivatives from curvature for n2 in range(1, elementsCountRadial): # first smooth derivative 1 around outer loop pd1[1][n2] = interp.smoothCubicHermiteDerivativesLoop(px[1][n2], pd1[1][n2], magnitudeScalingMode = interp.DerivativeScalingMode.HARMONIC_MEAN) for n1 in range(nodesCountAround): normal = vector.normalise(vector.crossproduct3(pd1[1][n2][n1], pd2[1][n2][n1])) thickness = thicknesses[n2][n1] d3 = [ d*thickness for d in normal ] px [0][n2][n1] = [ (px [1][n2][n1][c] - d3[c]) for c in range(3) ] # calculate inner d1 from curvature around n1m = n1 - 1 n1p = (n1 + 1)%nodesCountAround curvature = 0.5*( interp.getCubicHermiteCurvature(px[1][n2][n1m], pd1[1][n2][n1m], px[1][n2][n1 ], pd1[1][n2][n1 ], normal, 1.0) + interp.getCubicHermiteCurvature(px[1][n2][n1 ], pd1[1][n2][n1 ], px[1][n2][n1p], pd1[1][n2][n1p], normal, 0.0)) factor = 1.0 + curvature*thickness pd1[0][n2][n1] = [ factor*d for d in pd1[1][n2][n1] ] # calculate inner d2 from curvature radially n2m = n2 - 1 n2p = n2 + 1 curvature = 0.5*( interp.getCubicHermiteCurvature(px[1][n2m][n1], pd2[1][n2m][n1], px[1][n2 ][n1], pd2[1][n2 ][n1], normal, 1.0) + interp.getCubicHermiteCurvature(px[1][n2 ][n1], pd2[1][n2 ][n1], px[1][n2p][n1], pd2[1][n2p][n1], normal, 0.0)) factor = 1.0 + curvature*thickness pd2[0][n2][n1] = [ factor*d for d in pd2[1][n2][n1] ] if not midLinearXi3: pd3[0][n2][n1] = pd3[1][n2][n1] = d3 # smooth derivative 1 around inner loop pd1[0][n2] = interp.smoothCubicHermiteDerivativesLoop(px[0][n2], pd1[0][n2], magnitudeScalingMode = interp.DerivativeScalingMode.HARMONIC_MEAN) for n3 in range(0, 1): # was (0, nodesCountWall) # smooth derivative 2 radially/along annulus for n1 in range(nodesCountAround): sd2 = interp.smoothCubicHermiteDerivativesLine( [ px [n3][n2][n1] for n2 in range(elementsCountRadial + 1) ], [ pd2[n3][n2][n1] for n2 in range(elementsCountRadial + 1) ], fixAllDirections = True, fixStartDerivative = True, fixEndDerivative = True, magnitudeScalingMode = interp.DerivativeScalingMode.HARMONIC_MEAN) for n2 in range(elementsCountRadial + 1): pd2[n3][n2][n1] = sd2[n2] ############## # Create nodes ############## nodetemplate = nodes.createNodetemplate() nodetemplate.defineField(coordinates) nodetemplate.setValueNumberOfVersions(coordinates, -1, Node.VALUE_LABEL_VALUE, 1) nodetemplate.setValueNumberOfVersions(coordinates, -1, Node.VALUE_LABEL_D_DS1, 1) nodetemplate.setValueNumberOfVersions(coordinates, -1, Node.VALUE_LABEL_D_DS2, 1) if useCrossDerivatives: nodetemplate.setValueNumberOfVersions(coordinates, -1, Node.VALUE_LABEL_D2_DS1DS2, 1) nodetemplate.setValueNumberOfVersions(coordinates, -1, Node.VALUE_LABEL_D_DS3, 1) if useCrossDerivatives: nodetemplate.setValueNumberOfVersions(coordinates, -1, Node.VALUE_LABEL_D2_DS1DS3, 1) nodetemplate.setValueNumberOfVersions(coordinates, -1, Node.VALUE_LABEL_D2_DS2DS3, 1) nodetemplate.setValueNumberOfVersions(coordinates, -1, Node.VALUE_LABEL_D3_DS1DS2DS3, 1) nodetemplateLinearS3 = nodes.createNodetemplate() nodetemplateLinearS3.defineField(coordinates) nodetemplateLinearS3.setValueNumberOfVersions(coordinates, -1, Node.VALUE_LABEL_VALUE, 1) nodetemplateLinearS3.setValueNumberOfVersions(coordinates, -1, Node.VALUE_LABEL_D_DS1, 1) nodetemplateLinearS3.setValueNumberOfVersions(coordinates, -1, Node.VALUE_LABEL_D_DS2, 1) if useCrossDerivatives: nodetemplateLinearS3.setValueNumberOfVersions(coordinates, -1, Node.VALUE_LABEL_D2_DS1DS2, 1) nodeIdentifier = nextNodeIdentifier nodeId = [ [], [] ] for n3 in range(2): for n2 in range(elementsCountRadial + 1): if (n2 == 0) and (startNodeId is not None): rowNodeId = copy.deepcopy(startNodeId[n3]) elif (n2 == elementsCountRadial) and (endNodeId is not None): rowNodeId = copy.deepcopy(endNodeId[n3]) else: rowNodeId = [] nodetemplate1 = nodetemplate if pd3[n3][n2] else nodetemplateLinearS3 for n1 in range(nodesCountAround): node = nodes.createNode(nodeIdentifier, nodetemplate1) rowNodeId.append(nodeIdentifier) cache.setNode(node) coordinates.setNodeParameters(cache, -1, Node.VALUE_LABEL_VALUE, 1, px[n3][n2][n1]) coordinates.setNodeParameters(cache, -1, Node.VALUE_LABEL_D_DS1, 1, pd1[n3][n2][n1]) coordinates.setNodeParameters(cache, -1, Node.VALUE_LABEL_D_DS2, 1, pd2[n3][n2][n1]) if pd3[n3][n2]: coordinates.setNodeParameters(cache, -1, Node.VALUE_LABEL_D_DS3, 1, pd3[n3][n2][n1]) nodeIdentifier = nodeIdentifier + 1 nodeId[n3].append(rowNodeId) ################# # Create elements ################# tricubichermite = eftfactory_tricubichermite(mesh, useCrossDerivatives) bicubichermitelinear = eftfactory_bicubichermitelinear(mesh, useCrossDerivatives) elementIdentifier = nextElementIdentifier elementtemplateStandard = mesh.createElementtemplate() elementtemplateStandard.setElementShapeType(Element.SHAPE_TYPE_CUBE) elementtemplateX = mesh.createElementtemplate() elementtemplateX.setElementShapeType(Element.SHAPE_TYPE_CUBE) for e2 in range(elementsCountRadial): nonlinearXi3 = (not rowLinearXi3[e2]) or (not rowLinearXi3[e2 + 1]) eftFactory = tricubichermite if nonlinearXi3 else bicubichermitelinear eftStandard = eftFactory.createEftBasic() elementtemplateStandard.defineField(coordinates, -1, eftStandard) mapStartDerivatives = (e2 == 0) and (startDerivativesMap is not None) mapStartLinearDerivativeXi3 = nonlinearXi3 and rowLinearXi3[e2] mapEndDerivatives = (e2 == (elementsCountRadial - 1)) and (endDerivativesMap is not None) mapEndLinearDerivativeXi3 = nonlinearXi3 and rowLinearXi3[e2 + 1] mapDerivatives = mapStartDerivatives or mapStartLinearDerivativeXi3 or mapEndDerivatives or mapEndLinearDerivativeXi3 for e1 in range(elementsCountAround): en = (e1 + 1)%elementsCountAround nids = [ nodeId[0][e2][e1], nodeId[0][e2][en], nodeId[0][e2 + 1][e1], nodeId[0][e2 + 1][en], nodeId[1][e2][e1], nodeId[1][e2][en], nodeId[1][e2 + 1][e1], nodeId[1][e2 + 1][en] ] if mapDerivatives: eft1 = eftFactory.createEftNoCrossDerivatives() setEftScaleFactorIds(eft1, [1], []) if mapStartLinearDerivativeXi3: eftFactory.setEftLinearDerivative(eft1, [ 1, 5 ], Node.VALUE_LABEL_D_DS3, 1, 5, 1) eftFactory.setEftLinearDerivative(eft1, [ 2, 6 ], Node.VALUE_LABEL_D_DS3, 2, 6, 1) if mapStartDerivatives: for i in range(2): lns = [ 1, 5 ] if (i == 0) else [ 2, 6 ] for n3 in range(2): derivativesMap = startDerivativesMap[n3][e1] if (i == 0) else startDerivativesMap[n3][en] # handle different d1 on each side of node d1Map = derivativesMap[0] if ((i == 1) or (len(derivativesMap) < 4)) else derivativesMap[3] d2Map = derivativesMap[1] d3Map = derivativesMap[2] # use temporary to safely swap DS1 and DS2: ln = [ lns[n3] ] if d1Map is not None: remapEftNodeValueLabel(eft1, ln, Node.VALUE_LABEL_D_DS1, [ ( Node.VALUE_LABEL_D2_DS1DS2, [] ) ]) if d3Map is not None: remapEftNodeValueLabel(eft1, ln, Node.VALUE_LABEL_D_DS3, [ ( Node.VALUE_LABEL_D2_DS2DS3, [] ) ]) if d2Map is not None: remapEftNodeValueLabel(eft1, ln, Node.VALUE_LABEL_D_DS2, \ derivativeSignsToExpressionTerms( ( Node.VALUE_LABEL_D_DS1, Node.VALUE_LABEL_D_DS2, Node.VALUE_LABEL_D_DS3 ), d2Map)) if d1Map is not None: remapEftNodeValueLabel(eft1, ln, Node.VALUE_LABEL_D2_DS1DS2, \ derivativeSignsToExpressionTerms( ( Node.VALUE_LABEL_D_DS1, Node.VALUE_LABEL_D_DS2, Node.VALUE_LABEL_D_DS3 ), d1Map)) if d3Map is not None: remapEftNodeValueLabel(eft1, ln, Node.VALUE_LABEL_D2_DS2DS3, \ derivativeSignsToExpressionTerms( ( Node.VALUE_LABEL_D_DS1, Node.VALUE_LABEL_D_DS2, Node.VALUE_LABEL_D_DS3 ), d3Map)) if mapEndLinearDerivativeXi3: eftFactory.setEftLinearDerivative(eft1, [ 3, 7 ], Node.VALUE_LABEL_D_DS3, 3, 7, 1) eftFactory.setEftLinearDerivative(eft1, [ 4, 8 ], Node.VALUE_LABEL_D_DS3, 4, 8, 1) if mapEndDerivatives: for i in range(2): lns = [ 3, 7 ] if (i == 0) else [ 4, 8 ] for n3 in range(2): derivativesMap = endDerivativesMap[n3][e1] if (i == 0) else endDerivativesMap[n3][en] # handle different d1 on each side of node d1Map = derivativesMap[0] if ((i == 1) or (len(derivativesMap) < 4)) else derivativesMap[3] d2Map = derivativesMap[1] d3Map = derivativesMap[2] # use temporary to safely swap DS1 and DS2: ln = [ lns[n3] ] if d1Map is not None: remapEftNodeValueLabel(eft1, ln, Node.VALUE_LABEL_D_DS1, [ ( Node.VALUE_LABEL_D2_DS1DS2, [] ) ]) if d3Map is not None: remapEftNodeValueLabel(eft1, ln, Node.VALUE_LABEL_D_DS3, [ ( Node.VALUE_LABEL_D2_DS2DS3, [] ) ]) if d2Map is not None: remapEftNodeValueLabel(eft1, ln, Node.VALUE_LABEL_D_DS2, \ derivativeSignsToExpressionTerms( ( Node.VALUE_LABEL_D_DS1, Node.VALUE_LABEL_D_DS2, Node.VALUE_LABEL_D_DS3 ), d2Map)) if d1Map is not None: remapEftNodeValueLabel(eft1, ln, Node.VALUE_LABEL_D2_DS1DS2, \ derivativeSignsToExpressionTerms( ( Node.VALUE_LABEL_D_DS1, Node.VALUE_LABEL_D_DS2, Node.VALUE_LABEL_D_DS3 ), d1Map)) if d3Map is not None: remapEftNodeValueLabel(eft1, ln, Node.VALUE_LABEL_D2_DS2DS3, \ derivativeSignsToExpressionTerms( ( Node.VALUE_LABEL_D_DS1, Node.VALUE_LABEL_D_DS2, Node.VALUE_LABEL_D_DS3 ), d3Map)) elementtemplateX.defineField(coordinates, -1, eft1) elementtemplate1 = elementtemplateX else: eft1 = eftStandard elementtemplate1 = elementtemplateStandard element = mesh.createElement(elementIdentifier, elementtemplate1) result2 = element.setNodesByIdentifier(eft1, nids) if mapDerivatives: result3 = element.setScaleFactors(eft1, [ -1.0 ]) #else: # result3 = '-' #print('create element annulus', element.isValid(), elementIdentifier, result2, result3, nids) elementIdentifier += 1 for meshGroup in meshGroups: meshGroup.addElement(element) fm.endChange() return nodeIdentifier, elementIdentifier
def __init__(self, sourceRegion, targetRegion, sourceAnnotationGroups=[]): ''' Assumes targetRegion is empty. :param sourceAnnotationGroups: List of AnnotationGroup for source mesh in sourceRegion. A copy containing the refined elements is created by the MeshRefinement. ''' self._sourceRegion = sourceRegion self._sourceFm = sourceRegion.getFieldmodule() self._sourceCache = self._sourceFm.createFieldcache() self._sourceCoordinates = zinc_utils.getOrCreateCoordinateField( self._sourceFm) # get range of source coordinates for octree range self._sourceFm.beginChange() sourceNodes = self._sourceFm.findNodesetByFieldDomainType( Field.DOMAIN_TYPE_NODES) minimumsField = self._sourceFm.createFieldNodesetMinimum( self._sourceCoordinates, sourceNodes) result, minimums = minimumsField.evaluateReal(self._sourceCache, 3) assert result == ZINC_OK, 'MeshRefinement failed to get minimum coordinates' maximumsField = self._sourceFm.createFieldNodesetMaximum( self._sourceCoordinates, sourceNodes) result, maximums = maximumsField.evaluateReal(self._sourceCache, 3) assert result == ZINC_OK, 'MeshRefinement failed to get maximum coordinates' xrange = [(maximums[i] - minimums[i]) for i in range(3)] edgeTolerance = 0.5 * (max(xrange)) if edgeTolerance == 0.0: edgeTolerance = 1.0 minimums = [(minimums[i] - edgeTolerance) for i in range(3)] maximums = [(maximums[i] + edgeTolerance) for i in range(3)] minimumsField = None maximumsField = None self._sourceMesh = self._sourceFm.findMeshByDimension(3) self._sourceElementiterator = self._sourceMesh.createElementiterator() self._octree = Octree(minimums, maximums) self._targetRegion = targetRegion self._targetFm = targetRegion.getFieldmodule() self._targetFm.beginChange() self._targetCache = self._targetFm.createFieldcache() self._targetCoordinates = zinc_utils.getOrCreateCoordinateField( self._targetFm) self._targetNodes = self._targetFm.findNodesetByFieldDomainType( Field.DOMAIN_TYPE_NODES) self._nodetemplate = self._targetNodes.createNodetemplate() self._nodetemplate.defineField(self._targetCoordinates) self._targetMesh = self._targetFm.findMeshByDimension(3) self._targetBasis = self._targetFm.createElementbasis( 3, Elementbasis.FUNCTION_TYPE_LINEAR_LAGRANGE) self._targetEft = self._targetMesh.createElementfieldtemplate( self._targetBasis) self._targetElementtemplate = self._targetMesh.createElementtemplate() self._targetElementtemplate.setElementShapeType( Element.SHAPE_TYPE_CUBE) result = self._targetElementtemplate.defineField( self._targetCoordinates, -1, self._targetEft) self._nodeIdentifier = 1 self._elementIdentifier = 1 self._sourceAnnotationGroups = sourceAnnotationGroups self._annotationGroups = [] self._sourceAndTargetMeshGroups = [] for sourceAnnotationGroup in sourceAnnotationGroups: sourceMeshGroup = sourceAnnotationGroup.getMeshGroup( self._sourceMesh) targetAnnotationGroup = AnnotationGroup(self._targetRegion, \ sourceAnnotationGroup.getName(), sourceAnnotationGroup.getFMANumber(), sourceAnnotationGroup.getLyphID()) targetMeshGroup = targetAnnotationGroup.getMeshGroup( self._targetMesh) self._annotationGroups.append(targetAnnotationGroup) self._sourceAndTargetMeshGroups.append( (sourceMeshGroup, targetMeshGroup))
def generateOstiumMesh(region, options, trackSurface, centrePosition, axis1, startNodeIdentifier=1, startElementIdentifier=1, vesselMeshGroups=None): ''' :param vesselMeshGroups: List (over number of vessels) of list of mesh groups to add vessel elements to. :return: nextNodeIdentifier, nextElementIdentifier, Ostium points tuple (ox[n3][n1][c], od1[n3][n1][c], od2[n3][n1][c], od3[n3][n1][c], oNodeId[n3][n1], oPositions). ''' vesselsCount = options['Number of vessels'] elementsCountAroundOstium = options['Number of elements around ostium'] elementsCountAcross = options['Number of elements across common'] elementsCountsAroundVessels, elementsCountAroundMid = getOstiumElementsCountsAroundVessels( elementsCountAroundOstium, elementsCountAcross, vesselsCount) elementsCountAroundEnd = (elementsCountAroundOstium - 2 * elementsCountAroundMid) // 2 #print('\nvesselsCount', vesselsCount, 'elementsCountsAroundOstium', elementsCountAroundOstium, 'elementsCountAcross', elementsCountAcross) #print('--> elementsCountsAroundVessels', elementsCountsAroundVessels, 'elementsCountAroundMid', elementsCountAroundMid) elementsCountAlong = options['Number of elements along'] elementsCountThroughWall = options['Number of elements through wall'] unitScale = options['Unit scale'] isOutlet = options['Outlet'] ostiumRadius = 0.5 * unitScale * options['Ostium diameter'] ostiumLength = unitScale * options['Ostium length'] ostiumWallThickness = unitScale * options['Ostium wall thickness'] interVesselHeight = unitScale * options['Ostium inter-vessel height'] interVesselDistance = unitScale * options[ 'Ostium inter-vessel distance'] if (vesselsCount > 1) else 0.0 halfInterVesselDistance = 0.5 * interVesselDistance useCubicHermiteThroughOstiumWall = not ( options['Use linear through ostium wall']) vesselEndDerivative = ostiumLength * options[ 'Vessel end length factor'] / elementsCountAlong vesselInnerRadius = 0.5 * unitScale * options['Vessel inner diameter'] vesselWallThickness = unitScale * options['Vessel wall thickness'] vesselOuterRadius = vesselInnerRadius + vesselWallThickness vesselAngle1Radians = math.radians(options['Vessel angle 1 degrees']) vesselAngle1SpreadRadians = math.radians( options['Vessel angle 1 spread degrees']) vesselAngle2Radians = math.radians(options['Vessel angle 2 degrees']) useCubicHermiteThroughVesselWall = not ( options['Use linear through vessel wall']) useCrossDerivatives = False # options['Use cross derivatives'] # not implemented fm = region.getFieldmodule() fm.beginChange() coordinates = zinc_utils.getOrCreateCoordinateField(fm) cache = fm.createFieldcache() # track points in shape of ostium # get directions in plane of surface at centre: cx, cd1, cd2 = trackSurface.evaluateCoordinates(centrePosition, True) trackDirection1, trackDirection2, centreNormal = calculate_surface_axes( cd1, cd2, axis1) trackDirection2reverse = [-d for d in trackDirection2] halfCircumference = math.pi * ostiumRadius circumference = 2.0 * halfCircumference distance = 0.0 elementLengthAroundOstiumMid = 0.0 vesselsSpanAll = interVesselDistance * (vesselsCount - 1) vesselsSpanMid = interVesselDistance * (vesselsCount - 2) if vesselsCount == 1: elementLengthAroundOstiumEnd = circumference / elementsCountAroundOstium vesselOstiumPositions = [centrePosition] ocx = [cx] ocd1 = [trackDirection1] ocd2 = [trackDirection2] ocd3 = [centreNormal] else: elementLengthAroundOstiumEnd = ( circumference + 2.0 * interVesselDistance) / ( elementsCountAroundOstium - 2 * elementsCountAroundMid) if elementsCountAroundMid > 0: elementLengthAroundOstiumMid = interVesselDistance * ( vesselsCount - 2) / elementsCountAroundMid vesselOstiumPositions = [] ocx = [] ocd1 = [] ocd2 = [] ocd3 = [] for v in range(vesselsCount): vesselOstiumPositions.append( trackSurface.trackVector(centrePosition, trackDirection1, (v / (vesselsCount - 1) - 0.5) * vesselsSpanAll)) x, d1, d2 = trackSurface.evaluateCoordinates( vesselOstiumPositions[-1], -1) d1, d2, d3 = calculate_surface_axes(d1, d2, trackDirection1) ocx.append(x) ocd1.append(d1) ocd2.append(d2) ocd3.append(d3) # coordinates around ostium ox = [[], []] od1 = [[], []] od2 = [[], []] od3 = [[], []] oPositions = [] for n1 in range(elementsCountAroundOstium): elementLength = elementLengthAroundOstiumEnd if distance <= (vesselsSpanMid + halfInterVesselDistance): position = trackSurface.trackVector( centrePosition, trackDirection1, 0.5 * vesselsSpanMid - distance) sideDirection = trackDirection2reverse if n1 < elementsCountAroundMid: elementLength = elementLengthAroundOstiumMid elif distance < (vesselsSpanMid + halfInterVesselDistance + halfCircumference): position = vesselOstiumPositions[0] angleRadians = ( distance - (vesselsSpanMid + halfInterVesselDistance)) / ostiumRadius w1 = -math.sin(angleRadians) w2 = -math.cos(angleRadians) sideDirection = [ (w1 * trackDirection1[c] + w2 * trackDirection2[c]) for c in range(3) ] elif distance < (2.0 * vesselsSpanMid + halfInterVesselDistance + halfCircumference + interVesselDistance): position = trackSurface.trackVector( centrePosition, trackDirection1, distance - (1.5 * vesselsSpanMid + interVesselDistance + halfCircumference)) sideDirection = trackDirection2 if 0 <= (n1 - elementsCountAroundEnd - elementsCountAroundMid) < elementsCountAroundMid: elementLength = elementLengthAroundOstiumMid elif distance < (2.0 * vesselsSpanMid + halfInterVesselDistance + circumference + interVesselDistance): position = vesselOstiumPositions[-1] angleRadians = ( distance - (2.0 * vesselsSpanMid + halfInterVesselDistance + halfCircumference + interVesselDistance)) / ostiumRadius w1 = math.sin(angleRadians) w2 = math.cos(angleRadians) sideDirection = [ (w1 * trackDirection1[c] + w2 * trackDirection2[c]) for c in range(3) ] else: position = trackSurface.trackVector( centrePosition, trackDirection1, 0.5 * vesselsSpanMid + (circumference + 2.0 * (vesselsSpanMid + interVesselDistance)) - distance) sideDirection = trackDirection2reverse position = trackSurface.trackVector(position, sideDirection, ostiumRadius) oPositions.append(position) px, d1, d2 = trackSurface.evaluateCoordinates(position, True) pd2, pd1, pd3 = calculate_surface_axes(d1, d2, sideDirection) # get outer coordinates opx = px opd1 = vector.setMagnitude([-d for d in pd1], elementLengthAroundOstiumEnd) opd2 = vector.setMagnitude( pd2, elementLengthAroundOstiumEnd) # smoothed later opd3 = vector.setMagnitude(pd3, ostiumWallThickness) # set inner and outer coordinates (use copy to avoid references to same list later) ox[0].append([(opx[c] - opd3[c]) for c in range(3)]) od1[0].append(copy.copy(opd1)) od2[0].append(copy.copy(opd2)) ox[1].append(opx) od1[1].append(opd1) od2[1].append(opd2) if useCubicHermiteThroughOstiumWall: od3[0].append(copy.copy(opd3)) od3[1].append(opd3) distance += elementLength for n3 in range(2): od1[n3] = interp.smoothCubicHermiteDerivativesLoop( ox[n3], od1[n3], fixAllDirections=True) xx = [] xd1 = [] xd2 = [] xd3 = [] # coordinates across common ostium, between vessels nodesCountFreeEnd = elementsCountsAroundVessels[0] + 1 - elementsCountAcross oinc = 0 if ( vesselsCount <= 2) else elementsCountAroundMid // (vesselsCount - 2) for iv in range(vesselsCount - 1): xx.append([None, None]) xd1.append([None, None]) xd2.append([None, None]) xd3.append([None, None]) oa = elementsCountAroundMid - iv * oinc ob = elementsCountAroundMid + nodesCountFreeEnd - 1 + iv * oinc nx = [ox[1][oa], ox[1][ob]] nd1 = [[-d for d in od1[1][oa]], od1[1][ob]] nd2 = [[-d for d in od2[1][oa]], od2[1][ob]] if elementsCountAcross > 1: # add centre point, displaced by interVesselHeight if vesselsCount == 2: position = centrePosition else: position = trackSurface.trackVector( centrePosition, trackDirection1, (iv / (vesselsCount - 2) - 0.5) * vesselsSpanMid) mx, d1, d2 = trackSurface.evaluateCoordinates(position, derivatives=True) md1, md2, md3 = calculate_surface_axes(d1, d2, trackDirection1) nx.insert(1, [(mx[c] + interVesselHeight * md3[c]) for c in range(3)]) nd1.insert( 1, vector.setMagnitude( md1, elementLengthAroundOstiumMid if (0 < iv < (vesselsCount - 2)) else elementLengthAroundOstiumEnd)) nd2.insert(1, vector.setMagnitude(md2, ostiumRadius)) nd2 = interp.smoothCubicHermiteDerivativesLine(nx, nd2, fixAllDirections=True) px, pd2, pe, pxi = interp.sampleCubicHermiteCurves( nx, nd2, elementsCountAcross)[0:4] pd1 = interp.interpolateSampleLinear(nd1, pe, pxi) pd3 = [ vector.setMagnitude(vector.crossproduct3(pd1[n2], pd2[n2]), ostiumWallThickness) for n2 in range(elementsCountAcross + 1) ] lx = [([(px[n2][c] - pd3[n2][c]) for c in range(3)]) for n2 in range(elementsCountAcross + 1)] ld2 = interp.smoothCubicHermiteDerivativesLine(lx, pd2, fixAllDirections=True) xx[iv][0] = lx[1:elementsCountAcross] xd1[iv][0] = copy.deepcopy( pd1[1:elementsCountAcross]) # to be smoothed later xd2[iv][0] = ld2[1:elementsCountAcross] xx[iv][1] = px[1:elementsCountAcross] xd1[iv][1] = pd1[1:elementsCountAcross] # to be smoothed later xd2[iv][1] = pd2[1:elementsCountAcross] if useCubicHermiteThroughOstiumWall: xd3[iv][0] = copy.deepcopy(pd3[1:elementsCountAcross]) xd3[iv][1] = pd3[1:elementsCountAcross] # set smoothed d2 on ostium circumference od2[0][oa] = [-d for d in ld2[0]] od2[1][oa] = [-d for d in pd2[0]] od2[0][ob] = ld2[-1] od2[1][ob] = pd2[-1] # get positions of vessel end centres and rings vcx = [] vcd1 = [] vcd2 = [] vcd3 = [] vox = [] vod1 = [] vod2 = [] vod3 = [] for v in range(vesselsCount): elementsCountAroundVessel = elementsCountsAroundVessels[v] radiansPerElementVessel = 2.0 * math.pi / elementsCountAroundVessel useVesselAngleRadians = vesselAngle1Radians if vesselsCount > 1: useVesselAngleRadians += (v / (vesselsCount - 1) - 0.5) * vesselAngle1SpreadRadians vx, vd1, vd2, vd3 = getCircleProjectionAxes(ocx[v], ocd1[v], ocd2[v], ocd3[v], ostiumLength, useVesselAngleRadians, vesselAngle2Radians) vd1 = [vesselOuterRadius * d for d in vd1] vd2 = [-vesselOuterRadius * d for d in vd2] vd3 = [-vesselEndDerivative * d for d in vd3] vcx.append(vx) vcd1.append(vd1) vcd2.append(vd2) vcd3.append(vd3) vox.append([]) vod1.append([]) vod2.append([]) vod3.append([]) for n3 in range(2): radius = vesselInnerRadius if (n3 == 0) else vesselOuterRadius vAxis1 = vector.setMagnitude(vd1, radius) vAxis2 = vector.setMagnitude(vd2, radius) if vesselsCount == 1: startRadians = 0.5 * math.pi else: startRadians = 0.5 * radiansPerElementVessel * elementsCountAcross if v == (vesselsCount - 1): startRadians -= math.pi px, pd1 = createCirclePoints(vx, vAxis1, vAxis2, elementsCountAroundVessel, startRadians) vox[-1].append(px) vod1[-1].append(pd1) vod2[-1].append([vd3] * elementsCountAroundVessel) if useCubicHermiteThroughVesselWall: vod3[-1].append([ vector.setMagnitude(vector.crossproduct3(d1, vd3), vesselWallThickness) for d1 in pd1 ]) # calculate common ostium vessel node derivatives map mvPointsx = [None] * vesselsCount mvPointsd1 = [None] * vesselsCount mvPointsd2 = [None] * vesselsCount mvPointsd3 = [None] * vesselsCount mvDerivativesMap = [None] * vesselsCount mvMeanCount = [ None ] * vesselsCount # stores 1 if first reference to common point between vessels, 2 if second. Otherwise 0. for v in range(vesselsCount): if vesselsCount == 1: mvPointsx[v], mvPointsd1[v], mvPointsd2[v], mvPointsd3[v], mvDerivativesMap[v] = \ ox, od1, od2, od3 if useCubicHermiteThroughOstiumWall else None, None mvMeanCount[v] = [0] * elementsCountsAroundVessels[v] else: iv = max(0, v - 1) oa = elementsCountAroundMid - iv * oinc ob = elementsCountAroundMid + nodesCountFreeEnd - 1 + iv * oinc mvPointsx[v] = [] mvPointsd1[v] = [] mvPointsd2[v] = [] mvPointsd3[v] = [] if useCubicHermiteThroughOstiumWall else None mvDerivativesMap[v] = [] for n3 in range(2): mvPointsd1[v].append([]) mvPointsd2[v].append([]) mvPointsx[v].append([]) if useCubicHermiteThroughOstiumWall: mvPointsd3[v].append([]) mvDerivativesMap[v].append([]) if v == 0: # first end vessel mvPointsd1[v][n3] += od1[n3][oa:ob + 1] mvPointsd2[v][n3] += od2[n3][oa:ob + 1] mvPointsx[v][n3] += ox[n3][oa:ob + 1] if useCubicHermiteThroughOstiumWall: mvPointsd3[v][n3] += od3[n3][oa:ob + 1] mvDerivativesMap[v][n3].append( ((0, 1, 0), (-1, 1, 0), None, (1, 0, 0))) for i in range(nodesCountFreeEnd - 2): mvDerivativesMap[v][n3].append((None, None, None)) mvDerivativesMap[v][n3].append( ((1, 0, 0), (1, 1, 0), None, (0, -1, 0))) mvPointsx[v][n3] += reversed(xx[iv][n3]) mvPointsd1[v][n3] += reversed(xd1[iv][n3]) mvPointsd2[v][n3] += reversed(xd2[iv][n3]) if useCubicHermiteThroughOstiumWall: mvPointsd3[v][n3] += reversed(xd3[iv][n3]) for i in range(elementsCountAcross - 1): mvDerivativesMap[v][n3].append( ((0, -1, 0), (1, 0, 0), None)) if n3 == 0: mvMeanCount[v] = [1] + [0] * ( nodesCountFreeEnd - 2) + [1] * elementsCountAcross elif v < (vesselsCount - 1): # middle vessels # left: mvPointsx[v][n3] += ox[n3][oa - oinc:oa + 1] mvPointsd1[v][n3] += od1[n3][oa - oinc:oa + 1] mvPointsd2[v][n3] += od2[n3][oa - oinc:oa + 1] if useCubicHermiteThroughOstiumWall: mvPointsd3[v][n3] += od3[n3][oa - oinc:oa + 1] mvDerivativesMap[v][n3].append( ((0, 1, 0), (-1, 1, 0), None, (1, 0, 0))) for i in range(oinc - 1): mvDerivativesMap[v][n3].append((None, None, None)) mvDerivativesMap[v][n3].append( ((1, 0, 0), (1, 1, 0), None, (0, -1, 0))) # across mvPointsx[v][n3] += xx[iv][n3] mvPointsd1[v][n3] += xd1[iv][n3] mvPointsd2[v][n3] += xd2[iv][n3] if useCubicHermiteThroughOstiumWall: mvPointsd3[v][n3] += xd3[iv][n3] for i in range(elementsCountAcross - 1): mvDerivativesMap[v][n3].append( ((0, 1, 0), (-1, 0, 0), None)) # right mvPointsx[v][n3] += ox[n3][ob:ob + oinc + 1] mvPointsd1[v][n3] += od1[n3][ob:ob + oinc + 1] mvPointsd2[v][n3] += od2[n3][ob:ob + oinc + 1] if useCubicHermiteThroughOstiumWall: mvPointsd3[v][n3] += od3[n3][ob:ob + oinc + 1] mvDerivativesMap[v][n3].append( ((0, 1, 0), (-1, 1, 0), None, (1, 0, 0))) for i in range(oinc - 1): mvDerivativesMap[v][n3].append((None, None, None)) mvDerivativesMap[v][n3].append( ((1, 0, 0), (1, 1, 0), None, (0, -1, 0))) # across reverse mvPointsx[v][n3] += reversed(xx[iv + 1][n3]) mvPointsd1[v][n3] += reversed(xd1[iv + 1][n3]) mvPointsd2[v][n3] += reversed(xd2[iv + 1][n3]) if useCubicHermiteThroughOstiumWall: mvPointsd3[v][n3] += reversed(xd3[iv + 1][n3]) for i in range(elementsCountAcross - 1): mvDerivativesMap[v][n3].append( ((0, -1, 0), (1, 0, 0), None)) if n3 == 0: mvMeanCount[v] = [1] + [0] * (oinc - 1) + [2] * ( elementsCountAcross + 1) + [0] * (oinc - 1) + [1] * elementsCountAcross else: # last end vessel mvPointsx[v][n3] += ox[n3][ob:] + [ox[n3][0]] mvPointsd1[v][n3] += od1[n3][ob:] + [od1[n3][0]] mvPointsd2[v][n3] += od2[n3][ob:] + [od2[n3][0]] if useCubicHermiteThroughOstiumWall: mvPointsd3[v][n3] += od3[n3][ob:] + [od3[n3][0]] mvDerivativesMap[v][n3].append( ((0, 1, 0), (-1, 1, 0), None, (1, 0, 0))) for i in range(nodesCountFreeEnd - 2): mvDerivativesMap[v][n3].append((None, None, None)) mvDerivativesMap[v][n3].append( ((1, 0, 0), (1, 1, 0), None, (0, -1, 0))) mvPointsx[v][n3] += xx[iv][n3] mvPointsd1[v][n3] += xd1[iv][n3] mvPointsd2[v][n3] += xd2[iv][n3] if useCubicHermiteThroughOstiumWall: mvPointsd3[v][n3] += xd3[iv][n3] for i in range(elementsCountAcross - 1): mvDerivativesMap[v][n3].append( ((0, 1, 0), (-1, 0, 0), None)) if n3 == 0: mvMeanCount[v] = [2] + [0] * ( nodesCountFreeEnd - 2) + [2] * elementsCountAcross # calculate derivative 2 around free sides of inlets to fit vessel derivatives for v in range(vesselsCount): for n3 in range(2): #print('v',v,'n3',n3,'elementsAround',elementsCountsAroundVessels[v]) #print('mvPointsx [v][n3]', mvPointsx [v][n3]) #print('mvPointsd1[v][n3]', mvPointsd1[v][n3]) #print('mvPointsd2[v][n3]', mvPointsd2[v][n3]) #print('mvDerivativesMap[v][n3]', mvDerivativesMap[v][n3]) for n1 in range(elementsCountsAroundVessels[v]): d2Map = mvDerivativesMap[v][n3][n1][1] if ( mvDerivativesMap[v] and mvDerivativesMap[v][n3][n1]) else None sf1 = d2Map[0] if d2Map else 0.0 sf2 = d2Map[1] if d2Map else 1.0 nx = [vox[v][n3][n1], mvPointsx[v][n3][n1]] nd2 = [[d * elementsCountAlong for d in vod2[v][n3][n1]], [(sf1 * mvPointsd1[v][n3][n1][c] + sf2 * mvPointsd2[v][n3][n1][c]) for c in range(3)]] nd2f = interp.smoothCubicHermiteDerivativesLine( nx, nd2, fixStartDerivative=True, fixEndDirection=True) ndf = [d / elementsCountAlong for d in nd2f[1]] # assign components to set original values: if sf1 == 0: for c in range(3): mvPointsd2[v][n3][n1][c] = sf2 * ndf[c] elif sf2 == 0: if mvMeanCount[v][n1] < 2: for c in range(3): mvPointsd1[v][n3][n1][c] = sf1 * ndf[c] else: # take mean of values from this and last vessel for c in range(3): mvPointsd1[v][n3][n1][c] = 0.5 * ( mvPointsd1[v][n3][n1][c] + sf1 * ndf[c]) else: #print('v', v, 'n3', n3, 'n1', n1, ':', vector.magnitude(ndf), 'vs.', vector.magnitude(nd2[1]), 'd2Map', d2Map) pass if isOutlet: # reverse directions of d1 and d2 on vessels and ostium base for c in range(3): for n3 in range(2): for n1 in range(elementsCountAroundOstium): od1[n3][n1][c] = -od1[n3][n1][c] od2[n3][n1][c] = -od2[n3][n1][c] for iv in range(vesselsCount - 1): for n1 in range(elementsCountAcross - 1): xd1[iv][n3][n1][c] = -xd1[iv][n3][n1][c] xd2[iv][n3][n1][c] = -xd2[iv][n3][n1][c] for v in range(vesselsCount): for n1 in range(elementsCountsAroundVessels[v]): vod1[v][n3][n1][c] = -vod1[v][n3][n1][c] # d2 is referenced all around, so only change once per vessel for v in range(vesselsCount): vod2[v][0][0][c] = -vod2[v][0][0][c] ############## # Create nodes ############## nodes = fm.findNodesetByFieldDomainType(Field.DOMAIN_TYPE_NODES) nodetemplate = nodes.createNodetemplate() nodetemplate.defineField(coordinates) nodetemplate.setValueNumberOfVersions(coordinates, -1, Node.VALUE_LABEL_VALUE, 1) nodetemplate.setValueNumberOfVersions(coordinates, -1, Node.VALUE_LABEL_D_DS1, 1) nodetemplate.setValueNumberOfVersions(coordinates, -1, Node.VALUE_LABEL_D_DS2, 1) nodetemplate.setValueNumberOfVersions(coordinates, -1, Node.VALUE_LABEL_D_DS3, 1) nodetemplateLinearS3 = nodes.createNodetemplate() nodetemplateLinearS3.defineField(coordinates) nodetemplateLinearS3.setValueNumberOfVersions(coordinates, -1, Node.VALUE_LABEL_VALUE, 1) nodetemplateLinearS3.setValueNumberOfVersions(coordinates, -1, Node.VALUE_LABEL_D_DS1, 1) nodetemplateLinearS3.setValueNumberOfVersions(coordinates, -1, Node.VALUE_LABEL_D_DS2, 1) nodeIdentifier = startNodeIdentifier oNodeId = [] for n3 in range(2): oNodeId.append([]) for n1 in range(elementsCountAroundOstium): node = nodes.createNode( nodeIdentifier, nodetemplate if useCubicHermiteThroughOstiumWall else nodetemplateLinearS3) cache.setNode(node) coordinates.setNodeParameters(cache, -1, Node.VALUE_LABEL_VALUE, 1, ox[n3][n1]) coordinates.setNodeParameters(cache, -1, Node.VALUE_LABEL_D_DS1, 1, od1[n3][n1]) coordinates.setNodeParameters(cache, -1, Node.VALUE_LABEL_D_DS2, 1, od2[n3][n1]) if useCubicHermiteThroughOstiumWall: coordinates.setNodeParameters(cache, -1, Node.VALUE_LABEL_D_DS3, 1, od3[n3][n1]) oNodeId[n3].append(nodeIdentifier) nodeIdentifier += 1 xNodeId = [] for iv in range(vesselsCount - 1): xNodeId.append([]) for n3 in range(2): xNodeId[iv].append([]) for n2 in range(elementsCountAcross - 1): node = nodes.createNode( nodeIdentifier, nodetemplate if useCubicHermiteThroughOstiumWall else nodetemplateLinearS3) cache.setNode(node) coordinates.setNodeParameters(cache, -1, Node.VALUE_LABEL_VALUE, 1, xx[iv][n3][n2]) coordinates.setNodeParameters(cache, -1, Node.VALUE_LABEL_D_DS1, 1, xd1[iv][n3][n2]) coordinates.setNodeParameters(cache, -1, Node.VALUE_LABEL_D_DS2, 1, xd2[iv][n3][n2]) if useCubicHermiteThroughOstiumWall: coordinates.setNodeParameters(cache, -1, Node.VALUE_LABEL_D_DS3, 1, xd3[iv][n3][n2]) xNodeId[iv][n3].append(nodeIdentifier) nodeIdentifier += 1 #for v in range(vesselsCount): # node = nodes.createNode(nodeIdentifier, nodetemplate) # cache.setNode(node) # coordinates.setNodeParameters(cache, -1, Node.VALUE_LABEL_VALUE, 1, vcx [v]) # coordinates.setNodeParameters(cache, -1, Node.VALUE_LABEL_D_DS1, 1, vcd1[v]) # coordinates.setNodeParameters(cache, -1, Node.VALUE_LABEL_D_DS2, 1, vcd2[v]) # coordinates.setNodeParameters(cache, -1, Node.VALUE_LABEL_D_DS3, 1, vcd3[v]) # nodeIdentifier += 1 # for n3 in range(2): # for n1 in range(elementsCountsAroundVessels[v]): # node = nodes.createNode(nodeIdentifier, nodetemplate if useCubicHermiteThroughVesselWall else nodetemplateLinearS3) # cache.setNode(node) # coordinates.setNodeParameters(cache, -1, Node.VALUE_LABEL_VALUE, 1, vox [v][n3][n1]) # coordinates.setNodeParameters(cache, -1, Node.VALUE_LABEL_D_DS1, 1, vod1[v][n3][n1]) # coordinates.setNodeParameters(cache, -1, Node.VALUE_LABEL_D_DS2, 1, vod2[v][n3][n1]) # if useCubicHermiteThroughVesselWall: # coordinates.setNodeParameters(cache, -1, Node.VALUE_LABEL_D_DS3, 1, vod3[v][n3][n1]) # #vNodeId.append(nodeIdentifier) # nodeIdentifier += 1 # get identifiers of nodes around each vessel at ostium end mvNodeId = [None] * vesselsCount for v in range(vesselsCount): if vesselsCount == 1: mvNodeId[v] = oNodeId else: iv = max(0, v - 1) mvNodeId[v] = [None, None] oa = elementsCountAroundMid - iv * oinc ob = elementsCountAroundMid + nodesCountFreeEnd - 1 + iv * oinc for n3 in range(2): if v == 0: # first end vessel mvNodeId[v][n3] = oNodeId[n3][oa:ob + 1] + ( list(reversed(xNodeId[iv][n3])) if (v == 0) else xNodeId[iv][n3]) elif v == (vesselsCount - 1): # last end vessels mvNodeId[v][n3] = oNodeId[n3][ob:] + [oNodeId[n3][0]] + ( list(reversed(xNodeId[iv][n3])) if (v == 0) else xNodeId[iv][n3]) else: # mid vessels mvNodeId[v][n3] = oNodeId[n3][oa - oinc:oa + 1] + xNodeId[ iv][n3] + oNodeId[n3][ob:ob + oinc + 1] + list( reversed(xNodeId[iv + 1][n3])) ################# # Create elementss ################# mesh = fm.findMeshByDimension(3) elementIdentifier = startElementIdentifier tricubichermite = eftfactory_tricubichermite(mesh, useCrossDerivatives) #tricubicHermiteBasis = fm.createElementbasis(3, Elementbasis.FUNCTION_TYPE_CUBIC_HERMITE) #eft = tricubichermite.createEftBasic() #elementtemplate = mesh.createElementtemplate() #elementtemplate.setElementShapeType(Element.SHAPE_TYPE_CUBE) #elementtemplate.defineField(coordinates, -1, eft) #elementtemplateX = mesh.createElementtemplate() #elementtemplateX.setElementShapeType(Element.SHAPE_TYPE_CUBE) for v in range(vesselsCount): if isOutlet: startPointsx, startPointsd1, startPointsd2, startPointsd3, startNodeId, startDerivativesMap = \ mvPointsx[v], mvPointsd1[v], mvPointsd2[v], mvPointsd3[v], mvNodeId[v], mvDerivativesMap[v] endPointsx, endPointsd1, endPointsd2, endPointsd3, endNodeId, endDerivativesMap = \ vox[v], vod1[v], vod2[v], vod3[v] if useCubicHermiteThroughVesselWall else None, None, None # reverse order of nodes around: for px in [ startPointsx, startPointsd1, startPointsd2, startPointsd3, startNodeId, startDerivativesMap, \ endPointsx, endPointsd1, endPointsd2, endPointsd3, endNodeId, endDerivativesMap ]: if px: for n3 in range(2): px[n3] = [px[n3][0]] + px[n3][len(px[n3]) - 1:0:-1] if vesselsCount > 1: # must switch in and out xi1 maps around corners in startDerivativesMap for n3 in range(2): for n1 in range(elementsCountsAroundVessels[v]): derivativesMap = startDerivativesMap[n3][n1] if len(derivativesMap) == 4: startDerivativesMap[n3][n1] = derivativesMap[ 3], derivativesMap[1], derivativesMap[ 2], derivativesMap[0] else: startPointsx, startPointsd1, startPointsd2, startPointsd3, startNodeId, startDerivativesMap = \ vox[v], vod1[v], vod2[v], vod3[v] if useCubicHermiteThroughVesselWall else None, None, None endPointsx, endPointsd1, endPointsd2, endPointsd3, endNodeId, endDerivativesMap = \ mvPointsx[v], mvPointsd1[v], mvPointsd2[v], mvPointsd3[v], mvNodeId[v], mvDerivativesMap[v] #print('endPointsx ', endPointsx ) #print('endPointsd1', endPointsd1) #print('endPointsd2', endPointsd2) #print('endPointsd3', endPointsd3) #print('endNodeId', endNodeId) #print('endDerivativesMap', endDerivativesMap) nodeIdentifier, elementIdentifier = createAnnulusMesh3d( nodes, mesh, nodeIdentifier, elementIdentifier, startPointsx, startPointsd1, startPointsd2, startPointsd3, startNodeId, startDerivativesMap, endPointsx, endPointsd1, endPointsd2, endPointsd3, endNodeId, endDerivativesMap, forceMidLinearXi3=not useCubicHermiteThroughVesselWall, elementsCountRadial=elementsCountAlong, meshGroups=vesselMeshGroups[v] if vesselMeshGroups else []) fm.endChange() return nodeIdentifier, elementIdentifier, (ox, od1, od2, od3, oNodeId, oPositions)
def generateBaseMesh(region, options): """ Generate the base tricubic Hermite mesh. See also generateMesh(). :param region: Zinc region to define model in. Must be empty. :param options: Dict containing options. See getDefaultOptions(). :return: None """ elementsCountAround = options['Number of elements around'] elementsCountAlong = options['Number of elements along'] elementsCountThroughWall = options['Number of elements through wall'] wallThickness = options['Wall thickness'] useCrossDerivatives = options['Use cross derivatives'] fm = region.getFieldmodule() fm.beginChange() coordinates = zinc_utils.getOrCreateCoordinateField(fm) nodes = fm.findNodesetByFieldDomainType(Field.DOMAIN_TYPE_NODES) nodetemplate = nodes.createNodetemplate() nodetemplate.defineField(coordinates) nodetemplate.setValueNumberOfVersions(coordinates, -1, Node.VALUE_LABEL_VALUE, 1) nodetemplate.setValueNumberOfVersions(coordinates, -1, Node.VALUE_LABEL_D_DS1, 1) nodetemplate.setValueNumberOfVersions(coordinates, -1, Node.VALUE_LABEL_D_DS2, 1) if useCrossDerivatives: nodetemplate.setValueNumberOfVersions(coordinates, -1, Node.VALUE_LABEL_D2_DS1DS2, 1) nodetemplate.setValueNumberOfVersions(coordinates, -1, Node.VALUE_LABEL_D_DS3, 1) if useCrossDerivatives: nodetemplate.setValueNumberOfVersions(coordinates, -1, Node.VALUE_LABEL_D2_DS1DS3, 1) nodetemplate.setValueNumberOfVersions(coordinates, -1, Node.VALUE_LABEL_D2_DS2DS3, 1) nodetemplate.setValueNumberOfVersions( coordinates, -1, Node.VALUE_LABEL_D3_DS1DS2DS3, 1) mesh = fm.findMeshByDimension(3) tricubichermite = eftfactory_tricubichermite(mesh, useCrossDerivatives) eft = tricubichermite.createEftBasic() elementtemplate = mesh.createElementtemplate() elementtemplate.setElementShapeType(Element.SHAPE_TYPE_CUBE) result = elementtemplate.defineField(coordinates, -1, eft) cache = fm.createFieldcache() # create nodes nodeIdentifier = 1 radiansPerElementAround = 2.0 * math.pi / elementsCountAround wallThicknessPerElement = wallThickness / elementsCountThroughWall x = [0.0, 0.0, 0.0] dx_ds1 = [0.0, 0.0, 0.0] dx_ds2 = [0.0, 0.0, 1.0 / elementsCountAlong] dx_ds3 = [0.0, 0.0, 0.0] zero = [0.0, 0.0, 0.0] for n3 in range(elementsCountThroughWall + 1): radius = 0.5 + wallThickness * (n3 / elementsCountThroughWall - 1.0) for n2 in range(elementsCountAlong + 1): x[2] = n2 / elementsCountAlong for n1 in range(elementsCountAround): radiansAround = n1 * radiansPerElementAround cosRadiansAround = math.cos(radiansAround) sinRadiansAround = math.sin(radiansAround) x[0] = radius * cosRadiansAround x[1] = radius * sinRadiansAround dx_ds1[ 0] = radiansPerElementAround * radius * -sinRadiansAround dx_ds1[ 1] = radiansPerElementAround * radius * cosRadiansAround dx_ds3[0] = wallThicknessPerElement * cosRadiansAround dx_ds3[1] = wallThicknessPerElement * sinRadiansAround node = nodes.createNode(nodeIdentifier, nodetemplate) cache.setNode(node) coordinates.setNodeParameters(cache, -1, Node.VALUE_LABEL_VALUE, 1, x) coordinates.setNodeParameters(cache, -1, Node.VALUE_LABEL_D_DS1, 1, dx_ds1) coordinates.setNodeParameters(cache, -1, Node.VALUE_LABEL_D_DS2, 1, dx_ds2) coordinates.setNodeParameters(cache, -1, Node.VALUE_LABEL_D_DS3, 1, dx_ds3) if useCrossDerivatives: coordinates.setNodeParameters( cache, -1, Node.VALUE_LABEL_D2_DS1DS2, 1, zero) coordinates.setNodeParameters( cache, -1, Node.VALUE_LABEL_D2_DS1DS3, 1, zero) coordinates.setNodeParameters( cache, -1, Node.VALUE_LABEL_D2_DS2DS3, 1, zero) coordinates.setNodeParameters( cache, -1, Node.VALUE_LABEL_D3_DS1DS2DS3, 1, zero) nodeIdentifier = nodeIdentifier + 1 # create elements elementIdentifier = 1 now = (elementsCountAlong + 1) * elementsCountAround for e3 in range(elementsCountThroughWall): for e2 in range(elementsCountAlong): for e1 in range(elementsCountAround): element = mesh.createElement(elementIdentifier, elementtemplate) bni11 = e3 * now + e2 * elementsCountAround + e1 + 1 bni12 = e3 * now + e2 * elementsCountAround + ( e1 + 1) % elementsCountAround + 1 bni21 = e3 * now + (e2 + 1) * elementsCountAround + e1 + 1 bni22 = e3 * now + (e2 + 1) * elementsCountAround + ( e1 + 1) % elementsCountAround + 1 nodeIdentifiers = [ bni11, bni12, bni21, bni22, bni11 + now, bni12 + now, bni21 + now, bni22 + now ] result = element.setNodesByIdentifier(eft, nodeIdentifiers) elementIdentifier = elementIdentifier + 1 fm.endChange()
def createNodesAndElements(region, x, d1, d2, d3, xFlat, d1Flat, d2Flat, xTexture, d1Texture, d2Texture, elementsCountAround, elementsCountAlong, elementsCountThroughWall, annotationGroups, annotationArray, firstNodeIdentifier, firstElementIdentifier, useCubicHermiteThroughWall, useCrossDerivatives): """ Create nodes and elements for the coordinates, flat coordinates, and texture coordinates field. :param x, d1, d2, d3: coordinates and derivatives of coordinates field. :param xFlat, d1Flat, d2Flat, d3Flat: coordinates and derivatives of flat coordinates field. :param xTexture, d1Texture, d2Texture, d3Texture: coordinates and derivatives of texture coordinates field. :param elementsCountAround: Number of elements around tube. :param elementsCountAlong: Number of elements along tube. :param elementsCountThroughWall: Number of elements through wall. :param annotationGroups: stores information about annotation groups. :param annotationArray: stores annotation names of elements around. :param firstNodeIdentifier, firstElementIdentifier: first node and element identifier to use. :param useCubicHermiteThroughWall: use linear when false :param useCrossDerivatives: use cross derivatives when true :return nodeIdentifier, elementIdentifier, annotationGroups """ nodeIdentifier = firstNodeIdentifier elementIdentifier = firstElementIdentifier zero = [ 0.0, 0.0, 0.0 ] fm = region.getFieldmodule() fm.beginChange() cache = fm.createFieldcache() # Coordinates field coordinates = zinc_utils.getOrCreateCoordinateField(fm) nodes = fm.findNodesetByFieldDomainType(Field.DOMAIN_TYPE_NODES) nodetemplate = nodes.createNodetemplate() nodetemplate.defineField(coordinates) nodetemplate.setValueNumberOfVersions(coordinates, -1, Node.VALUE_LABEL_VALUE, 1) nodetemplate.setValueNumberOfVersions(coordinates, -1, Node.VALUE_LABEL_D_DS1, 1) nodetemplate.setValueNumberOfVersions(coordinates, -1, Node.VALUE_LABEL_D_DS2, 1) if useCrossDerivatives: nodetemplate.setValueNumberOfVersions(coordinates, -1, Node.VALUE_LABEL_D2_DS1DS2, 1) if useCubicHermiteThroughWall: nodetemplate.setValueNumberOfVersions(coordinates, -1, Node.VALUE_LABEL_D_DS3, 1) if useCrossDerivatives: nodetemplate.setValueNumberOfVersions(coordinates, -1, Node.VALUE_LABEL_D2_DS1DS3, 1) nodetemplate.setValueNumberOfVersions(coordinates, -1, Node.VALUE_LABEL_D2_DS2DS3, 1) nodetemplate.setValueNumberOfVersions(coordinates, -1, Node.VALUE_LABEL_D3_DS1DS2DS3, 1) mesh = fm.findMeshByDimension(3) if useCubicHermiteThroughWall: eftfactory = eftfactory_tricubichermite(mesh, useCrossDerivatives) else: eftfactory = eftfactory_bicubichermitelinear(mesh, useCrossDerivatives) eft = eftfactory.createEftBasic() elementtemplate = mesh.createElementtemplate() elementtemplate.setElementShapeType(Element.SHAPE_TYPE_CUBE) result = elementtemplate.defineField(coordinates, -1, eft) # Flat coordinates field bicubichermitelinear = eftfactory_bicubichermitelinear(mesh, useCrossDerivatives) eftTexture1 = bicubichermitelinear.createEftBasic() eftTexture2 = bicubichermitelinear.createEftOpenTube() flatCoordinates = zinc_utils.getOrCreateFlatCoordinateField(fm) flatNodetemplate1 = nodes.createNodetemplate() flatNodetemplate1.defineField(flatCoordinates) flatNodetemplate1.setValueNumberOfVersions(flatCoordinates, -1, Node.VALUE_LABEL_VALUE, 1) flatNodetemplate1.setValueNumberOfVersions(flatCoordinates, -1, Node.VALUE_LABEL_D_DS1, 1) flatNodetemplate1.setValueNumberOfVersions(flatCoordinates, -1, Node.VALUE_LABEL_D_DS2, 1) if useCrossDerivatives: flatNodetemplate1.setValueNumberOfVersions(flatCoordinates, -1, Node.VALUE_LABEL_D2_DS1DS2, 1) flatNodetemplate2 = nodes.createNodetemplate() flatNodetemplate2.defineField(flatCoordinates) flatNodetemplate2.setValueNumberOfVersions(flatCoordinates, -1, Node.VALUE_LABEL_VALUE, 2) flatNodetemplate2.setValueNumberOfVersions(flatCoordinates, -1, Node.VALUE_LABEL_D_DS1, 2) flatNodetemplate2.setValueNumberOfVersions(flatCoordinates, -1, Node.VALUE_LABEL_D_DS2, 2) if useCrossDerivatives: flatNodetemplate2.setValueNumberOfVersions(flatCoordinates, -1, Node.VALUE_LABEL_D2_DS1DS2, 2) flatElementtemplate1 = mesh.createElementtemplate() flatElementtemplate1.setElementShapeType(Element.SHAPE_TYPE_CUBE) flatElementtemplate1.defineField(flatCoordinates, -1, eftTexture1) flatElementtemplate2 = mesh.createElementtemplate() flatElementtemplate2.setElementShapeType(Element.SHAPE_TYPE_CUBE) flatElementtemplate2.defineField(flatCoordinates, -1, eftTexture2) # Texture coordinates field textureCoordinates = zinc_utils.getOrCreateTextureCoordinateField(fm) textureNodetemplate1 = nodes.createNodetemplate() textureNodetemplate1.defineField(textureCoordinates) textureNodetemplate1.setValueNumberOfVersions(textureCoordinates, -1, Node.VALUE_LABEL_VALUE, 1) textureNodetemplate1.setValueNumberOfVersions(textureCoordinates, -1, Node.VALUE_LABEL_D_DS1, 1) textureNodetemplate1.setValueNumberOfVersions(textureCoordinates, -1, Node.VALUE_LABEL_D_DS2, 1) if useCrossDerivatives: textureNodetemplate1.setValueNumberOfVersions(textureCoordinates, -1, Node.VALUE_LABEL_D2_DS1DS2, 1) textureNodetemplate2 = nodes.createNodetemplate() textureNodetemplate2.defineField(textureCoordinates) textureNodetemplate2.setValueNumberOfVersions(textureCoordinates, -1, Node.VALUE_LABEL_VALUE, 2) textureNodetemplate2.setValueNumberOfVersions(textureCoordinates, -1, Node.VALUE_LABEL_D_DS1, 2) textureNodetemplate2.setValueNumberOfVersions(textureCoordinates, -1, Node.VALUE_LABEL_D_DS2, 2) if useCrossDerivatives: textureNodetemplate2.setValueNumberOfVersions(textureCoordinates, -1, Node.VALUE_LABEL_D2_DS1DS2, 2) elementtemplate1 = mesh.createElementtemplate() elementtemplate1.setElementShapeType(Element.SHAPE_TYPE_CUBE) elementtemplate1.defineField(textureCoordinates, -1, eftTexture1) elementtemplate2 = mesh.createElementtemplate() elementtemplate2.setElementShapeType(Element.SHAPE_TYPE_CUBE) elementtemplate2.defineField(textureCoordinates, -1, eftTexture2) # Create nodes # Coordinates field for n in range(len(x)): node = nodes.createNode(nodeIdentifier, nodetemplate) cache.setNode(node) coordinates.setNodeParameters(cache, -1, Node.VALUE_LABEL_VALUE, 1, x[n]) coordinates.setNodeParameters(cache, -1, Node.VALUE_LABEL_D_DS1, 1, d1[n]) coordinates.setNodeParameters(cache, -1, Node.VALUE_LABEL_D_DS2, 1, d2[n]) coordinates.setNodeParameters(cache, -1, Node.VALUE_LABEL_D_DS3, 1, d3[n]) if useCrossDerivatives: coordinates.setNodeParameters(cache, -1, Node.VALUE_LABEL_D2_DS1DS2, 1, zero) coordinates.setNodeParameters(cache, -1, Node.VALUE_LABEL_D2_DS1DS3, 1, zero) coordinates.setNodeParameters(cache, -1, Node.VALUE_LABEL_D2_DS2DS3, 1, zero) coordinates.setNodeParameters(cache, -1, Node.VALUE_LABEL_D3_DS1DS2DS3, 1, zero) # print('NodeIdentifier = ', nodeIdentifier, xList[n]) nodeIdentifier = nodeIdentifier + 1 # Flat and texture coordinates fields nodeIdentifier = firstNodeIdentifier for n2 in range(elementsCountAlong + 1): for n3 in range(elementsCountThroughWall + 1): for n1 in range(elementsCountAround): i = n2*(elementsCountAround + 1)*(elementsCountThroughWall + 1) + (elementsCountAround + 1)*n3 + n1 node = nodes.findNodeByIdentifier(nodeIdentifier) node.merge(flatNodetemplate2 if n1 == 0 else flatNodetemplate1) node.merge(textureNodetemplate2 if n1 == 0 else textureNodetemplate1) cache.setNode(node) # print('NodeIdentifier', nodeIdentifier, 'version 1, xList Index =', i+1) flatCoordinates.setNodeParameters(cache, -1, Node.VALUE_LABEL_VALUE, 1, xFlat[i]) flatCoordinates.setNodeParameters(cache, -1, Node.VALUE_LABEL_D_DS1, 1, d1Flat[i]) flatCoordinates.setNodeParameters(cache, -1, Node.VALUE_LABEL_D_DS2, 1, d2Flat[i]) textureCoordinates.setNodeParameters(cache, -1, Node.VALUE_LABEL_VALUE, 1, xTexture[i]) textureCoordinates.setNodeParameters(cache, -1, Node.VALUE_LABEL_D_DS1, 1, d1Texture[i]) textureCoordinates.setNodeParameters(cache, -1, Node.VALUE_LABEL_D_DS2, 1, d2Texture[i]) if useCrossDerivatives: flatCoordinates.setNodeParameters(cache, -1, Node.VALUE_LABEL_D2_DS1DS2, 1, zero) textureCoordinates.setNodeParameters(cache, -1, Node.VALUE_LABEL_D2_DS1DS2, 1, zero) if n1 == 0: # print('NodeIdentifier', nodeIdentifier, 'version 2, xList Index =', i+elementsCountAround+1) flatCoordinates.setNodeParameters(cache, -1, Node.VALUE_LABEL_VALUE, 2, xFlat[i+elementsCountAround]) flatCoordinates.setNodeParameters(cache, -1, Node.VALUE_LABEL_D_DS1, 2, d1Flat[i+elementsCountAround]) flatCoordinates.setNodeParameters(cache, -1, Node.VALUE_LABEL_D_DS2, 2, d2Flat[i+elementsCountAround]) textureCoordinates.setNodeParameters(cache, -1, Node.VALUE_LABEL_VALUE, 2, xTexture[i+elementsCountAround]) textureCoordinates.setNodeParameters(cache, -1, Node.VALUE_LABEL_D_DS1, 2, d1Texture[i+elementsCountAround]) textureCoordinates.setNodeParameters(cache, -1, Node.VALUE_LABEL_D_DS2, 2, d2Texture[i+elementsCountAround]) if useCrossDerivatives: flatCoordinates.setNodeParameters(cache, -1, Node.VALUE_LABEL_D2_DS1DS2, 2, zero) textureCoordinates.setNodeParameters(cache, -1, Node.VALUE_LABEL_D2_DS1DS2, 2, zero) nodeIdentifier = nodeIdentifier + 1 # create elements now = elementsCountAround*(elementsCountThroughWall+1) for e2 in range(elementsCountAlong): for e3 in range(elementsCountThroughWall): for e1 in range(elementsCountAround): bni11 = e2*now + e3*elementsCountAround + e1 + 1 bni12 = e2*now + e3*elementsCountAround + (e1 + 1) % elementsCountAround + 1 bni21 = e2*now + (e3 + 1)*elementsCountAround + e1 + 1 bni22 = e2*now + (e3 + 1)*elementsCountAround + (e1 + 1) % elementsCountAround + 1 nodeIdentifiers = [ bni11, bni12, bni11 + now, bni12 + now, bni21, bni22, bni21 + now, bni22 + now ] onOpening = e1 > elementsCountAround - 2 element = mesh.createElement(elementIdentifier, elementtemplate) element.setNodesByIdentifier(eft, nodeIdentifiers) element.merge(flatElementtemplate2 if onOpening else flatElementtemplate1) element.merge(elementtemplate2 if onOpening else elementtemplate1) element.setNodesByIdentifier(eftTexture2 if onOpening else eftTexture1, nodeIdentifiers) elementIdentifier = elementIdentifier + 1 if annotationGroups: for annotationGroup in annotationGroups: if annotationArray[e1] == annotationGroup._name: meshGroup = annotationGroup.getMeshGroup(mesh) meshGroup.addElement(element) fm.endChange() return nodeIdentifier, elementIdentifier, annotationGroups
def generateBaseMesh(region, options): """ Generate the base tricubic Hermite or bicubic Hermite linear mesh. See also generateMesh(). :param region: Zinc region to define model in. Must be empty. :param options: Dict containing options. See getDefaultOptions(). :return: None """ elementsCountAround = options['Number of elements around'] elementsCountUp = options['Number of elements up'] elementsCountThroughWall = options['Number of elements through wall'] useCrossDerivatives = options['Use cross derivatives'] useCubicHermiteThroughWall = not (options['Use linear through wall']) excludeBottomRows = options['Exclude bottom rows'] excludeTopRows = options['Exclude top rows'] wallThickness = options['Wall thickness'] wallThicknessRatioApex = options['Wall thickness ratio apex'] lengthRatio = options['Length ratio'] elementLengthRatioEquatorApex = options[ 'Element length ratio equator/apex'] fm = region.getFieldmodule() fm.beginChange() coordinates = zinc_utils.getOrCreateCoordinateField(fm) nodes = fm.findNodesetByFieldDomainType(Field.DOMAIN_TYPE_NODES) nodetemplateApex = nodes.createNodetemplate() nodetemplateApex.defineField(coordinates) nodetemplateApex.setValueNumberOfVersions(coordinates, -1, Node.VALUE_LABEL_VALUE, 1) nodetemplateApex.setValueNumberOfVersions(coordinates, -1, Node.VALUE_LABEL_D_DS1, 1) nodetemplateApex.setValueNumberOfVersions(coordinates, -1, Node.VALUE_LABEL_D_DS2, 1) if useCubicHermiteThroughWall: nodetemplateApex.setValueNumberOfVersions(coordinates, -1, Node.VALUE_LABEL_D_DS3, 1) if useCrossDerivatives: nodetemplate = nodes.createNodetemplate() nodetemplate.defineField(coordinates) nodetemplate.setValueNumberOfVersions(coordinates, -1, Node.VALUE_LABEL_VALUE, 1) nodetemplate.setValueNumberOfVersions(coordinates, -1, Node.VALUE_LABEL_D_DS1, 1) nodetemplate.setValueNumberOfVersions(coordinates, -1, Node.VALUE_LABEL_D_DS2, 1) nodetemplate.setValueNumberOfVersions(coordinates, -1, Node.VALUE_LABEL_D2_DS1DS2, 1) if useCubicHermiteThroughWall: nodetemplate.setValueNumberOfVersions(coordinates, -1, Node.VALUE_LABEL_D_DS3, 1) nodetemplate.setValueNumberOfVersions( coordinates, -1, Node.VALUE_LABEL_D2_DS1DS3, 1) nodetemplate.setValueNumberOfVersions( coordinates, -1, Node.VALUE_LABEL_D2_DS2DS3, 1) nodetemplate.setValueNumberOfVersions( coordinates, -1, Node.VALUE_LABEL_D3_DS1DS2DS3, 1) else: nodetemplate = nodetemplateApex mesh = fm.findMeshByDimension(3) if useCubicHermiteThroughWall: eftfactory = eftfactory_tricubichermite(mesh, useCrossDerivatives) else: eftfactory = eftfactory_bicubichermitelinear( mesh, useCrossDerivatives) eft = eftfactory.createEftBasic() elementtemplate = mesh.createElementtemplate() elementtemplate.setElementShapeType(Element.SHAPE_TYPE_CUBE) elementtemplate.defineField(coordinates, -1, eft) cache = fm.createFieldcache() # create nodes nodeIdentifier = 1 radiansPerElementAround = 2.0 * math.pi / elementsCountAround x = [0.0, 0.0, 0.0] dx_ds1 = [0.0, 0.0, 0.0] dx_ds2 = [0.0, 0.0, 0.0] dx_ds3 = [0.0, 0.0, 0.0] zero = [0.0, 0.0, 0.0] # pre-calculate positions and tangent/normal vectors up (elementsCountUp + 1) node layers outerWidth = 0.5 outerLength = outerWidth * lengthRatio bOuter = 2.0 / (1.0 + elementLengthRatioEquatorApex / lengthRatio) aOuter = 1.0 - bOuter innerWidth = outerWidth - wallThickness innerLength = outerLength - wallThickness * wallThicknessRatioApex lengthRatioInner = innerLength / innerWidth if ( innerWidth > 0.0) else lengthRatio bInner = 2.0 / (1.0 + elementLengthRatioEquatorApex / lengthRatio) aInner = 1.0 - bInner positionOuterArray = [(0, 0)] * (elementsCountUp + 1) positionInnerArray = [(0, 0)] * (elementsCountUp + 1) radiansUpOuterArray = [0] * (elementsCountUp + 1) radiansUpInnerArray = [0] * (elementsCountUp + 1) vector2OuterArray = [(0, 0)] * (elementsCountUp + 1) vector2InnerArray = [(0, 0)] * (elementsCountUp + 1) for n2 in range(elementsCountUp + 1): if n2 * 2 <= elementsCountUp: xi = n2 * 2 / elementsCountUp else: xi = 2.0 - (n2 * 2 / elementsCountUp) nxiOuter = aOuter * xi * xi + bOuter * xi dnxiOuter = 2.0 * aOuter * xi + bOuter radiansUpOuterArray[ n2] = radiansUpOuter = nxiOuter * math.pi * 0.5 if ( n2 * 2 <= elementsCountUp) else (math.pi - nxiOuter * math.pi * 0.5) dRadiansUpOuter = dnxiOuter * math.pi / elementsCountUp cosRadiansUpOuter = math.cos(radiansUpOuter) sinRadiansUpOuter = math.sin(radiansUpOuter) positionOuterArray[n2] = positionOuter = (outerWidth * sinRadiansUpOuter, -outerLength * cosRadiansUpOuter) vector2OuterArray[n2] = (outerWidth * cosRadiansUpOuter * dRadiansUpOuter, outerLength * sinRadiansUpOuter * dRadiansUpOuter) nxiInner = aInner * xi * xi + bInner * xi dnxiInner = 2.0 * aInner * xi + bInner radiansUpInnerArray[ n2] = radiansUpInner = nxiInner * math.pi * 0.5 if ( n2 * 2 <= elementsCountUp) else (math.pi - nxiInner * math.pi * 0.5) dRadiansUpInner = dnxiInner * math.pi / elementsCountUp cosRadiansUpInner = math.cos(radiansUpInner) sinRadiansUpInner = math.sin(radiansUpInner) positionInnerArray[n2] = positionInner = (innerWidth * sinRadiansUpInner, -innerLength * cosRadiansUpInner) vector2InnerArray[n2] = (innerWidth * cosRadiansUpInner * dRadiansUpInner, innerLength * sinRadiansUpInner * dRadiansUpInner) # now create the nodes for n3 in range(elementsCountThroughWall + 1): n3_fraction = n3 / elementsCountThroughWall for n2 in range(excludeBottomRows, elementsCountUp + 1 - excludeTopRows): positionOuter = positionOuterArray[n2] positionInner = positionInnerArray[n2] position = (positionOuter[0] * n3_fraction + positionInner[0] * (1.0 - n3_fraction), positionOuter[1] * n3_fraction + positionInner[1] * (1.0 - n3_fraction)) radiansUpOuter = radiansUpOuterArray[n2] sinRadiansUpOuter = math.sin(radiansUpOuter) radiansUpInner = radiansUpInnerArray[n2] sinRadiansUpInner = math.sin(radiansUpInner) vector2Outer = vector2OuterArray[n2] vector2Inner = vector2InnerArray[n2] vector2 = (vector2Outer[0] * n3_fraction + vector2Inner[0] * (1.0 - n3_fraction), vector2Outer[1] * n3_fraction + vector2Inner[1] * (1.0 - n3_fraction)) vector3 = ((positionOuter[0] - positionInner[0]) / elementsCountThroughWall, (positionOuter[1] - positionInner[1]) / elementsCountThroughWall) if n2 == 0: # create bottom apex node node = nodes.createNode(nodeIdentifier, nodetemplateApex) cache.setNode(node) coordinates.setNodeParameters(cache, -1, Node.VALUE_LABEL_VALUE, 1, [0.0, 0.0, position[1]]) coordinates.setNodeParameters(cache, -1, Node.VALUE_LABEL_D_DS1, 1, [0.0, vector2[0], 0.0]) coordinates.setNodeParameters(cache, -1, Node.VALUE_LABEL_D_DS2, 1, [vector2[0], 0.0, 0.0]) if useCubicHermiteThroughWall: coordinates.setNodeParameters(cache, -1, Node.VALUE_LABEL_D_DS3, 1, [0.0, 0.0, vector3[1]]) nodeIdentifier = nodeIdentifier + 1 elif n2 < elementsCountUp: # create regular rows between apexes for n1 in range(elementsCountAround): radiansAround = n1 * radiansPerElementAround cosRadiansAround = math.cos(radiansAround) sinRadiansAround = math.sin(radiansAround) x = [ position[0] * cosRadiansAround, position[0] * sinRadiansAround, position[1] ] dx_ds1 = [ position[0] * -sinRadiansAround * radiansPerElementAround, position[0] * cosRadiansAround * radiansPerElementAround, 0.0 ] dx_ds2 = [ vector2[0] * cosRadiansAround, vector2[0] * sinRadiansAround, vector2[1] ] dx_ds3 = [ vector3[0] * cosRadiansAround, vector3[0] * sinRadiansAround, vector3[1] ] node = nodes.createNode(nodeIdentifier, nodetemplate) cache.setNode(node) coordinates.setNodeParameters(cache, -1, Node.VALUE_LABEL_VALUE, 1, x) coordinates.setNodeParameters(cache, -1, Node.VALUE_LABEL_D_DS1, 1, dx_ds1) coordinates.setNodeParameters(cache, -1, Node.VALUE_LABEL_D_DS2, 1, dx_ds2) if useCubicHermiteThroughWall: coordinates.setNodeParameters( cache, -1, Node.VALUE_LABEL_D_DS3, 1, dx_ds3) if useCrossDerivatives: coordinates.setNodeParameters( cache, -1, Node.VALUE_LABEL_D2_DS1DS2, 1, zero) if useCubicHermiteThroughWall: coordinates.setNodeParameters( cache, -1, Node.VALUE_LABEL_D2_DS1DS3, 1, zero) coordinates.setNodeParameters( cache, -1, Node.VALUE_LABEL_D2_DS2DS3, 1, zero) coordinates.setNodeParameters( cache, -1, Node.VALUE_LABEL_D3_DS1DS2DS3, 1, zero) nodeIdentifier = nodeIdentifier + 1 else: # create top apex node node = nodes.createNode(nodeIdentifier, nodetemplateApex) cache.setNode(node) coordinates.setNodeParameters(cache, -1, Node.VALUE_LABEL_VALUE, 1, [0.0, 0.0, position[1]]) coordinates.setNodeParameters(cache, -1, Node.VALUE_LABEL_D_DS1, 1, [0.0, vector2[0], 0.0]) coordinates.setNodeParameters(cache, -1, Node.VALUE_LABEL_D_DS2, 1, [-vector2[0], 0.0, 0.0]) if useCubicHermiteThroughWall: coordinates.setNodeParameters(cache, -1, Node.VALUE_LABEL_D_DS3, 1, [0.0, 0.0, vector3[1]]) nodeIdentifier = nodeIdentifier + 1 # create elements elementIdentifier = 1 # now (node offset through wall) varies with number of excluded rows now = 0 if excludeBottomRows == 0: now += 1 # bottom apex node if excludeTopRows == 0: now += 1 # top apex node fullNodeRows = elementsCountUp - 1 if excludeBottomRows > 1: fullNodeRows -= (excludeBottomRows - 1) if excludeTopRows > 1: fullNodeRows -= (excludeTopRows - 1) if fullNodeRows > 0: now += fullNodeRows * elementsCountAround row2NodeOffset = 2 if (excludeBottomRows == 0) else 1 for e3 in range(elementsCountThroughWall): no = e3 * now if excludeBottomRows == 0: # create bottom apex elements, editing eft scale factor identifiers around apex # scale factor identifiers follow convention of offsetting by 100 for each 'version' elementtemplate1 = mesh.createElementtemplate() elementtemplate1.setElementShapeType(Element.SHAPE_TYPE_CUBE) for e1 in range(elementsCountAround): va = e1 vb = (e1 + 1) % elementsCountAround eft1 = eftfactory.createEftShellPoleBottom( va * 100, vb * 100) elementtemplate1.defineField(coordinates, -1, eft1) element = mesh.createElement(elementIdentifier, elementtemplate1) bni1 = no + 1 bni2 = no + e1 + 2 bni3 = no + (e1 + 1) % elementsCountAround + 2 nodeIdentifiers = [ bni1, bni2, bni3, bni1 + now, bni2 + now, bni3 + now ] element.setNodesByIdentifier(eft1, nodeIdentifiers) # set general linear map coefficients radiansAround = e1 * radiansPerElementAround radiansAroundNext = ( (e1 + 1) % elementsCountAround) * radiansPerElementAround scalefactors = [ -1.0, math.sin(radiansAround), math.cos(radiansAround), radiansPerElementAround, math.sin(radiansAroundNext), math.cos(radiansAroundNext), radiansPerElementAround, math.sin(radiansAround), math.cos(radiansAround), radiansPerElementAround, math.sin(radiansAroundNext), math.cos(radiansAroundNext), radiansPerElementAround ] result = element.setScaleFactors(eft1, scalefactors) elementIdentifier = elementIdentifier + 1 # create regular rows between apexes rowLimit = (elementsCountUp - 2) if excludeBottomRows > 1: rowLimit -= (excludeBottomRows - 1) if excludeTopRows > 1: rowLimit -= (excludeTopRows - 1) for e2 in range(0, rowLimit): for e1 in range(elementsCountAround): element = mesh.createElement(elementIdentifier, elementtemplate) bni11 = no + e2 * elementsCountAround + e1 + row2NodeOffset bni12 = no + e2 * elementsCountAround + ( e1 + 1) % elementsCountAround + row2NodeOffset bni21 = no + ( e2 + 1) * elementsCountAround + e1 + row2NodeOffset bni22 = no + (e2 + 1) * elementsCountAround + ( e1 + 1) % elementsCountAround + row2NodeOffset nodeIdentifiers = [ bni11, bni12, bni21, bni22, bni11 + now, bni12 + now, bni21 + now, bni22 + now ] result = element.setNodesByIdentifier(eft, nodeIdentifiers) elementIdentifier = elementIdentifier + 1 if excludeTopRows == 0: # create top apex elements, editing eft scale factor identifiers around apex # scale factor identifiers follow convention of offsetting by 100 for each 'version' elementtemplate1 = mesh.createElementtemplate() elementtemplate1.setElementShapeType(Element.SHAPE_TYPE_CUBE) for e1 in range(elementsCountAround): va = e1 vb = (e1 + 1) % elementsCountAround eft1 = eftfactory.createEftShellPoleTop(va * 100, vb * 100) elementtemplate1.defineField(coordinates, -1, eft1) element = mesh.createElement(elementIdentifier, elementtemplate1) bni3 = no + now bni1 = bni3 - elementsCountAround + e1 bni2 = bni3 - elementsCountAround + ( e1 + 1) % elementsCountAround nodeIdentifiers = [ bni1, bni2, bni3, bni1 + now, bni2 + now, bni3 + now ] element.setNodesByIdentifier(eft1, nodeIdentifiers) # set general linear map coefficients radiansAround = math.pi + e1 * radiansPerElementAround radiansAroundNext = math.pi + ( (e1 + 1) % elementsCountAround) * radiansPerElementAround scalefactors = [ -1.0, -math.sin(radiansAround), math.cos(radiansAround), radiansPerElementAround, -math.sin(radiansAroundNext), math.cos(radiansAroundNext), radiansPerElementAround, -math.sin(radiansAround), math.cos(radiansAround), radiansPerElementAround, -math.sin(radiansAroundNext), math.cos(radiansAroundNext), radiansPerElementAround ] result = element.setScaleFactors(eft1, scalefactors) elementIdentifier = elementIdentifier + 1 if False: # (wallThickness < 0.5): # and (wallThicknessRatioApex != 1.0): r = fm.createFieldMagnitude(coordinates) const05 = fm.createFieldConstant([0.5]) d = fm.createFieldSubtract(const05, r) d_r = fm.createFieldDivide(d, r) rRatio = 1.0 - wallThicknessRatioApex rScale = fm.createFieldConstant([rRatio]) zScale = fm.createFieldMultiply(d_r, rScale) one = fm.createFieldConstant([1.0]) one_plus_zScale = fm.createFieldAdd(one, zScale) scale = fm.createFieldConcatenate([one, one, one_plus_zScale]) newCoordinates = fm.createFieldMultiply(coordinates, scale) fieldassignment = coordinates.createFieldassignment(newCoordinates) fieldassignment.assign() fm.endChange()
def generateMesh(region, options): """ :param region: Zinc region to define model in. Must be empty. :param options: Dict containing options. See getDefaultOptions(). :return: None """ coordinateDimensions = options['Coordinate dimensions'] elementsCount1 = options['Number of elements 1'] elementsCount2 = options['Number of elements 2'] useCrossDerivatives = options['Use cross derivatives'] fm = region.getFieldmodule() fm.beginChange() coordinates = zinc_utils.getOrCreateCoordinateField( fm, componentsCount=coordinateDimensions) nodes = fm.findNodesetByFieldDomainType(Field.DOMAIN_TYPE_NODES) nodetemplate = nodes.createNodetemplate() nodetemplate.defineField(coordinates) nodetemplate.setValueNumberOfVersions(coordinates, -1, Node.VALUE_LABEL_VALUE, 1) nodetemplate.setValueNumberOfVersions(coordinates, -1, Node.VALUE_LABEL_D_DS1, 1) nodetemplate.setValueNumberOfVersions(coordinates, -1, Node.VALUE_LABEL_D_DS2, 1) if useCrossDerivatives: nodetemplate.setValueNumberOfVersions(coordinates, -1, Node.VALUE_LABEL_D2_DS1DS2, 1) mesh = fm.findMeshByDimension(2) bicubicHermiteBasis = fm.createElementbasis( 2, Elementbasis.FUNCTION_TYPE_CUBIC_HERMITE) eft = mesh.createElementfieldtemplate(bicubicHermiteBasis) if not useCrossDerivatives: for n in range(4): eft.setFunctionNumberOfTerms(n * 4 + 4, 0) elementtemplate = mesh.createElementtemplate() elementtemplate.setElementShapeType(Element.SHAPE_TYPE_SQUARE) result = elementtemplate.defineField(coordinates, -1, eft) cache = fm.createFieldcache() # create nodes nodeIdentifier = 1 x = [0.0, 0.0, 0.0] dx_ds1 = [1.0 / elementsCount1, 0.0, 0.0] dx_ds2 = [0.0, 1.0 / elementsCount2, 0.0] zero = [0.0, 0.0, 0.0] for n2 in range(elementsCount2 + 1): x[1] = n2 / elementsCount2 for n1 in range(elementsCount1 + 1): x[0] = n1 / elementsCount1 node = nodes.createNode(nodeIdentifier, nodetemplate) cache.setNode(node) coordinates.setNodeParameters(cache, -1, Node.VALUE_LABEL_VALUE, 1, x) coordinates.setNodeParameters(cache, -1, Node.VALUE_LABEL_D_DS1, 1, dx_ds1) coordinates.setNodeParameters(cache, -1, Node.VALUE_LABEL_D_DS2, 1, dx_ds2) if useCrossDerivatives: coordinates.setNodeParameters(cache, -1, Node.VALUE_LABEL_D2_DS1DS2, 1, zero) nodeIdentifier = nodeIdentifier + 1 # create elements elementIdentifier = 1 no2 = (elementsCount1 + 1) for e2 in range(elementsCount2): for e1 in range(elementsCount1): element = mesh.createElement(elementIdentifier, elementtemplate) bni = e2 * no2 + e1 + 1 nodeIdentifiers = [bni, bni + 1, bni + no2, bni + no2 + 1] result = element.setNodesByIdentifier(eft, nodeIdentifiers) elementIdentifier = elementIdentifier + 1 fm.endChange()
def generateBaseMesh(cls, region, options): """ Generate the base tricubic Hermite mesh. See also generateMesh(). :param region: Zinc region to define model in. Must be empty. :param options: Dict containing options. See getDefaultOptions(). :return: list of AnnotationGroup """ # set dependent outer diameter used in atria2 options['Aorta outer plus diameter'] = options['LV outlet inner diameter'] + 2.0*options['LV outlet wall thickness'] elementsCountAroundAtrialSeptum = options['Number of elements around atrial septum'] elementsCountAroundLeftAtriumFreeWall = options['Number of elements around left atrium free wall'] elementsCountAroundLeftAtrium = elementsCountAroundLeftAtriumFreeWall + elementsCountAroundAtrialSeptum elementsCountAroundRightAtriumFreeWall = options['Number of elements around right atrium free wall'] elementsCountAroundRightAtrium = elementsCountAroundRightAtriumFreeWall + elementsCountAroundAtrialSeptum useCrossDerivatives = False fm = region.getFieldmodule() fm.beginChange() coordinates = zinc_utils.getOrCreateCoordinateField(fm) cache = fm.createFieldcache() # generate heartventriclesbase1 model and put atria1 on it annotationGroups = MeshType_3d_heartventriclesbase1.generateBaseMesh(region, options) annotationGroups += MeshType_3d_heartatria1.generateBaseMesh(region, options) lFibrousRingGroup = AnnotationGroup(region, 'left fibrous ring', FMANumber = 77124, lyphID = 'Lyph ID unknown') rFibrousRingGroup = AnnotationGroup(region, 'right fibrous ring', FMANumber = 77125, lyphID = 'Lyph ID unknown') annotationGroups += [ lFibrousRingGroup, rFibrousRingGroup ] # annotation fiducial points fiducialGroup = zinc_utils.getOrCreateGroupField(fm, 'fiducial') fiducialCoordinates = zinc_utils.getOrCreateCoordinateField(fm, 'fiducial_coordinates') fiducialLabel = zinc_utils.getOrCreateLabelField(fm, 'fiducial_label') fiducialElementXi = zinc_utils.getOrCreateElementXiField(fm, 'fiducial_element_xi') datapoints = fm.findNodesetByFieldDomainType(Field.DOMAIN_TYPE_DATAPOINTS) fiducialPoints = zinc_utils.getOrCreateNodesetGroup(fiducialGroup, datapoints) datapointTemplateInternal = datapoints.createNodetemplate() datapointTemplateInternal.defineField(fiducialCoordinates) datapointTemplateInternal.defineField(fiducialLabel) datapointTemplateInternal.defineField(fiducialElementXi) ############## # Create nodes ############## nodes = fm.findNodesetByFieldDomainType(Field.DOMAIN_TYPE_NODES) # discover left and right fibrous ring nodes from ventricles and atria # because nodes are iterated in identifier order, the lowest and first are on the lv outlet cfb, right and left on lower outer layers # left fibrous ring lavNodeId = [ [ [], [] ], [ [], [] ] ] # [n3][n2][n1] iter = lFibrousRingGroup.getNodesetGroup(nodes).createNodeiterator() # left fibrous ring, bottom row cfbNodeId = iter.next().getIdentifier() cfbLeftNodeId = iter.next().getIdentifier() for n1 in range(elementsCountAroundLeftAtrium): lavNodeId[0][0].append(iter.next().getIdentifier()) lavNodeId[1][0].append(cfbNodeId) lavNodeId[1][0].append(cfbLeftNodeId) for n1 in range(elementsCountAroundLeftAtriumFreeWall - 1): lavNodeId[1][0].append(iter.next().getIdentifier()) for n1 in range(elementsCountAroundAtrialSeptum - 1): lavNodeId[1][0].append(None) # no outer node on interatrial septum # left fibrous ring, top row for n1 in range(elementsCountAroundLeftAtrium): lavNodeId[0][1].append(iter.next().getIdentifier()) for n1 in range(elementsCountAroundLeftAtriumFreeWall + 1): lavNodeId[1][1].append(iter.next().getIdentifier()) for n1 in range(elementsCountAroundAtrialSeptum - 1): lavNodeId[1][1].append(None) # no outer node on interatrial septum # right fibrous ring ravNodeId = [ [ [], [] ], [ [], [] ] ] # [n3][n2][n1] iter = rFibrousRingGroup.getNodesetGroup(nodes).createNodeiterator() cfbNodeId = iter.next().getIdentifier() cfbRightNodeId = iter.next().getIdentifier() # right fibrous ring, bottom row for n1 in range(elementsCountAroundRightAtrium): ravNodeId[0][0].append(iter.next().getIdentifier()) for n1 in range(elementsCountAroundRightAtriumFreeWall - 1): ravNodeId[1][0].append(iter.next().getIdentifier()) ravNodeId[1][0].append(cfbRightNodeId) ravNodeId[1][0].append(cfbNodeId) for n1 in range(elementsCountAroundAtrialSeptum - 1): ravNodeId[1][0].append(None) # no outer node on interatrial septum # right fibrous ring, top row for n1 in range(elementsCountAroundRightAtrium): ravNodeId[0][1].append(iter.next().getIdentifier()) cfbUpperNodeId = iter.next().getIdentifier() # cfb from left will be first for n1 in range(elementsCountAroundRightAtriumFreeWall): ravNodeId[1][1].append(iter.next().getIdentifier()) ravNodeId[1][1].append(cfbUpperNodeId) for n1 in range(elementsCountAroundAtrialSeptum - 1): ravNodeId[1][1].append(None) # no outer node on interatrial septum #for n2 in range(2): # print('n2', n2) # print('lavNodeId[0]', lavNodeId[0][n2]) # print('lavNodeId[1]', lavNodeId[1][n2]) # print('ravNodeId[0]', ravNodeId[0][n2]) # print('ravNodeId[1]', ravNodeId[1][n2]) ################# # Create elements ################# mesh = fm.findMeshByDimension(3) lFibrousRingMeshGroup = lFibrousRingGroup.getMeshGroup(mesh) rFibrousRingMeshGroup = rFibrousRingGroup.getMeshGroup(mesh) elementIdentifier = startElementIdentifier = zinc_utils.getMaximumElementIdentifier(mesh) + 1 elementtemplate1 = mesh.createElementtemplate() elementtemplate1.setElementShapeType(Element.SHAPE_TYPE_CUBE) # create fibrous ring elements bicubichermitelinear = eftfactory_bicubichermitelinear(mesh, useCrossDerivatives, linearAxis = 2, d_ds1 = Node.VALUE_LABEL_D_DS1, d_ds2 = Node.VALUE_LABEL_D_DS3) eftFibrousRing = bicubichermitelinear.createEftBasic() # left fibrous ring, starting at crux / collapsed posterior interatrial sulcus cruxElementId = None for e in range(-1, elementsCountAroundLeftAtriumFreeWall): eft1 = eftFibrousRing n1 = e nids = [ lavNodeId[0][0][n1], lavNodeId[0][0][n1 + 1], lavNodeId[0][1][n1], lavNodeId[0][1][n1 + 1], lavNodeId[1][0][n1], lavNodeId[1][0][n1 + 1], lavNodeId[1][1][n1], lavNodeId[1][1][n1 + 1]] scalefactors = None meshGroups = [ lFibrousRingMeshGroup ] if e == -1: # interatrial groove straddles left and right atria, collapsed to 6 node wedge nids[0] = ravNodeId[0][0][elementsCountAroundRightAtriumFreeWall] nids[2] = ravNodeId[0][1][elementsCountAroundRightAtriumFreeWall] nids.pop(6) nids.pop(4) eft1 = bicubichermitelinear.createEftNoCrossDerivatives() setEftScaleFactorIds(eft1, [1], []) scalefactors = [ -1.0 ] remapEftNodeValueLabel(eft1, [ 1, 3 ], Node.VALUE_LABEL_D_DS1, [ ( Node.VALUE_LABEL_D_DS1, [] ), ( Node.VALUE_LABEL_D_DS3, [] ) ]) remapEftNodeValueLabel(eft1, [ 2, 4 ], Node.VALUE_LABEL_D_DS1, [ ( Node.VALUE_LABEL_D_DS1, [] ), ( Node.VALUE_LABEL_D_DS3, [1] ) ]) remapEftNodeValueLabel(eft1, [ 5, 6, 7, 8 ], Node.VALUE_LABEL_D_DS1, []) # reverse d3 on cfb: remapEftNodeValueLabel(eft1, [ 5 ], Node.VALUE_LABEL_D_DS3, [ ( Node.VALUE_LABEL_D_DS1, [1] ), ( Node.VALUE_LABEL_D_DS3, [1]) ]) remapEftNodeValueLabel(eft1, [ 6 ], Node.VALUE_LABEL_D_DS3, [ ( Node.VALUE_LABEL_D_DS1, [0] ), ( Node.VALUE_LABEL_D_DS3, [1]) ]) remapEftNodeValueLabel(eft1, [ 7 ], Node.VALUE_LABEL_D_DS3, [ ( Node.VALUE_LABEL_D_DS1, [] ), ( Node.VALUE_LABEL_D_DS3, []) ]) remapEftNodeValueLabel(eft1, [ 8 ], Node.VALUE_LABEL_D_DS3, [ ( Node.VALUE_LABEL_D_DS1, [1] ), ( Node.VALUE_LABEL_D_DS3, []) ]) ln_map = [ 1, 2, 3, 4, 5, 5, 6, 6 ] remapEftLocalNodes(eft1, 6, ln_map) meshGroups += [ rFibrousRingMeshGroup ] elif e == 0: # general linear map d3 adjacent to collapsed sulcus eft1 = bicubichermitelinear.createEftNoCrossDerivatives() setEftScaleFactorIds(eft1, [1], []) scalefactors = [ -1.0 ] # reverse d1, d3 on cfb, left cfb: scaleEftNodeValueLabels(eft1, [ 6 ], [ Node.VALUE_LABEL_D_DS1, Node.VALUE_LABEL_D_DS3 ], [ 1 ]) remapEftNodeValueLabel(eft1, [ 5 ], Node.VALUE_LABEL_D_DS1, [ ( Node.VALUE_LABEL_D_DS1, [1] ) ]) remapEftNodeValueLabel(eft1, [ 5 ], Node.VALUE_LABEL_D_DS3, [ ( Node.VALUE_LABEL_D_DS1, [] ), ( Node.VALUE_LABEL_D_DS3, [1]) ]) remapEftNodeValueLabel(eft1, [ 7 ], Node.VALUE_LABEL_D_DS3, [ ( Node.VALUE_LABEL_D_DS1, [1] ), ( Node.VALUE_LABEL_D_DS3, []) ]) elif e == 1: # reverse d1, d3 on left cfb: eft1 = bicubichermitelinear.createEftNoCrossDerivatives() setEftScaleFactorIds(eft1, [1], []) scalefactors = [ -1.0 ] remapEftNodeValueLabel(eft1, [ 5 ], Node.VALUE_LABEL_D_DS1, [ ( Node.VALUE_LABEL_D_DS1, [1] ), ( Node.VALUE_LABEL_D_DS3, []) ]) remapEftNodeValueLabel(eft1, [ 5 ], Node.VALUE_LABEL_D_DS3, [ ( Node.VALUE_LABEL_D_DS3, [1]) ]) elif e == (elementsCountAroundLeftAtriumFreeWall - 1): # general linear map d3 adjacent to collapsed sulcus eft1 = bicubichermitelinear.createEftNoCrossDerivatives() setEftScaleFactorIds(eft1, [1], []) scalefactors = [ -1.0 ] remapEftNodeValueLabel(eft1, [ 6, 8 ], Node.VALUE_LABEL_D_DS3, [ ( Node.VALUE_LABEL_D_DS1, [] ), ( Node.VALUE_LABEL_D_DS3, []) ]) result = elementtemplate1.defineField(coordinates, -1, eft1) element = mesh.createElement(elementIdentifier, elementtemplate1) result2 = element.setNodesByIdentifier(eft1, nids) if scalefactors: result3 = element.setScaleFactors(eft1, scalefactors) else: result3 = 7 #print('create element fibrous ring left', elementIdentifier, result, result2, result3, nids) elementIdentifier += 1 for meshGroup in meshGroups: meshGroup.addElement(element) # right fibrous ring, starting at crux / collapsed posterior interatrial sulcus for e in range(-1, elementsCountAroundRightAtriumFreeWall): eft1 = eftFibrousRing n1 = e nids = [ ravNodeId[0][0][n1], ravNodeId[0][0][n1 + 1], ravNodeId[0][1][n1], ravNodeId[0][1][n1 + 1], ravNodeId[1][0][n1], ravNodeId[1][0][n1 + 1], ravNodeId[1][1][n1], ravNodeId[1][1][n1 + 1]] scalefactors = None meshGroups = [ rFibrousRingMeshGroup ] if e == -1: # interatrial groove straddles left and right atria, collapsed to 6 node wedge nids[0] = lavNodeId[0][0][elementsCountAroundLeftAtriumFreeWall] nids[2] = lavNodeId[0][1][elementsCountAroundLeftAtriumFreeWall] nids.pop(6) nids.pop(4) eft1 = bicubichermitelinear.createEftNoCrossDerivatives() setEftScaleFactorIds(eft1, [1], []) scalefactors = [ -1.0 ] remapEftNodeValueLabel(eft1, [ 1, 3 ], Node.VALUE_LABEL_D_DS1, [ ( Node.VALUE_LABEL_D_DS1, [] ), ( Node.VALUE_LABEL_D_DS3, [] ) ]) remapEftNodeValueLabel(eft1, [ 2, 4 ], Node.VALUE_LABEL_D_DS1, [ ( Node.VALUE_LABEL_D_DS1, [] ), ( Node.VALUE_LABEL_D_DS3, [1] ) ]) remapEftNodeValueLabel(eft1, [ 5, 6, 7, 8 ], Node.VALUE_LABEL_D_DS1, []) remapEftNodeValueLabel(eft1, [ 5, 7 ], Node.VALUE_LABEL_D_DS3, [ ( Node.VALUE_LABEL_D_DS1, [] ), ( Node.VALUE_LABEL_D_DS3, []) ]) remapEftNodeValueLabel(eft1, [ 6, 8 ], Node.VALUE_LABEL_D_DS3, [ ( Node.VALUE_LABEL_D_DS1, [1] ), ( Node.VALUE_LABEL_D_DS3, []) ]) ln_map = [ 1, 2, 3, 4, 5, 5, 6, 6 ] remapEftLocalNodes(eft1, 6, ln_map) meshGroups += [ lFibrousRingMeshGroup ] cruxElementId = elementIdentifier elif e == 0: # general linear map d3 adjacent to collapsed crux/posterior sulcus eft1 = bicubichermitelinear.createEftNoCrossDerivatives() setEftScaleFactorIds(eft1, [1], []) scalefactors = [ -1.0 ] remapEftNodeValueLabel(eft1, [ 5, 7 ], Node.VALUE_LABEL_D_DS3, [ ( Node.VALUE_LABEL_D_DS1, [1] ), ( Node.VALUE_LABEL_D_DS3, []) ]) elif e == (elementsCountAroundRightAtriumFreeWall - 2): # reverse d1, d3 on right cfb: eft1 = bicubichermitelinear.createEftNoCrossDerivatives() setEftScaleFactorIds(eft1, [1], []) scalefactors = [ -1.0 ] remapEftNodeValueLabel(eft1, [ 6 ], Node.VALUE_LABEL_D_DS1, [ ( Node.VALUE_LABEL_D_DS1, [1] ), ( Node.VALUE_LABEL_D_DS3, [1]) ]) remapEftNodeValueLabel(eft1, [ 6 ], Node.VALUE_LABEL_D_DS3, [ ( Node.VALUE_LABEL_D_DS3, [1]) ]) elif e == (elementsCountAroundRightAtriumFreeWall - 1): # general linear map d3 adjacent to collapsed cfb/anterior sulcus eft1 = bicubichermitelinear.createEftNoCrossDerivatives() setEftScaleFactorIds(eft1, [1], []) scalefactors = [ -1.0 ] # reverse d1, d3 on right cfb, cfb: scaleEftNodeValueLabels(eft1, [ 5 ], [ Node.VALUE_LABEL_D_DS1, Node.VALUE_LABEL_D_DS3 ], [ 1 ]) remapEftNodeValueLabel(eft1, [ 6 ], Node.VALUE_LABEL_D_DS1, [ ( Node.VALUE_LABEL_D_DS1, [1] ) ]) remapEftNodeValueLabel(eft1, [ 6 ], Node.VALUE_LABEL_D_DS3, [ ( Node.VALUE_LABEL_D_DS1, [1] ), ( Node.VALUE_LABEL_D_DS3, [1]) ]) remapEftNodeValueLabel(eft1, [ 8 ], Node.VALUE_LABEL_D_DS3, [ ( Node.VALUE_LABEL_D_DS1, [] ), ( Node.VALUE_LABEL_D_DS3, []) ]) result = elementtemplate1.defineField(coordinates, -1, eft1) element = mesh.createElement(elementIdentifier, elementtemplate1) result2 = element.setNodesByIdentifier(eft1, nids) if scalefactors: result3 = element.setScaleFactors(eft1, scalefactors) else: result3 = 7 #print('create element fibrous ring right', elementIdentifier, result, result2, result3, nids) elementIdentifier += 1 for meshGroup in meshGroups: meshGroup.addElement(element) # fibrous ring septum: meshGroups = [ lFibrousRingMeshGroup, rFibrousRingMeshGroup ] for e in range(elementsCountAroundAtrialSeptum): eft1 = eftFibrousRing nlm = e - elementsCountAroundAtrialSeptum nlp = nlm + 1 nrm = -e nrp = nrm - 1 nids = [ lavNodeId[0][0][nlm], lavNodeId[0][0][nlp], lavNodeId[0][1][nlm], lavNodeId[0][1][nlp], ravNodeId[0][0][nrm], ravNodeId[0][0][nrp], ravNodeId[0][1][nrm], ravNodeId[0][1][nrp] ] eft1 = bicubichermitelinear.createEftNoCrossDerivatives() setEftScaleFactorIds(eft1, [1], []) scalefactors = [ -1.0 ] if e == 0: # general linear map d3 adjacent to collapsed posterior interventricular sulcus scaleEftNodeValueLabels(eft1, [ 5, 6, 7, 8 ], [ Node.VALUE_LABEL_D_DS1 ], [ 1 ]) scaleEftNodeValueLabels(eft1, [ 6, 8 ], [ Node.VALUE_LABEL_D_DS3 ], [ 1 ]) remapEftNodeValueLabel(eft1, [ 1, 3 ], Node.VALUE_LABEL_D_DS3, [ ( Node.VALUE_LABEL_D_DS1, [] ), ( Node.VALUE_LABEL_D_DS3, [] ) ]) remapEftNodeValueLabel(eft1, [ 5, 7 ], Node.VALUE_LABEL_D_DS3, [ ( Node.VALUE_LABEL_D_DS1, [] ), ( Node.VALUE_LABEL_D_DS3, [1] ) ]) elif e == (elementsCountAroundAtrialSeptum - 1): # general linear map d3 adjacent to cfb scaleEftNodeValueLabels(eft1, [ 5, 6, 7, 8 ], [ Node.VALUE_LABEL_D_DS1 ], [ 1 ]) scaleEftNodeValueLabels(eft1, [ 5, 7 ], [ Node.VALUE_LABEL_D_DS3 ], [ 1 ]) remapEftNodeValueLabel(eft1, [ 2, 4 ], Node.VALUE_LABEL_D_DS3, [ ( Node.VALUE_LABEL_D_DS1, [1] ), ( Node.VALUE_LABEL_D_DS3, [] ) ]) remapEftNodeValueLabel(eft1, [ 6, 8 ], Node.VALUE_LABEL_D_DS3, [ ( Node.VALUE_LABEL_D_DS1, [1] ), ( Node.VALUE_LABEL_D_DS3, [1] ) ]) else: scaleEftNodeValueLabels(eft1, [ 5, 6, 7, 8 ], [ Node.VALUE_LABEL_D_DS1, Node.VALUE_LABEL_D_DS3 ], [ 1 ]) result = elementtemplate1.defineField(coordinates, -1, eft1) element = mesh.createElement(elementIdentifier, elementtemplate1) result2 = element.setNodesByIdentifier(eft1, nids) if scalefactors: result3 = element.setScaleFactors(eft1, scalefactors) else: result3 = 7 #print('create element fibrous ring septum', elementIdentifier, result, result2, result3, nids) elementIdentifier += 1 for meshGroup in meshGroups: meshGroup.addElement(element) # annotation fiducial points cruxElement = mesh.findElementByIdentifier(cruxElementId) cruxXi = [ 0.0, 0.5, 1.0 ] cache.setMeshLocation(cruxElement, cruxXi) result, cruxCoordinates = coordinates.evaluateReal(cache, 3) datapoint = fiducialPoints.createNode(-1, datapointTemplateInternal) cache.setNode(datapoint) fiducialCoordinates.setNodeParameters(cache, -1, Node.VALUE_LABEL_VALUE, 1, cruxCoordinates) fiducialLabel.assignString(cache, 'crux') fiducialElementXi.assignMeshLocation(cache, cruxElement, cruxXi) fm.endChange() return annotationGroups