def setWH(self, dt): x, y = director.window.width, director.window.height nmin = sc.scale(int((self.x) - (self.bgImage.width / 2)), int((self.y) - (self.bgImage.height / 2))) nmax = sc.scale(int((self.x) + (self.bgImage.width / 2)), int((self.y) + (self.bgImage.height / 2))) self.width_range = [int(nmin[0]), int(nmax[0])] self.height_range = [int(nmin[1]), int(nmax[1])]
def setWH(self, dt): x, y = director.window.width, director.window.height nmin = sc.scale(int(self.parent.x + (self.x - (self.width / 2))), int(self.parent.y + (self.y - (self.height / 2)))) nmax = sc.scale(int(self.parent.x + (self.x + (self.width / 2))), int(self.parent.y + (self.y + (self.height / 2)))) self.width_range = [int(nmin[0]), int(nmax[0])] self.height_range = [int(nmin[1]), int(nmax[1])]
def setWH(self, dt): x, y = director.window.width, director.window.height nmin = sc.scale(int((self.px + self.x) - (self.bgImage.width / 2)), int((self.py + self.y) - (self.bgImage.height / 2))) nmax = sc.scale(int((self.px + self.x) + (self.bgImage.width / 2)), int((self.py + self.y) + (self.bgImage.height / 2))) if not self.scrollManager == None: nmin = [ nmin[0], (nmin[1] + self.scrollManager.get_children()[0].y) ] nmax = [ nmax[0], (nmax[1] + self.scrollManager.get_children()[0].y) ] self.width_range = [int(nmin[0]), int(nmax[0])] self.height_range = [int(nmin[1]), int(nmax[1])]
def normalize(allTriPolygones): # 平移变换, 将模型重心作为空间原点 mp, transed_tripoints = translation.translate(allTriPolygones) ''' # 旋转变换 rotated_points = rotation.rotate(transed_points) ''' # 缩放变换, 返回最终预处理好的模型 # final_points是一个二维的nx3数组,每一行代表三角形的一个顶点 final_tripoints = scaling.scale(mp, transed_tripoints) return final_tripoints
def main(): inputs = [ [1, 1, 4], [1, 2, 5], [1, 3, 6], ] output = [ 3, 2, 1, ] print("## NON SCALED ##") test(inputs, output) print("## SCALED ##") from scaling import scale scaled = scale(inputs) test(scaled, output)
def normalize(motion, translate='', rotate='', scale='', clean=True): """! Apply normalization to a motion. The input motion is not modified. @param motion numpy.array: The motion to normalize @param translate: The normalization for translating the motions @param rotate: The normalization for rotating the motions @param scale: The normalization for scaling the motions @param cleaning: Remove duplicate points and large jumps, default true @return: The normalized motion and the normalization parameters """ out = motion translationRef = translation.translate(out[:, 1:4], translate) rotationRef = rotation.rotate(out[:, 1:8], rotate) scalingRef = scaling.scale(out[:, 1:4], scale) out, removedPoints = cleaning.clean(motion) return out, translationRef, rotationRef, scalingRef
def test_scale(filename, dist): im = Image.open(filename) # different cases from given problems expections = [] expections.append([(192, 128), (96, 64), (48, 32), (24, 16), (12, 8)]) # 1. expections.append([(300, 200)]) # 2. expections.append([(450, 300)]) # 3. expections.append([(500, 200)]) # 4. for case in expections: print "Scaling case %d" % expections.index(case) for size in case: out = scale(im, size) out_name = "scaling-%dx%d.png" % out.size out_path = os.path.join(dist, out_name) out.save(out_path) print " Picture %s has been saved to the assets folder !" % out_name
def normalize(allPolygones, name): # 平移变换, 将模型重心作为空间原点 mp, transed_points = translation.translate(allPolygones) # 旋转变换 rotated_points = rotation.rotate(transed_points) # 缩放变换, 返回最终预处理好的模型 # final_points是一个二维的nx3数组,每一行代表三角形的一个顶点 final_points = scaling.scale(mp, rotated_points) # 原本final_points是list类型,转换为<type 'numpy.ndarray'> final_points = np.array(final_points) #extractEigvect(final_points, name) #eigvectflat(final_points, name) # 测试生成二维投影直方图 # histogram.getHist(final_points) allTris = [] for i in range(len(final_points)/3): allTris.append(final_points[i*3:i*3+3]) #allTris = np.array(allTris) # print 'type(allTris): ', type(allTris) histogram.getTriHist(allTris, final_points, name, 200, 200)
tf.compat.v1.keras.backend.set_session(session) parser = argparse.ArgumentParser() parser.add_argument('-p', '--process', action='store_true') options = parser.parse_args() lighthouse_image_dir = "l" other_image_dir = "o" # Scale the data if flag exists if options.process: shutil.rmtree("./" + lighthouse_image_dir) shutil.rmtree("./" + other_image_dir) os.mkdir(lighthouse_image_dir) os.mkdir(other_image_dir) scaling.scale("lighthouses", lighthouse_image_dir, (64, 64)) scaling.scale("365", other_image_dir, (64, 64)) # Read images in as grayscale images and store as numpy arrays # Label the classes as 1 for lighthouse, 0 for other images = [] y = [] for file in os.listdir(lighthouse_image_dir): image = cv.imread(lighthouse_image_dir + "/" + file, 0) images.append(image) y.append(1) for file in os.listdir(other_image_dir): images.append(cv.imread(other_image_dir + "/" + file, cv.IMREAD_GRAYSCALE)) y.append(0)
lis1.append(i.text.strip()) results['directions'] = lis1 # Fill out this list comprehension and get each element's text # pattern = re.compile(r'(window.lazyModal\(\')(.*)\'\);') nutr_link = page_graph.find("script", text=pattern) nutr_link_url = pattern.search(nutr_link.text).group(2) page_html_nutr = requests.get(nutr_link_url) page_graph_nutr = BeautifulSoup(page_html_nutr.content) # print(page_graph_nutr) for i in page_graph_nutr.find_all('span', {'class', "nutrient-name"}): # print("Nutrients") # print(i.text) lis2.append(i.text) results['nutrients'] = lis2 print("fin", type(results)) print(results) return results rf = RecipeFetcher() # meat_lasagna = rf.search_recipes('meat lasagna')[0] print("Please input URL") url = input() # print(type(meat_lasagna)) # results = rf.scrape_recipe(url) res = scaling.scale(results, 2, "down")
import prePlot import plot import readTRC import RRA import CMC import directories import JR allDir = list(directories.main(directories)) paramsDir = allDir[1] idResultsDir = allDir[7] soResultsDir = allDir[8] cmcResultsDir = allDir[10] jrResultsDir = allDir[11] scaling.scale() # IK.inverseKinematics() # ID.inverseDynamics() # Static Optimization """ input parameters time - t0 & t1 """ # t0 = 0 # t1 = 2 # SO.run(t0,t1) # # readTRC.plot() # RRA.reduceResidualActuators() """