from matplotlib.patches import Patch import matplotlib.colors from scipy.spatial.distance import pdist from seriate import seriate from scfc import bridge, anatomical_connectivity, functional_connectivity, plotting import matplotlib from matplotlib import rcParams rcParams.update({'font.size': 12}) rcParams.update({'axes.spines.right': False}) rcParams.update({'axes.spines.top': False}) rcParams['svg.fonttype'] = 'none' # let illustrator handle the font type data_dir = bridge.getUserConfiguration()['data_dir'] analysis_dir = bridge.getUserConfiguration()['analysis_dir'] plot_colors = plt.get_cmap('tab10')(np.arange(8)/8) save_dpi = 400 # %% Eg region traces and cross corrs pull_regions = ['AL_R', 'CAN_R', 'LH_R', 'SPS_R'] include_inds_ito, name_list_ito = bridge.getItoNames() display_names = [x.replace('_R', '(R)').replace('_L', '(L)').replace('_', '') for x in name_list_ito] pull_inds = [np.where(np.array(name_list_ito) == x)[0][0] for x in pull_regions] resp_fp = os.path.join(data_dir, 'ito_responses', 'ito_2018-11-03_5.pkl')
import os import glob import nibabel as nib import numpy as np import pandas as pd import time import sys from scfc import functional_connectivity, bridge atlas_id = sys.argv[1] # name of atlas to use: ito or branson t_total_0 = time.time() data_dir = bridge.getUserConfiguration()['data_dir'] brain_filepaths = glob.glob(os.path.join(data_dir, 'brain_files', 'func_volreg') + '*') for brain_fp in brain_filepaths: t0 = time.time() suffix = brain_fp.split('func_volreg_')[-1] if atlas_id == 'ito': atlas_fp = os.path.join(data_dir, 'ito_68_atlas', 'vfb_68_' + suffix) elif atlas_id == 'branson': atlas_fp = os.path.join(data_dir, 'branson_999_atlas', 'vfb_999_' + suffix) else: print('Unrecognized atlas ID') mask_brain = np.asarray(np.squeeze(nib.load(atlas_fp).get_fdata()), 'uint16') functional_brain = np.asanyarray(nib.load(brain_fp).dataobj).astype('uint16')