예제 #1
0
def prepare_model_and_optimizer(args, device):

    # Prepare model
    config = modeling.BertConfig.from_json_file(args.config_file)

    # Padding for divisibility by 8
    if config.vocab_size % 8 != 0:
        config.vocab_size += 8 - (config.vocab_size % 8)

    modeling.ACT2FN["bias_gelu"] = modeling.bias_gelu_training
    model = modeling.BertForPreTraining(config)

    if args.disable_weight_tying:
        import torch.nn as nn
        print ("WARNING!!!!!!! Disabling weight tying for this run")
        print ("BEFORE ", model.cls.predictions.decoder.weight is model.bert.embeddings.word_embeddings.weight)
        model.cls.predictions.decoder.weight = torch.nn.Parameter(model.cls.predictions.decoder.weight.clone().detach())
        print ("AFTER ", model.cls.predictions.decoder.weight is model.bert.embeddings.word_embeddings.weight)
        assert (model.cls.predictions.decoder.weight is model.bert.embeddings.word_embeddings.weight) == False

    checkpoint = None
    if not args.resume_from_checkpoint:
        global_step = 0
    else:
        if args.resume_step == -1 and not args.init_checkpoint:
            model_names = [f for f in os.listdir(args.output_dir) if f.endswith(".pt")]
            args.resume_step = max([int(x.split('.pt')[0].split('_')[1].strip()) for x in model_names])

        global_step = args.resume_step if not args.init_checkpoint else 0

        if not args.init_checkpoint:
            checkpoint = torch.load(os.path.join(args.output_dir, "ckpt_{}.pt".format(global_step)), map_location="cpu")
        else:
            checkpoint = torch.load(args.init_checkpoint, map_location="cpu")

        model.load_state_dict(checkpoint['model'], strict=False)
        
        if args.phase2 and not args.init_checkpoint:
            global_step -= args.phase1_end_step
        if is_main_process():
            print("resume step from ", args.resume_step)

    model.to(device)
    param_optimizer = list(model.named_parameters())
    no_decay = ['bias', 'gamma', 'beta', 'LayerNorm']
    
    optimizer_grouped_parameters = [
        {'params': [p for n, p in param_optimizer if not any(nd in n for nd in no_decay)], 'weight_decay': 0.01},
        {'params': [p for n, p in param_optimizer if any(nd in n for nd in no_decay)], 'weight_decay': 0.0}]

    optimizer = FusedAdam(optimizer_grouped_parameters,
                          lr=args.learning_rate)
    lr_scheduler = PolyWarmUpScheduler(optimizer, 
                                       warmup=args.warmup_proportion, 
                                       total_steps=args.max_steps,
                                       degree=1)
    if args.fp16:

        if args.loss_scale == 0:
            model, optimizer = amp.initialize(model, optimizer, opt_level="O2", loss_scale="dynamic", cast_model_outputs=torch.float16)
        else:
            model, optimizer = amp.initialize(model, optimizer, opt_level="O2", loss_scale=args.loss_scale, cast_model_outputs=torch.float16)
        amp._amp_state.loss_scalers[0]._loss_scale = args.init_loss_scale

    model.checkpoint_activations(args.checkpoint_activations)

    if args.resume_from_checkpoint:
        if args.phase2 or args.init_checkpoint:
            keys = list(checkpoint['optimizer']['state'].keys())
            #Override hyperparameters from previous checkpoint
            for key in keys:
                checkpoint['optimizer']['state'][key]['step'] = global_step
            for iter, item in enumerate(checkpoint['optimizer']['param_groups']):
                checkpoint['optimizer']['param_groups'][iter]['step'] = global_step
                checkpoint['optimizer']['param_groups'][iter]['t_total'] = args.max_steps
                checkpoint['optimizer']['param_groups'][iter]['warmup'] = args.warmup_proportion
                checkpoint['optimizer']['param_groups'][iter]['lr'] = args.learning_rate
        optimizer.load_state_dict(checkpoint['optimizer'])  # , strict=False)

        # Restore AMP master parameters          
        if args.fp16:
            optimizer._lazy_init_maybe_master_weights()
            optimizer._amp_stash.lazy_init_called = True
            optimizer.load_state_dict(checkpoint['optimizer'])
            for param, saved_param in zip(amp.master_params(optimizer), checkpoint['master params']):
                param.data.copy_(saved_param.data)

    if args.local_rank != -1:
        if not args.allreduce_post_accumulation:
            model = DDP(model, message_size=250000000, gradient_predivide_factor=get_world_size())
        else:
            flat_dist_call([param.data for param in model.parameters()], torch.distributed.broadcast, (0,) )
    elif args.n_gpu > 1:
        model = torch.nn.DataParallel(model)

    criterion = BertPretrainingCriterion(config.vocab_size)


    if args.disable_weight_tying:
       # Sanity Check that new param is in optimizer
       print ("SANITY CHECK OPTIMIZER: ", id(model.module.cls.predictions.decoder.weight) in [id(g) for g in optimizer.param_groups[0]['params']])
       assert id(model.module.cls.predictions.decoder.weight) in [id(g) for g in optimizer.param_groups[0]['params']]

    return model, optimizer, lr_scheduler, checkpoint, global_step, criterion
예제 #2
0
def prepare_model_and_optimizer(args, device):

    # Prepare model
    config = BertConfig.from_json_file(args.config_file)

    # Padding for divisibility by 8
    if config.vocab_size % 8 != 0:
        config.vocab_size += 8 - (config.vocab_size % 8)
    model = BertForPreTraining(config)

    checkpoint = None
    if not args.resume_from_checkpoint:
        global_step = 0
    else:
        if args.resume_step == -1 and not args.init_checkpoint:
            model_names = [
                f for f in os.listdir(args.output_dir) if f.endswith(".pt")
            ]
            args.resume_step = max([
                int(x.split('.pt')[0].split('_')[1].strip())
                for x in model_names
            ])

        global_step = args.resume_step if not args.init_checkpoint else 0

        if not args.init_checkpoint:
            checkpoint = torch.load(os.path.join(
                args.output_dir, "ckpt_{}.pt".format(global_step)),
                                    map_location="cpu")
        else:
            checkpoint = torch.load(args.init_checkpoint, map_location="cpu")

        model.load_state_dict(checkpoint['model'], strict=False)
        if args.phase2:
            global_step -= args.phase1_end_step
        if is_main_process():
            print("resume step from ", args.resume_step)

    model.to(device)
    param_optimizer = list(model.named_parameters())
    no_decay = ['bias', 'gamma', 'beta', 'LayerNorm']

    optimizer_grouped_parameters = [{
        'params':
        [p for n, p in param_optimizer if not any(nd in n for nd in no_decay)],
        'weight_decay':
        0.01
    }, {
        'params':
        [p for n, p in param_optimizer if any(nd in n for nd in no_decay)],
        'weight_decay':
        0.0
    }]

    optimizer = FusedLAMB(optimizer_grouped_parameters, lr=args.learning_rate)
    lr_scheduler = PolyWarmUpScheduler(optimizer,
                                       warmup=args.warmup_proportion,
                                       total_steps=args.max_steps)
    if args.fp16:

        if args.loss_scale == 0:
            model, optimizer = amp.initialize(model,
                                              optimizer,
                                              opt_level="O2",
                                              loss_scale="dynamic")
        else:
            model, optimizer = amp.initialize(model,
                                              optimizer,
                                              opt_level="O2",
                                              loss_scale=args.loss_scale)
        amp._amp_state.loss_scalers[0]._loss_scale = 2**20

    if args.resume_from_checkpoint:
        if args.phase2 or args.init_checkpoint:
            keys = list(checkpoint['optimizer']['state'].keys())
            #Override hyperparameters from previous checkpoint
            for key in keys:
                checkpoint['optimizer']['state'][key]['step'] = global_step
            for iter, item in enumerate(
                    checkpoint['optimizer']['param_groups']):
                checkpoint['optimizer']['param_groups'][iter][
                    'step'] = global_step
                checkpoint['optimizer']['param_groups'][iter][
                    't_total'] = args.max_steps
                checkpoint['optimizer']['param_groups'][iter][
                    'warmup'] = args.warmup_proportion
                checkpoint['optimizer']['param_groups'][iter][
                    'lr'] = args.learning_rate
        optimizer.load_state_dict(checkpoint['optimizer'])  # , strict=False)

        # Restore AMP master parameters
        if args.fp16:
            optimizer._lazy_init_maybe_master_weights()
            optimizer._amp_stash.lazy_init_called = True
            optimizer.load_state_dict(checkpoint['optimizer'])
            for param, saved_param in zip(amp.master_params(optimizer),
                                          checkpoint['master params']):
                param.data.copy_(saved_param.data)

    if args.local_rank != -1:
        if not args.allreduce_post_accumulation:
            model = DDP(
                model,
                message_size=250000000,
                gradient_predivide_factor=torch.distributed.get_world_size())
        else:
            flat_dist_call([param.data for param in model.parameters()],
                           torch.distributed.broadcast, (0, ))
    elif args.n_gpu > 1:
        model = torch.nn.DataParallel(model)

    return model, optimizer, lr_scheduler, checkpoint, global_step
def prepare_model_and_optimizer(args, device):

    # Prepare model
    config = modeling.BertConfig.from_json_file(args.config_file)

    # Padding for divisibility by 8
    if config.vocab_size % 8 != 0:
        config.vocab_size += 8 - (config.vocab_size % 8)

    if args.use_sequential > 0:
        config.use_sequential = True
    else:
        config.use_sequential = False

    modeling.ACT2FN["bias_gelu"] = modeling.bias_gelu_training
    model = modeling.BertForPreTraining(config)
    model.checkpoint_activations(args.checkpoint_activations)
    if args.smp > 0:
        # SMP: Use the DistributedModel container to provide the model
        # to be partitioned across different ranks. For the rest of the script,
        # the returned DistributedModel object should be used in place of
        # the model provided for DistributedModel class instantiation.
        model = smp.DistributedModel(model)

    checkpoint = None
    if not args.resume_from_checkpoint:
        global_step = 0
    else:
        if not args.init_checkpoint:
            if not args.s3_checkpoint_uri:
                raise ValueError(
                    "Need to set s3_checkpoint_uri, if init_checkpoint not set"
                )
            if smp.local_rank() == 0:
                sync_s3_checkpoints_to_local(args.output_dir,
                                             args.s3_checkpoint_uri)
            smp.barrier()
        if args.resume_step == -1 and not args.init_checkpoint:
            model_names = [
                f for f in os.listdir(args.output_dir) if ".pt" in f
            ]
            args.resume_step = max([
                int(x.split(".pt")[0].split("_")[1].strip())
                for x in model_names
            ])

        global_step = args.resume_step if not args.init_checkpoint else 0

        # SMP: Load a model that was saved with smp.save
        if not args.init_checkpoint:
            checkpoint = smp.load(
                os.path.join(args.output_dir,
                             "ckpt_{}.pt".format(global_step)),
                partial=args.partial_checkpoint,
            )
        else:
            checkpoint = smp.load(args.init_checkpoint)

        model.load_state_dict(checkpoint["model"], strict=False)

        if args.phase2 and not args.init_checkpoint:
            global_step -= args.phase1_end_step
        if is_main_process():
            print("resume step from ", args.resume_step)

    model.to(device)
    param_optimizer = list(model.named_parameters())
    no_decay = ["bias", "gamma", "beta", "LayerNorm"]
    optimizer_grouped_parameters = [
        {
            "params": [
                p for n, p in param_optimizer
                if not any(nd in n for nd in no_decay)
            ],
            "weight_decay":
            0.01,
        },
        {
            "params":
            [p for n, p in param_optimizer if any(nd in n for nd in no_decay)],
            "weight_decay":
            0.0,
        },
    ]

    optimizer = FusedLAMB(optimizer_grouped_parameters, lr=args.learning_rate)
    if args.smp > 0:
        # SMP: Use Distributed Optimizer which allows the loading of optimizer state for a distributed model
        # Also provides APIs to obtain local optimizer state for the current mp_rank.
        optimizer = smp.DistributedOptimizer(optimizer)
    lr_scheduler = PolyWarmUpScheduler(optimizer,
                                       warmup=args.warmup_proportion,
                                       total_steps=args.max_steps)

    if args.fp16:
        if args.loss_scale == 0:
            model, optimizer = amp.initialize(
                model,
                optimizer,
                opt_level="O2",
                loss_scale="dynamic",
                cast_model_outputs=torch.float16,
            )
        else:
            model, optimizer = amp.initialize(
                model,
                optimizer,
                opt_level="O2",
                loss_scale=args.loss_scale,
                cast_model_outputs=torch.float16,
            )
        amp._amp_state.loss_scalers[0]._loss_scale = args.init_loss_scale

    if args.resume_from_checkpoint:
        if args.phase2 or args.init_checkpoint:
            keys = list(checkpoint["optimizer"]["state"].keys())
            # Override hyperparameters from previous checkpoint
            for key in keys:
                checkpoint["optimizer"]["state"][key]["step"] = global_step
            for iter, item in enumerate(
                    checkpoint["optimizer"]["param_groups"]):
                checkpoint["optimizer"]["param_groups"][iter][
                    "step"] = global_step
                checkpoint["optimizer"]["param_groups"][iter][
                    "t_total"] = args.max_steps
                checkpoint["optimizer"]["param_groups"][iter][
                    "warmup"] = args.warmup_proportion
                checkpoint["optimizer"]["param_groups"][iter][
                    "lr"] = args.learning_rate
        optimizer.load_state_dict(checkpoint["optimizer"])  # , strict=False)
        # Restore AMP master parameters
        if args.fp16:
            optimizer._lazy_init_maybe_master_weights()
            optimizer._amp_stash.lazy_init_called = True
            optimizer.load_state_dict(checkpoint["optimizer"])
            for param, saved_param in zip(amp.master_params(optimizer),
                                          checkpoint["master params"]):
                param.data.copy_(saved_param.data)

    # if args.local_rank != -1:
    #    if not args.allreduce_post_accumulation:
    #        model = DDP(model, message_size=250000000, gradient_predivide_factor=get_world_size())
    #    else:
    #        flat_dist_call([param.data for param in model.parameters()], torch.distributed.broadcast, (0,) )
    # elif args.n_gpu > 1:
    #    model = torch.nn.DataParallel(model)

    criterion = BertPretrainingCriterion(config.vocab_size)

    return model, optimizer, lr_scheduler, checkpoint, global_step, criterion
예제 #4
0
def prepare_model_and_optimizer(args, device):

    # Prepare model
    config = modeling.BertConfig.from_json_file(args.config_file)

    # Padding for divisibility by 8
    if config.vocab_size % 8 != 0:
        config.vocab_size += 8 - (config.vocab_size % 8)

    modeling.ACT2FN["bias_gelu"] = modeling.bias_gelu_training
    model = modeling.BertForPreTraining(config)

    checkpoint = None
    if not args.resume_from_checkpoint:
        global_step = 0
    else:
        if args.resume_step == -1 and not args.init_checkpoint:
            model_names = [
                f for f in os.listdir(args.output_dir) if f.endswith(".pt")
            ]
            args.resume_step = max([
                int(x.split('.pt')[0].split('_')[1].strip())
                for x in model_names
            ])

        global_step = args.resume_step if not args.init_checkpoint else 0

        if not args.init_checkpoint:
            checkpoint = torch.load(os.path.join(
                args.output_dir, "ckpt_{}.pt".format(global_step)),
                                    map_location="cpu")
        else:
            checkpoint = torch.load(args.init_checkpoint, map_location="cpu")

        model.load_state_dict(checkpoint['model'], strict=False)

        if args.phase2 and not args.init_checkpoint:
            global_step -= args.phase1_end_step
        if is_main_process():
            print("resume step from ", args.resume_step)

    model.to(device)
    # BERT modeling  uses weight sharing between word embedding and prediction decoder.
    # So make sure the storage is pointing properly even after model is moved to device.
    if args.use_habana:
        model.cls.predictions.decoder.weight = model.bert.embeddings.word_embeddings.weight

    param_optimizer = list(model.named_parameters())
    no_decay = ['bias', 'gamma', 'beta', 'LayerNorm']

    optimizer_grouped_parameters = [{
        'params':
        [p for n, p in param_optimizer if not any(nd in n for nd in no_decay)],
        'weight_decay':
        0.01
    }, {
        'params':
        [p for n, p in param_optimizer if any(nd in n for nd in no_decay)],
        'weight_decay':
        0.0
    }]

    if args.use_habana:
        if args.use_fused_lamb:
            try:
                from hb_custom import FusedLamb
            except ImportError:
                raise ImportError("Please install hbopt.")
            optimizer = FusedLamb(optimizer_grouped_parameters,
                                  lr=args.learning_rate)
        else:
            optimizer = NVLAMB(optimizer_grouped_parameters,
                               lr=args.learning_rate)
    else:
        if torch.cuda.is_available():
            optimizer = FusedLAMB(optimizer_grouped_parameters,
                                  lr=args.learning_rate)
        else:
            optimizer = NVLAMB(optimizer_grouped_parameters,
                               lr=args.learning_rate)

    lr_scheduler = PolyWarmUpScheduler(optimizer,
                                       warmup=args.warmup_proportion,
                                       total_steps=args.max_steps)
    if args.fp16:

        if args.loss_scale == 0:
            model, optimizer = amp.initialize(model,
                                              optimizer,
                                              opt_level="O2",
                                              loss_scale="dynamic",
                                              cast_model_outputs=torch.float16)
        else:
            model, optimizer = amp.initialize(model,
                                              optimizer,
                                              opt_level="O2",
                                              loss_scale=args.loss_scale,
                                              cast_model_outputs=torch.float16)
        amp._amp_state.loss_scalers[0]._loss_scale = args.init_loss_scale

    model.checkpoint_activations(args.checkpoint_activations)

    if args.resume_from_checkpoint:
        if args.phase2 or args.init_checkpoint:
            keys = list(checkpoint['optimizer']['state'].keys())
            #Override hyperparameters from previous checkpoint
            for key in keys:
                checkpoint['optimizer']['state'][key]['step'] = global_step
            for iter, item in enumerate(
                    checkpoint['optimizer']['param_groups']):
                checkpoint['optimizer']['param_groups'][iter][
                    'step'] = global_step
                checkpoint['optimizer']['param_groups'][iter][
                    't_total'] = args.max_steps
                checkpoint['optimizer']['param_groups'][iter][
                    'warmup'] = args.warmup_proportion
                checkpoint['optimizer']['param_groups'][iter][
                    'lr'] = args.learning_rate
        optimizer.load_state_dict(checkpoint['optimizer'])  # , strict=False)

        # Restore AMP master parameters
        if args.fp16:
            optimizer._lazy_init_maybe_master_weights()
            optimizer._amp_stash.lazy_init_called = True
            optimizer.load_state_dict(checkpoint['optimizer'])
            for param, saved_param in zip(amp.master_params(optimizer),
                                          checkpoint['master params']):
                param.data.copy_(saved_param.data)

    if args.local_rank != -1:
        if not args.allreduce_post_accumulation:
            if not args.use_jit_trace:
                if args.use_habana:
                    model = DDP(model)
                else:
                    model = DDP(model,
                                message_size=250000000,
                                gradient_predivide_factor=get_world_size())
        else:
            flat_dist_call([param.data for param in model.parameters()],
                           torch.distributed.broadcast, (0, ))
    elif args.n_pu > 1:
        model = torch.nn.DataParallel(model)

    criterion = BertPretrainingCriterion(config.vocab_size)

    return model, optimizer, lr_scheduler, checkpoint, global_step, criterion
def prepare_model_and_optimizer(args, device, sequence_output_is_dense):

    # Prepare model
    config = modeling.BertConfig.from_json_file(args.config_file)

    # Padding for divisibility by 8
    if config.vocab_size % 8 != 0:
        config.vocab_size += 8 - (config.vocab_size % 8)

    model = modeling.BertForPreTraining(config, sequence_output_is_dense=sequence_output_is_dense)

    checkpoint = None
    if not args.resume_from_checkpoint:
        global_step = 0
    else:
        if args.resume_step == -1 and not args.init_checkpoint:
            model_names = [f for f in os.listdir(args.output_dir) if f.endswith(".pt")]
            args.resume_step = max([int(x.split('.pt')[0].split('_')[1].strip()) for x in model_names])

        global_step = args.resume_step if not args.init_checkpoint else 0

        if not args.init_checkpoint:
            checkpoint = torch.load(os.path.join(args.output_dir, "ckpt_{}.pt".format(global_step)), map_location=device)
        else:
            checkpoint = torch.load(args.init_checkpoint, map_location=device)

        model.load_state_dict(checkpoint['model'], strict=False)

        if args.phase2 and not args.init_checkpoint:
            global_step -= args.phase1_end_step
        if is_main_process():
            print("resume step from ", args.resume_step)

    model.to(device)

    # If allreduce_post_accumulation_fp16 is not set, Native AMP Autocast is
    # used along with FP32 gradient accumulation and all-reduce
    if args.fp16 and args.allreduce_post_accumulation_fp16:
        model.half()

    if not args.disable_jit_fusions :
        model = torch.jit.script(model)

    param_optimizer = list(model.named_parameters())
    no_decay = ['bias', 'gamma', 'beta', 'LayerNorm']

    optimizer_grouped_parameters = [
        {'params': [p for n, p in param_optimizer if not any(nd in n for nd in no_decay)], 'weight_decay': 0.01},
        {'params': [p for n, p in param_optimizer if any(nd in n for nd in no_decay)], 'weight_decay': 0.0}]

    optimizer = FusedLAMBAMP(optimizer_grouped_parameters,
                             lr=args.learning_rate)
    lr_scheduler = PolyWarmUpScheduler(optimizer,
                                       warmup=args.warmup_proportion,
                                       total_steps=args.max_steps,
                                       base_lr=args.learning_rate,
                                       device=device)
    grad_scaler = torch.cuda.amp.GradScaler(init_scale=args.init_loss_scale, enabled=args.fp16)

    model.checkpoint_activations(args.checkpoint_activations)

    if args.resume_from_checkpoint:
        # For phase2, need to reset the learning rate and step count in the checkpoint
        if args.phase2 or args.init_checkpoint :
            for group in checkpoint['optimizer']['param_groups'] :
                group['step'].zero_()
                group['lr'].fill_(args.learning_rate)
        else :
            if 'grad_scaler' in checkpoint and not args.phase2:
                grad_scaler.load_state_dict(checkpoint['grad_scaler'])
        optimizer.load_state_dict(checkpoint['optimizer'])  # , strict=False)

    if args.local_rank != -1:
        # Cuda Graphs requires that DDP is captured on a side stream
        # It is important to synchronize the streams after the DDP initialization
        # so anything after sees properly initialized model weights across GPUs
        side_stream = torch.cuda.Stream()
        with torch.cuda.stream(side_stream) :
            model = DDP(model, device_ids=[args.local_rank], output_device=args.local_rank, bucket_cap_mb=torch.cuda.get_device_properties(device).total_memory, gradient_as_bucket_view=True)
        torch.cuda.current_stream().wait_stream(side_stream)

        from torch.distributed.algorithms.ddp_comm_hooks.default_hooks import allreduce_hook
        def scale_by_grad_accum_steps_wrapper(hook: Callable[[Any, dist.GradBucket], torch.futures.Future[torch.Tensor]]) -> Callable[[Any, dist.GradBucket], torch.futures.Future[torch.Tensor]]:

            def scale_by_grad_accum_steps_wrapper_hook(
                hook_state, bucket: dist.GradBucket
            ) -> torch.futures.Future[torch.Tensor]:
                bucket.set_buffer(bucket.buffer().div_(args.gradient_accumulation_steps))
                fut = hook(hook_state, bucket)
                return fut

            return scale_by_grad_accum_steps_wrapper_hook

        # With gradient accumulation, the DDP comm hook divides the gradients by the number
        # gradient accumulation steps
        if args.gradient_accumulation_steps > 1:
            model.register_comm_hook(None, scale_by_grad_accum_steps_wrapper(allreduce_hook))

    optimizer.setup_fp32_params()

    criterion = BertPretrainingCriterion(config.vocab_size, sequence_output_is_dense=sequence_output_is_dense)

    if args.resume_from_checkpoint and args.init_checkpoint:
        start_epoch = checkpoint['epoch']
    else:
        start_epoch = 0

    return model, optimizer, grad_scaler, lr_scheduler, checkpoint, global_step, criterion, start_epoch