a = ax.plot(lags, corr, **kwargs) else: kwargs.setdefault("marker", "o") kwargs.setdefault("linestyle", "None") a, = ax.plot(lags, corr, **kwargs) b = c = None return a, b, c arrvs = ar_generator() arma = ARIMA() res = arma.fit(arrvs[0], 4, 0) print res[0] acf1 = acf(arrvs[0]) acovf1b = acovf(arrvs[0], unbiased=False) acf2 = autocorr(arrvs[0]) acf2m = autocorr(arrvs[0] - arrvs[0].mean()) print acf1[:10] print acovf1b[:10] print acf2[:10] print acf2m[:10] x = arma_generate_sample([1.0, -0.8], [1.0], 500) print acf(x)[:20] import scikits.statsmodels as sm print sm.regression.yule_walker(x, 10) import matplotlib.pyplot as plt
if rescale: plt.plot(wm,sdm/sdm[0], '-', wm[maxind], sdm[maxind]/sdm[0], 'o') else: plt.plot(wm, sdm, '-', wm[maxind], sdm[maxind], 'o') plt.title('matplotlib') sdp, wp = stbs.periodogram(x) plt.subplot(2,3,3) if rescale: plt.plot(wp,sdp/sdp[0]) else: plt.plot(wp, sdp) plt.title('stbs.periodogram') xacov = tsa.acovf(x, unbiased=False) plt.subplot(2,3,4) plt.plot(xacov) plt.title('autocovariance') nr = len(x)#*2/3 #xacovfft = np.fft.fft(xacov[:nr], 2*nr-1) xacovfft = np.fft.fft(np.correlate(x,x,'full')) plt.subplot(2,3,5) if rescale: plt.plot(xacovfft[:nr]/xacovfft[0]) else: plt.plot(xacovfft[:nr]) plt.title('fft')