예제 #1
0
 def hist_normalization(picture):
     histogram = Image.fromarray(picture).convert("L").histogram()
     lut = []
     for b in range(0, len(histogram), 256):
         step = reduce(operator.add, histogram[b:b + 256]) / 255
         n = 0
         for i in range(256):
             lut.append(n / step)
             n = n + histogram[i + b]
     return np.asarray(Image.fromarray(picture).point(lut * 1))
예제 #2
0
파일: miobase.py 프로젝트: 1641731459/scipy
def matdims(arr, oned_as='column'):
    """
    Determine equivalent MATLAB dimensions for given array

    Parameters
    ----------
    arr : ndarray
        Input array
    oned_as : {'column', 'row'}, optional
        Whether 1-D arrays are returned as MATLAB row or column matrices.
        Default is 'column'.

    Returns
    -------
    dims : tuple
        Shape tuple, in the form MATLAB expects it.

    Notes
    -----
    We had to decide what shape a 1 dimensional array would be by
    default.  ``np.atleast_2d`` thinks it is a row vector.  The
    default for a vector in MATLAB (e.g. ``>> 1:12``) is a row vector.

    Versions of scipy up to and including 0.11 resulted (accidentally)
    in 1-D arrays being read as column vectors.  For the moment, we
    maintain the same tradition here.

    Examples
    --------
    >>> matdims(np.array(1)) # numpy scalar
    (1, 1)
    >>> matdims(np.array([1])) # 1d array, 1 element
    (1, 1)
    >>> matdims(np.array([1,2])) # 1d array, 2 elements
    (2, 1)
    >>> matdims(np.array([[2],[3]])) # 2d array, column vector
    (2, 1)
    >>> matdims(np.array([[2,3]])) # 2d array, row vector
    (1, 2)
    >>> matdims(np.array([[[2,3]]])) # 3d array, rowish vector
    (1, 1, 2)
    >>> matdims(np.array([])) # empty 1d array
    (0, 0)
    >>> matdims(np.array([[]])) # empty 2d
    (0, 0)
    >>> matdims(np.array([[[]]])) # empty 3d
    (0, 0, 0)

    Optional argument flips 1-D shape behavior.

    >>> matdims(np.array([1,2]), 'row') # 1d array, 2 elements
    (1, 2)

    The argument has to make sense though

    >>> matdims(np.array([1,2]), 'bizarre')
    Traceback (most recent call last):
       ...
    ValueError: 1D option "bizarre" is strange

    """
    shape = arr.shape
    if shape == ():  # scalar
        return (1,1)
    if reduce(operator.mul, shape) == 0:  # zero elememts
        return (0,) * np.max([arr.ndim, 2])
    if len(shape) == 1:  # 1D
        if oned_as == 'column':
            return shape + (1,)
        elif oned_as == 'row':
            return (1,) + shape
        else:
            raise ValueError('1D option "%s" is strange'
                             % oned_as)
    return shape
예제 #3
0
def matdims(arr, oned_as='column'):
    """
    Determine equivalent MATLAB dimensions for given array

    Parameters
    ----------
    arr : ndarray
        Input array
    oned_as : {'column', 'row'}, optional
        Whether 1-D arrays are returned as MATLAB row or column matrices.
        Default is 'column'.

    Returns
    -------
    dims : tuple
        Shape tuple, in the form MATLAB expects it.

    Notes
    -----
    We had to decide what shape a 1 dimensional array would be by
    default.  ``np.atleast_2d`` thinks it is a row vector.  The
    default for a vector in MATLAB (e.g. ``>> 1:12``) is a row vector.

    Versions of scipy up to and including 0.11 resulted (accidentally)
    in 1-D arrays being read as column vectors.  For the moment, we
    maintain the same tradition here.

    Examples
    --------
    >>> matdims(np.array(1)) # numpy scalar
    (1, 1)
    >>> matdims(np.array([1])) # 1d array, 1 element
    (1, 1)
    >>> matdims(np.array([1,2])) # 1d array, 2 elements
    (2, 1)
    >>> matdims(np.array([[2],[3]])) # 2d array, column vector
    (2, 1)
    >>> matdims(np.array([[2,3]])) # 2d array, row vector
    (1, 2)
    >>> matdims(np.array([[[2,3]]])) # 3d array, rowish vector
    (1, 1, 2)
    >>> matdims(np.array([])) # empty 1d array
    (0, 0)
    >>> matdims(np.array([[]])) # empty 2d
    (0, 0)
    >>> matdims(np.array([[[]]])) # empty 3d
    (0, 0, 0)

    Optional argument flips 1-D shape behavior.

    >>> matdims(np.array([1,2]), 'row') # 1d array, 2 elements
    (1, 2)

    The argument has to make sense though

    >>> matdims(np.array([1,2]), 'bizarre')
    Traceback (most recent call last):
       ...
    ValueError: 1D option "bizarre" is strange

    """
    shape = arr.shape
    if shape == ():  # scalar
        return (1, 1)
    if reduce(operator.mul, shape) == 0:  # zero elememts
        return (0, ) * np.max([arr.ndim, 2])
    if len(shape) == 1:  # 1D
        if oned_as == 'column':
            return shape + (1, )
        elif oned_as == 'row':
            return (1, ) + shape
        else:
            raise ValueError('1D option "%s" is strange' % oned_as)
    return shape
예제 #4
0
 def _basis(j):
     p = [(xq - x[i]) / (x[j] - x[i]) for i in range(k) if i != j]
     return reduce((lambda q, w: q * w), p)