예제 #1
0
 def test_roots_discont(self):
     # Check that a discontinuity across zero is reported as root
     c = np.array([[1], [-1]]).T
     x = np.array([0, 0.5, 1])
     pp = PPoly(c, x)
     assert_array_equal(pp.roots(), [0.5])
     assert_array_equal(pp.roots(discontinuity=False), [])
예제 #2
0
 def test_roots_discont(self):
     # Check that a discontinuity across zero is reported as root
     c = np.array([[1], [-1]]).T
     x = np.array([0, 0.5, 1])
     pp = PPoly(c, x)
     assert_array_equal(pp.roots(), [0.5])
     assert_array_equal(pp.roots(discontinuity=False), [])
예제 #3
0
    def test_roots_repeated(self):
        # Check roots repeated in multiple sections are reported only
        # once.

        # [(x + 1)**2 - 1, -x**2] ; x == 0 is a repeated root
        c = np.array([[1, 0, -1], [-1, 0, 0]]).T
        x = np.array([-1, 0, 1])

        pp = PPoly(c, x)
        assert_array_equal(pp.roots(), [-2, 0])
        assert_array_equal(pp.roots(extrapolate=False), [0])
예제 #4
0
    def test_roots_repeated(self):
        # Check roots repeated in multiple sections are reported only
        # once.

        # [(x + 1)**2 - 1, -x**2] ; x == 0 is a repeated root
        c = np.array([[1, 0, -1], [-1, 0, 0]]).T
        x = np.array([-1, 0, 1])

        pp = PPoly(c, x)
        assert_array_equal(pp.roots(), [-2, 0])
        assert_array_equal(pp.roots(extrapolate=False), [0])
예제 #5
0
    def test_roots_random(self):
        # Check high-order polynomials with random coefficients
        np.random.seed(1234)

        num = 0

        for extrapolate in (True, False):
            for order in range(0, 20):
                x = np.unique(np.r_[0, 10 * np.random.rand(30), 10])
                c = 2 * np.random.rand(order + 1, len(x) - 1, 2, 3) - 1

                pp = PPoly(c, x)
                r = pp.roots(discontinuity=False, extrapolate=extrapolate)

                for i in range(2):
                    for j in range(3):
                        rr = r[i, j]
                        if rr.size > 0:
                            # Check that the reported roots indeed are roots
                            num += rr.size
                            val = pp(rr, extrapolate=extrapolate)[:, i, j]
                            cmpval = pp(rr, nu=1,
                                        extrapolate=extrapolate)[:, i, j]
                            assert_allclose(val / cmpval,
                                            0,
                                            atol=1e-7,
                                            err_msg="(%r) r = %s" % (
                                                extrapolate,
                                                repr(rr),
                                            ))

        # Check that we checked a number of roots
        assert_(num > 100, repr(num))
예제 #6
0
    def test_roots_random(self):
        # Check high-order polynomials with random coefficients
        np.random.seed(1234)

        num = 0

        for extrapolate in (True, False):
            for order in range(0, 20):
                x = np.unique(np.r_[0, 10 * np.random.rand(30), 10])
                c = 2*np.random.rand(order+1, len(x)-1, 2, 3) - 1

                pp = PPoly(c, x)
                r = pp.roots(discontinuity=False, extrapolate=extrapolate)

                for i in range(2):
                    for j in range(3):
                        rr = r[i,j]
                        if rr.size > 0:
                            # Check that the reported roots indeed are roots
                            num += rr.size
                            val = pp(rr, extrapolate=extrapolate)[:,i,j]
                            cmpval = pp(rr, nu=1, extrapolate=extrapolate)[:,i,j]
                            assert_allclose(val/cmpval, 0, atol=1e-7,
                                            err_msg="(%r) r = %s" % (extrapolate,
                                                                     repr(rr),))

        # Check that we checked a number of roots
        assert_(num > 100, repr(num))
예제 #7
0
    def test_roots_idzero(self):
        # Roots for piecewise polynomials with identically zero
        # sections.
        c = np.array([[-1, 0.25], [0, 0], [-1, 0.25]]).T
        x = np.array([0, 0.4, 0.6, 1.0])

        pp = PPoly(c, x)
        assert_array_equal(pp.roots(), [0.25, 0.4, np.nan, 0.6 + 0.25])
예제 #8
0
    def test_roots_idzero(self):
        # Roots for piecewise polynomials with identically zero
        # sections.
        c = np.array([[-1, 0.25], [0, 0], [-1, 0.25]]).T
        x = np.array([0, 0.4, 0.6, 1.0])

        pp = PPoly(c, x)
        assert_array_equal(pp.roots(),
                           [0.25, 0.4, np.nan, 0.6 + 0.25])
예제 #9
0
    def test_extrapolate_attr(self):
        # [ 1 - x**2 ]
        c = np.array([[-1, 0, 1]]).T
        x = np.array([0, 1])

        for extrapolate in [True, False, None]:
            pp = PPoly(c, x, extrapolate=extrapolate)
            pp_d = pp.derivative()
            pp_i = pp.antiderivative()

            if extrapolate is False:
                assert_(np.isnan(pp([-0.1, 1.1])).all())
                assert_(np.isnan(pp_i([-0.1, 1.1])).all())
                assert_(np.isnan(pp_d([-0.1, 1.1])).all())
                assert_equal(pp.roots(), [1])
            else:
                assert_allclose(pp([-0.1, 1.1]), [1 - 0.1**2, 1 - 1.1**2])
                assert_(not np.isnan(pp_i([-0.1, 1.1])).any())
                assert_(not np.isnan(pp_d([-0.1, 1.1])).any())
                assert_allclose(pp.roots(), [1, -1])
예제 #10
0
    def test_extrapolate_attr(self):
        # [ 1 - x**2 ]
        c = np.array([[-1, 0, 1]]).T
        x = np.array([0, 1])

        for extrapolate in [True, False, None]:
            pp = PPoly(c, x, extrapolate=extrapolate)
            pp_d = pp.derivative()
            pp_i = pp.antiderivative()

            if extrapolate is False:
                assert_(np.isnan(pp([-0.1, 1.1])).all())
                assert_(np.isnan(pp_i([-0.1, 1.1])).all())
                assert_(np.isnan(pp_d([-0.1, 1.1])).all())
                assert_equal(pp.roots(), [1])
            else:
                assert_allclose(pp([-0.1, 1.1]), [1-0.1**2, 1-1.1**2])
                assert_(not np.isnan(pp_i([-0.1, 1.1])).any())
                assert_(not np.isnan(pp_d([-0.1, 1.1])).any())
                assert_allclose(pp.roots(), [1, -1])