예제 #1
0
파일: lanczos.py 프로젝트: obackhouse/adcc
def lanczos(matrix, guesses, n_ep, max_subspace=None,
            conv_tol=1e-9, which="LM", max_iter=100,
            callback=None, debug_checks=False,
            explicit_symmetrisation=IndexSymmetrisation,
            min_subspace=None):
    """Lanczos eigensolver for ADC problems

    Parameters
    ----------
    matrix
        ADC matrix instance
    guesses : list
        Guess vectors (fixes also the Lanczos block size)
    n_ep : int
        Number of eigenpairs to be computed
    max_subspace : int or NoneType, optional
        Maximal subspace size
    conv_tol : float, optional
        Convergence tolerance on the l2 norm squared of residuals to consider
        them converged
    which : str, optional
        Which eigenvectors to converge to (e.g. LM, LA, SM, SA)
    max_iter : int, optional
        Maximal number of iterations
    callback : callable, optional
        Callback to run after each iteration
    debug_checks : bool, optional
        Enable some potentially costly debug checks
        (Loss of orthogonality etc.)
    explicit_symmetrisation : optional
        Explicit symmetrisation to use after orthogonalising the
        subspace vectors. Allows to correct for loss of index or spin
        symmetries during orthogonalisation (type or instance).
    min_subspace : int or NoneType, optional
        Subspace size to collapse to when performing a thick restart.
    """
    if explicit_symmetrisation is not None and \
            isinstance(explicit_symmetrisation, type):
        explicit_symmetrisation = explicit_symmetrisation(matrix)
    iterator = LanczosIterator(matrix, guesses,
                               explicit_symmetrisation=explicit_symmetrisation)

    if not isinstance(guesses, list):
        guesses = [guesses]
    if not max_subspace:
        max_subspace = max(2 * n_ep + len(guesses), 20, 8 * len(guesses))
    if not min_subspace:
        min_subspace = n_ep + 2 * len(guesses)
    if conv_tol < matrix.shape[1] * np.finfo(float).eps:
        warnings.warn(la.LinAlgWarning(
            "Convergence tolerance (== {:5.2g}) lower than "
            "estimated maximal numerical accuracy (== {:5.2g}). "
            "Convergence might be hard to achieve."
            "".format(conv_tol, matrix.shape[1] * np.finfo(float).eps)
        ))

    return lanczos_iterations(iterator, n_ep, min_subspace, max_subspace,
                              conv_tol, which, max_iter, callback, debug_checks)
예제 #2
0
 def check_orthogonality(self, tolerance=None):
     if tolerance is None:
         tolerance = self.n_problem * np.finfo(float).eps
     orth = np.array([[SSi @ SSj for SSi in self.subspace]
                      for SSj in self.subspace])
     orth -= np.eye(len(self.subspace))
     orth = np.max(np.abs(orth))
     if orth > tolerance:
         warnings.warn(
             la.LinAlgWarning("LanczosSubspace has lost orthogonality. "
                              "Expect inaccurate results."))
     return orth
예제 #3
0
파일: lanczos.py 프로젝트: yychuang/adcc
def lanczos_iterations(iterator,
                       n_ep,
                       min_subspace,
                       max_subspace,
                       conv_tol=1e-9,
                       which="LA",
                       max_iter=100,
                       callback=None,
                       debug_checks=False,
                       state=None):
    """Drive the Lanczos iterations

    Parameters
    ----------
    iterator : LanczosIterator
        Iterator generating the Lanczos subspace (contains matrix, guess,
        residual, Ritz pairs from restart, symmetrisation and orthogonalisation)
    n_ep : int
        Number of eigenpairs to be computed
    min_subspace : int
        Subspace size to collapse to when performing a thick restart.
    max_subspace : int
        Maximal subspace size
    conv_tol : float, optional
        Convergence tolerance on the l2 norm squared of residuals to consider
        them converged
    which : str, optional
        Which eigenvectors to converge to (e.g. LM, LA, SM, SA)
    max_iter : int, optional
        Maximal number of iterations
    callback : callable, optional
        Callback to run after each iteration
    debug_checks : bool, optional
        Enable some potentially costly debug checks
        (Loss of orthogonality etc.)
    """
    if callback is None:

        def callback(state, identifier):
            pass

    # TODO For consistency with the Davidson the conv_tol is interpreted
    #      as the residual norm *squared*. Arnoldi, however, uses the actual norm
    #      to check for convergence and so on. See also the comment in Davidson
    #      around the line computing state.residual_norms
    #
    #      See also the squaring of the residual norms below
    tol = np.sqrt(conv_tol)

    if state is None:
        state = LanczosState(iterator)
        callback(state, "start")
        state.timer.restart("iteration")
        n_applies_offset = 0
    else:
        n_applies_offset = state.n_applies

    for subspace in iterator:
        b = subspace.rayleigh_extension
        with state.timer.record("rayleigh_ritz"):
            rvals, rvecs = np.linalg.eigh(subspace.subspace_matrix)

        if debug_checks:
            eps = np.finfo(float).eps
            orthotol = max(tol / 1000, subspace.n_problem * eps)
            orth = subspace.check_orthogonality(orthotol)
            state.subspace_orthogonality = orth

        is_rval_converged, eigenpair_error = check_convergence(
            subspace, rvals, rvecs, tol)

        # Update state
        state.n_iter += 1
        state.n_applies = subspace.n_applies + n_applies_offset
        state.converged = False
        state.eigenvectors = None  # Not computed in Lanczos
        state.subspace_vectors = subspace.subspace
        state.subspace_residual = subspace.residual

        epair_mask = select_eigenpairs(rvals, n_ep, which)
        state.eigenvalues = rvals[epair_mask]
        state.residual_norms = eigenpair_error[epair_mask]
        converged = np.all(is_rval_converged[epair_mask])

        # TODO For consistency with the Davidson the residual norms are squared
        #      again to give output in the same order of magnitude.
        state.residual_norms = state.residual_norms**2

        callback(state, "next_iter")
        state.timer.restart("iteration")

        if converged:
            state = amend_true_residuals(state, subspace, rvals, rvecs,
                                         epair_mask)
            state.converged = True
            callback(state, "is_converged")
            state.timer.stop("iteration")
            return state

        if state.n_iter >= max_iter:
            warnings.warn(
                la.LinAlgWarning(
                    f"Maximum number of iterations (== {max_iter}) "
                    "reached in lanczos procedure."))
            state = amend_true_residuals(state, subspace, rvals, rvecs,
                                         epair_mask)
            state.timer.stop("iteration")
            state.converged = False
            return state

        if len(rvecs) + subspace.n_block > max_subspace:
            callback(state, "restart")

            epair_mask = select_eigenpairs(rvals, min_subspace, which)
            V = subspace.subspace
            vn, betan = subspace.ortho.qr(subspace.residual)

            Y = [
                lincomb(rvec, V, evaluate=True)
                for i, rvec in enumerate(np.transpose(rvecs))
                if i in epair_mask
            ]
            Theta = rvals[epair_mask]
            Sigma = rvecs[:, epair_mask].T @ b @ betan.T

            iterator = LanczosIterator(
                iterator.matrix,
                vn,
                ritz_vectors=Y,
                ritz_values=Theta,
                ritz_overlaps=Sigma,
                explicit_symmetrisation=iterator.explicit_symmetrisation)
            state.n_restart += 1
            return lanczos_iterations(iterator, n_ep, min_subspace,
                                      max_subspace, conv_tol, which, max_iter,
                                      callback, debug_checks, state)

    state = amend_true_residuals(state, subspace, rvals, rvecs, epair_mask)
    state.timer.stop("iteration")
    state.converged = False
    warnings.warn(
        la.LinAlgWarning(
            "Lanczos procedure found maximal subspace possible. Iteration cannot be "
            "continued like this and will be aborted without convergence. "
            "Try a different guess."))
    return state
예제 #4
0
def power_method(A, guess, conv_tol=1e-9, max_iter=70, callback=None,
                 explicit_symmetrisation=IndexSymmetrisation):
    """Use the power iteration to solve for the largest eigenpair of A.

    The power method is a very simple diagonalisation method, which solves
    for the (by magnitude) largest eigenvalue of the matrix `A`.

    Parameters
    ----------
    A
        Matrix object. Only the `@` operator needs to be implemented.
    guess
        Matrix used as a guess
    conv_tol : float
        Convergence tolerance on the l2 norm of residuals to consider
        them converged.
    max_iter : int
        Maximal numer of iterations
    callback
        Callback function called after each iteration
    explicit_symmetrisation
        Explicit symmetrisation to perform during iteration to ensure
        obtaining an eigenvector with matching symmetry criteria.
    """
    if callback is None:
        def callback(state, identifier):
            pass

    if explicit_symmetrisation is not None and \
            isinstance(explicit_symmetrisation, type):
        explicit_symmetrisation = explicit_symmetrisation(A)

    x = guess / np.sqrt(guess @ guess)
    state = PowerMethodState(A)

    def is_converged(state):
        return state.residual_norms[0] < conv_tol

    callback(state, "start")
    state.timer.restart("power_method/iteration")
    for i in range(max_iter):
        state.n_iter += 1
        Ax = A @ x
        state.n_applies += 1

        eigval = x @ (Ax)
        residual = Ax - eigval * x
        residual_norm = np.sqrt(residual @ residual)
        state.eigenvalues = np.array([eigval])
        state.eigenvectors = np.array([x])
        state.residual_norms = np.array([residual_norm])

        callback(state, "next_iter")
        state.timer.restart("power_method/iteration")
        if is_converged(state):
            state.converged = True
            callback(state, "is_converged")
            state.timer.stop("power_method/iteration")
            return state

        if explicit_symmetrisation:
            x = explicit_symmetrisation.symmetrise(Ax)
        else:
            x = Ax
        x = x / np.sqrt(x @ x)

    warnings.warn(la.LinAlgWarning(
        "Power method not converged. Returning intermediate results."))
    return state
예제 #5
0
파일: davidson.py 프로젝트: chrinide/adcc
def davidson_iterations(matrix,
                        state,
                        max_subspace,
                        max_iter,
                        n_ep,
                        is_converged,
                        which,
                        callback=None,
                        preconditioner=None,
                        preconditioning_method="Davidson",
                        debug_checks=False,
                        residual_min_norm=None,
                        explicit_symmetrisation=None):
    """
    @param matrix        Matrix to diagonalise
    @param state         DavidsonState containing the eigenvector guess
                         to propagate
    @param max_subspace  Maximal subspace size
    @param max_iter      Maximal numer of iterations
    @param n_ep          Number of eigenpairs to be computed
    @param is_converged  Function to test for convergence
    @param callback      Callback to run after each iteration
    @param which         Which eigenvectors to converge to.
                         Needs to be compatible with the selected
                         preconditioner.
    @param preconditioner           Preconditioner (type or instance)
    @param preconditioning_method   Precondititoning method. Valid values are
                                    "Davidson" or "Sleijpen-van-der-Vorst"
    @param debug_checks  Enable some potentially costly debug checks
                         (loss of orthogonality in subspace etc)
    @param residual_min_norm   Minimal norm a residual needs to have in order
                               to be accepted as a new subspace vector
                               (defaults to 2 * len(matrix) * machine_expsilon)
    @param explicit_symmetrisation   Explicit symmetrisation to perform
                                     on new subspace vectors before adding
                                     them to the subspace.
    """
    if preconditioning_method not in ["Davidson", "Sleijpen-van-der-Vorst"]:
        raise ValueError("Only 'Davidson' and 'Sleijpen-van-der-Vorst' "
                         "are valid preconditioner methods")
    if preconditioning_method == "Sleijpen-van-der-Vorst":
        raise NotImplementedError("Sleijpen-van-der-Vorst preconditioning "
                                  "not yet implemented.")

    if callback is None:

        def callback(state, identifier):
            pass

    # The problem size
    n_problem = matrix.shape[1]

    # The block size
    n_block = len(state.subspace_vectors)

    # The current subspace size
    n_ss_vec = n_block

    # The current subspace
    SS = state.subspace_vectors

    # The matrix A projected into the subspace
    # as a continuous array. Only the view
    # Ass[:n_ss_vec, :n_ss_vec] contains valid data.
    Ass_cont = np.empty((max_subspace, max_subspace))

    eps = np.finfo(float).eps
    if residual_min_norm is None:
        residual_min_norm = 2 * n_problem * eps

    callback(state, "start")
    state.timer.restart("iteration")

    with state.timer.record("projection"):
        # Initial application of A to the subspace
        Ax = matrix @ SS
        state.n_applies += n_ss_vec

    while state.n_iter < max_iter:
        state.n_iter += 1

        assert len(SS) >= n_block
        assert len(SS) <= max_subspace

        # Project A onto the subspace, keeping in mind
        # that the values Ass[:-n_block, :-n_block] are already valid,
        # since they have been computed in the previous iterations already.
        with state.timer.record("projection"):
            Ass = Ass_cont[:n_ss_vec, :n_ss_vec]  # Increase the work view size
            for i in range(n_block):
                Ass[:, -n_block + i] = Ax[-n_block + i] @ SS
            Ass[-n_block:, :] = np.transpose(Ass[:, -n_block:])

        # Compute the which(== largest, smallest, ...) eigenpair of Ass
        # and the associated ritz vector as well as residual
        with state.timer.record("rayleigh_ritz"):
            if Ass.shape == (n_block, n_block):
                rvals, rvecs = la.eigh(Ass)  # Do a full diagonalisation
            else:
                # TODO Maybe play with precision a little here
                # TODO Maybe use previous vectors somehow
                v0 = None
                rvals, rvecs = sla.eigsh(Ass, k=n_block, which=which, v0=v0)

        with state.timer.record("residuals"):
            # Form residuals, A * SS * v - λ * SS * v = Ax * v + SS * (-λ*v)
            def form_residual(rval, rvec):
                Axv = linear_combination(rvec, Ax)
                Axv.add_linear_combination(-rval * rvec, SS)
                return Axv

            residuals = [
                form_residual(rvals[i], v)
                for i, v in enumerate(np.transpose(rvecs))
            ]
            assert len(residuals) == n_block

            # Update the state's eigenpairs and residuals
            state.eigenvalues = select_eigenpairs(rvals, n_ep, which)
            state.residuals = select_eigenpairs(residuals, n_ep, which)
            state.residual_norms = np.array([r @ r for r in state.residuals])
            # TODO This is misleading ... actually residual_norms contains
            #      the norms squared. That's also the used e.g. in adcman to
            #      check for convergence, so using the norm squared is fine,
            #      in theory ... it should just be consistent. I think it is
            #      better to go for the actual norm (no squared) inside the code

            # TODO
            # The select_eigenpairs is not that great ... better one makes a
            # function which returns a mask. In that way one can have one
            # form_residual function, which also returns the formed Ritz vectors
            # (i.e. our approximations to the eigenpairs) and one which only
            # forms the residuals ... this would save some duplicate work
            # in the is_converged section *and* would allow the callback to do
            # some stuff with the eigenpairs if desired.

        callback(state, "next_iter")
        state.timer.restart("iteration")
        if is_converged(state):
            # Build the eigenvectors we desire from the subspace vectors:
            selected = select_eigenpairs(np.transpose(rvecs), n_ep, which)
            state.eigenvectors = [linear_combination(v, SS) for v in selected]

            state.converged = True
            callback(state, "is_converged")
            state.timer.stop("iteration")
            return state

        if state.n_iter == max_iter:
            raise la.LinAlgError("Maximum number of iterations (== " +
                                 str(max_iter) + " reached in davidson "
                                 "procedure.")

        if n_ss_vec + n_block > max_subspace:
            callback(state, "restart")
            with state.timer.record("projection"):
                # The addition of the preconditioned vectors goes beyond max.
                # subspace size => Collapse first, ie keep current Ritz vectors
                # as new subspace
                SS = [linear_combination(v, SS) for v in np.transpose(rvecs)]
                state.subspace_vectors = SS
                Ax = [linear_combination(v, Ax) for v in np.transpose(rvecs)]
                n_ss_vec = len(SS)

                # Update projection of ADC matrix A onto subspace
                Ass = Ass_cont[:n_ss_vec, :n_ss_vec]
                for i in range(n_ss_vec):
                    Ass[:, i] = Ax[i] @ SS
            # continue to add residuals to space

        with state.timer.record("preconditioner"):
            if preconditioner:
                if hasattr(preconditioner, "update_shifts"):
                    preconditioner.update_shifts(rvals)
                preconds = preconditioner.apply(residuals)
            else:
                preconds = residuals

            # Explicitly symmetrise the new vectors if requested
            if explicit_symmetrisation:
                explicit_symmetrisation.symmetrise(preconds, SS)

        # Project the components of the preconditioned vectors away
        # which are already contained in the subspace.
        # Then add those, which have a significant norm to the subspace.
        with state.timer.record("orthogonalisation"):
            n_ss_added = 0
            for i in range(n_block):
                pvec = preconds[i]
                # Project out the components of the current subspace
                pvec = pvec - linear_combination(pvec @ SS, SS)
                pnorm = np.sqrt(pvec @ pvec)
                if pnorm > residual_min_norm:
                    # Extend the subspace
                    SS.append(pvec / pnorm)
                    n_ss_added += 1
                    n_ss_vec = len(SS)

            if debug_checks:
                orth = np.array([[SS[i] @ SS[j] for i in range(n_ss_vec)]
                                 for j in range(n_ss_vec)])
                orth -= np.eye(n_ss_vec)
                state.subspace_orthogonality = np.max(np.abs(orth))
                if state.subspace_orthogonality > n_problem * eps:
                    warnings.warn(
                        la.LinAlgWarning(
                            "Subspace in davidson has lost orthogonality. "
                            "Expect inaccurate results."))

        if n_ss_added == 0:
            state.converged = False
            raise la.LinAlgError(
                "Davidson procedure could not generate any further vectors for "
                "the subpace. Iteration cannot be continued like this and will "
                "be aborted without convergence. Try a different guess.")

        with state.timer.record("projection"):
            Ax.extend(matrix @ SS[-n_ss_added:])
            state.n_applies += n_ss_added
예제 #6
0
파일: davidson.py 프로젝트: chrinide/adcc
def eigsh(matrix,
          guesses,
          n_ep=None,
          max_subspace=None,
          conv_tol=1e-9,
          which="SA",
          max_iter=70,
          callback=None,
          preconditioner=None,
          preconditioning_method="Davidson",
          debug_checks=False,
          residual_min_norm=None,
          explicit_symmetrisation=IndexSymmetrisation):
    """
    Davidson eigensolver for ADC problems

    @param matrix        ADC matrix instance
    @param guesses       Guess vectors (fixes the block size)
    @param n_ep          Number of eigenpairs to be computed
    @param max_subspace  Maximal subspace size
    @param conv_tol      Convergence tolerance on the l2 norm of residuals
                         to consider them converged
    @param which         Which eigenvectors to converge to.
                         Needs to be chosen such that it agrees with
                         the selected preconditioner.
    @param max_iter      Maximal numer of iterations
    @param callback      Callback to run after each iteration
    @param preconditioner           Preconditioner (type or instance)
    @param preconditioning_method   Precondititoning method. Valid values are
                                    "Davidson" or "Sleijpen-van-der-Vorst"
    @param explicit_symmetrisation   Explicit symmetrisation to apply to new
                                     subspace vectors before adding them to
                                     the subspace. Allows to correct for
                                     loss of index or spin symmetries
                                     (type or instance)
    @param debug_checks  Enable some potentially costly debug checks
                         (Loss of orthogonality etc.)
    @param residual_min_norm   Minimal norm a residual needs to have in order
                               to be accepted as a new subspace vector
                               (defaults to 2 * len(matrix) * machine_expsilon)
    """
    if not isinstance(matrix, AdcMatrix):
        raise TypeError("matrix is not of type AdcMatrix")
    for guess in guesses:
        if not isinstance(guess, AmplitudeVector):
            raise TypeError(
                "One of the guesses is not of type AmplitudeVector")

    if preconditioner is not None and isinstance(preconditioner, type):
        preconditioner = preconditioner(matrix)

    if explicit_symmetrisation is not None and \
            isinstance(explicit_symmetrisation, type):
        explicit_symmetrisation = explicit_symmetrisation(matrix)

    if n_ep is None:
        n_ep = len(guesses)
    elif n_ep > len(guesses):
        raise ValueError("n_ep cannot exceed the number of guess vectors.")
    if not max_subspace:
        # TODO Arnoldi uses this:
        # max_subspace = max(2 * n_ep + 1, 20)
        max_subspace = max(6 * n_ep, 20, 5 * len(guesses))

    def convergence_test(state):
        state.residuals_converged = state.residual_norms < conv_tol
        state.converged = np.all(state.residuals_converged)
        return state.converged

    if conv_tol < matrix.shape[1] * np.finfo(float).eps:
        warnings.warn(
            la.LinAlgWarning(
                "Convergence tolerance (== {:5.2g}) lower than "
                "estimated maximal numerical accuracy (== {:5.2g}). "
                "Convergence might be hard to achieve."
                "".format(conv_tol, matrix.shape[1] * np.finfo(float).eps)))

    state = DavidsonState(matrix, guesses)
    davidson_iterations(matrix,
                        state,
                        max_subspace,
                        max_iter,
                        n_ep=n_ep,
                        is_converged=convergence_test,
                        callback=callback,
                        which=which,
                        preconditioner=preconditioner,
                        preconditioning_method=preconditioning_method,
                        debug_checks=debug_checks,
                        residual_min_norm=residual_min_norm,
                        explicit_symmetrisation=explicit_symmetrisation)
    return state
예제 #7
0
def davidson_iterations(matrix,
                        state,
                        max_subspace,
                        max_iter,
                        n_ep,
                        is_converged,
                        which,
                        callback=None,
                        preconditioner=None,
                        preconditioning_method="Davidson",
                        debug_checks=False,
                        residual_min_norm=None,
                        explicit_symmetrisation=None):
    """Drive the davidson iterations

    Parameters
    ----------
    matrix
        Matrix to diagonalise
    state
        DavidsonState containing the eigenvector guess
    max_subspace : int or NoneType, optional
        Maximal subspace size
    max_iter : int, optional
        Maximal number of iterations
    n_ep : int or NoneType, optional
        Number of eigenpairs to be computed
    is_converged
        Function to test for convergence
    callback : callable, optional
        Callback to run after each iteration
    which : str, optional
        Which eigenvectors to converge to. Needs to be chosen such that
        it agrees with the selected preconditioner.
    preconditioner
        Preconditioner (type or instance)
    preconditioning_method : str, optional
        Precondititoning method. Valid values are "Davidson"
        or "Sleijpen-van-der-Vorst"
    debug_checks : bool, optional
        Enable some potentially costly debug checks
        (Loss of orthogonality etc.)
    residual_min_norm : float or NoneType, optional
        Minimal norm a residual needs to have in order to be accepted as
        a new subspace vector
        (defaults to 2 * len(matrix) * machine_expsilon)
    explicit_symmetrisation
        Explicit symmetrisation to apply to new subspace vectors before
        adding them to the subspace. Allows to correct for loss of index
        or spin symmetries (type or instance)
    """
    if preconditioning_method not in ["Davidson", "Sleijpen-van-der-Vorst"]:
        raise ValueError("Only 'Davidson' and 'Sleijpen-van-der-Vorst' "
                         "are valid preconditioner methods")
    if preconditioning_method == "Sleijpen-van-der-Vorst":
        raise NotImplementedError("Sleijpen-van-der-Vorst preconditioning "
                                  "not yet implemented.")

    if callback is None:

        def callback(state, identifier):
            pass

    # The problem size
    n_problem = matrix.shape[1]

    # The block size
    n_block = len(state.subspace_vectors)

    # The current subspace size
    n_ss_vec = n_block

    # The current subspace
    SS = state.subspace_vectors

    # The matrix A projected into the subspace
    # as a continuous array. Only the view
    # Ass[:n_ss_vec, :n_ss_vec] contains valid data.
    Ass_cont = np.empty((max_subspace, max_subspace))

    eps = np.finfo(float).eps
    if residual_min_norm is None:
        residual_min_norm = 2 * n_problem * eps

    callback(state, "start")
    state.timer.restart("iteration")

    with state.timer.record("projection"):
        # Initial application of A to the subspace
        Ax = evaluate(matrix @ SS)
        state.n_applies += n_ss_vec

    while state.n_iter < max_iter:
        state.n_iter += 1

        assert len(SS) >= n_block
        assert len(SS) <= max_subspace

        # Project A onto the subspace, keeping in mind
        # that the values Ass[:-n_block, :-n_block] are already valid,
        # since they have been computed in the previous iterations already.
        with state.timer.record("projection"):
            Ass = Ass_cont[:n_ss_vec, :n_ss_vec]  # Increase the work view size
            for i in range(n_block):
                Ass[:, -n_block + i] = Ax[-n_block + i] @ SS
            Ass[-n_block:, :] = np.transpose(Ass[:, -n_block:])

        # Compute the which(== largest, smallest, ...) eigenpair of Ass
        # and the associated ritz vector as well as residual
        with state.timer.record("rayleigh_ritz"):
            if Ass.shape == (n_block, n_block):
                rvals, rvecs = la.eigh(Ass)  # Do a full diagonalisation
            else:
                # TODO Maybe play with precision a little here
                # TODO Maybe use previous vectors somehow
                v0 = None
                rvals, rvecs = sla.eigsh(Ass, k=n_block, which=which, v0=v0)

        with state.timer.record("residuals"):
            # Form residuals, A * SS * v - λ * SS * v = Ax * v + SS * (-λ*v)
            def form_residual(rval, rvec):
                coefficients = np.hstack((rvec, -rval * rvec))
                return lincomb(coefficients, Ax + SS, evaluate=True)

            residuals = [
                form_residual(rvals[i], v)
                for i, v in enumerate(np.transpose(rvecs))
            ]
            assert len(residuals) == n_block

            # Update the state's eigenpairs and residuals
            epair_mask = select_eigenpairs(rvals, n_ep, which)
            state.eigenvalues = rvals[epair_mask]
            state.residuals = [residuals[i] for i in epair_mask]
            state.residual_norms = np.array([r @ r for r in state.residuals])
            # TODO This is misleading ... actually residual_norms contains
            #      the norms squared. That's also the used e.g. in adcman to
            #      check for convergence, so using the norm squared is fine,
            #      in theory ... it should just be consistent. I think it is
            #      better to go for the actual norm (no squared) inside the code
            #
            #      If this adapted, also change the conv_tol to tol conversion
            #      inside the Lanczos procedure.

        callback(state, "next_iter")
        state.timer.restart("iteration")
        if is_converged(state):
            # Build the eigenvectors we desire from the subspace vectors:
            state.eigenvectors = [
                lincomb(v, SS, evaluate=True)
                for i, v in enumerate(np.transpose(rvecs)) if i in epair_mask
            ]

            state.converged = True
            callback(state, "is_converged")
            state.timer.stop("iteration")
            return state

        if state.n_iter == max_iter:
            warnings.warn(
                la.LinAlgWarning(
                    f"Maximum number of iterations (== {max_iter}) "
                    "reached in davidson procedure."))
            state.eigenvectors = [
                lincomb(v, SS, evaluate=True)
                for i, v in enumerate(np.transpose(rvecs)) if i in epair_mask
            ]
            state.timer.stop("iteration")
            state.converged = False
            return state

        if n_ss_vec + n_block > max_subspace:
            callback(state, "restart")
            with state.timer.record("projection"):
                # The addition of the preconditioned vectors goes beyond max.
                # subspace size => Collapse first, ie keep current Ritz vectors
                # as new subspace
                SS = [
                    lincomb(v, SS, evaluate=True) for v in np.transpose(rvecs)
                ]
                state.subspace_vectors = SS
                Ax = [
                    lincomb(v, Ax, evaluate=True) for v in np.transpose(rvecs)
                ]
                n_ss_vec = len(SS)

                # Update projection of ADC matrix A onto subspace
                Ass = Ass_cont[:n_ss_vec, :n_ss_vec]
                for i in range(n_ss_vec):
                    Ass[:, i] = Ax[i] @ SS
            # continue to add residuals to space

        with state.timer.record("preconditioner"):
            if preconditioner:
                if hasattr(preconditioner, "update_shifts"):
                    # Epsilon factor to make sure that 1 / (shift - diagonal)
                    # does not become ill-conditioned as soon as the shift
                    # approaches the actual diagonal values (which are the
                    # eigenvalues for the ADC(2) doubles part if the coupling
                    # block are absent)
                    rvals_eps = 1e-6
                    preconditioner.update_shifts(rvals - rvals_eps)

                preconds = evaluate(preconditioner @ residuals)
            else:
                preconds = residuals

            # Explicitly symmetrise the new vectors if requested
            if explicit_symmetrisation:
                explicit_symmetrisation.symmetrise(preconds)

        # Project the components of the preconditioned vectors away
        # which are already contained in the subspace.
        # Then add those, which have a significant norm to the subspace.
        with state.timer.record("orthogonalisation"):
            n_ss_added = 0
            for i in range(n_block):
                pvec = preconds[i]
                # Project out the components of the current subspace
                # That is form (1 - SS * SS^T) * pvec = pvec + SS * (-SS^T * pvec)
                coefficients = np.hstack(([1], -(pvec @ SS)))
                pvec = lincomb(coefficients, [pvec] + SS, evaluate=True)
                pnorm = np.sqrt(pvec @ pvec)
                if pnorm > residual_min_norm:
                    # Extend the subspace
                    SS.append(evaluate(pvec / pnorm))
                    n_ss_added += 1
                    n_ss_vec = len(SS)

            if debug_checks:
                orth = np.array([[SS[i] @ SS[j] for i in range(n_ss_vec)]
                                 for j in range(n_ss_vec)])
                orth -= np.eye(n_ss_vec)
                state.subspace_orthogonality = np.max(np.abs(orth))
                if state.subspace_orthogonality > n_problem * eps:
                    warnings.warn(
                        la.LinAlgWarning(
                            "Subspace in davidson has lost orthogonality. "
                            "Expect inaccurate results."))

        if n_ss_added == 0:
            state.timer.stop("iteration")
            state.converged = False
            state.eigenvectors = [
                lincomb(v, SS, evaluate=True)
                for i, v in enumerate(np.transpose(rvecs)) if i in epair_mask
            ]
            warnings.warn(
                la.LinAlgWarning(
                    "Davidson procedure could not generate any further vectors for "
                    "the subspace. Iteration cannot be continued like this and will "
                    "be aborted without convergence. Try a different guess."))
            return state

        with state.timer.record("projection"):
            Ax.extend(matrix @ SS[-n_ss_added:])
            state.n_applies += n_ss_added