예제 #1
0
def conduit_lengths(target,
                    throat_endpoints='throat.endpoints',
                    throat_length='throat.length'):
    r"""
    Calculate conduit lengths. A conduit is defined as half pore + throat
    + half pore.

    Parameters
    ----------
    target : OpenPNM Object
        The object which this model is associated with. This controls the
        length of the calculated array, and also provides access to other
        necessary properties.

    throat_endpoints : string
        Dictionary key of the throat endpoint values.

    throat_diameter : string
        Dictionary key of the throat length values.

    throat_length : string (optional)
        Dictionary key of the throat length values.  If not given then the
        direct distance bewteen the two throat end points is used.

    Returns
    -------
    Dictionary containing conduit lengths, which can be accessed via the dict
    keys 'pore1', 'pore2', and 'throat'.

    """
    network = target.project.network
    throats = network.map_throats(throats=target.Ts, origin=target)
    cn = network['throat.conns'][throats]
    # Get pore coordinates
    C1 = network['pore.coords'][cn[:, 0]]
    C2 = network['pore.coords'][cn[:, 1]]
    # Get throat endpoints and length
    EP1 = network[throat_endpoints + '.head'][throats]
    EP2 = network[throat_endpoints + '.tail'][throats]
    try:
        # Look up throat length if given
        Lt = network[throat_length][throats]
    except KeyError:
        # Calculate throat length otherwise
        Lt = _norm(EP1 - EP2, axis=1)
    # Calculate conduit lengths
    L1 = _norm(C1 - EP1, axis=1)
    L2 = _norm(C2 - EP2, axis=1)
    return {'pore1': L1, 'throat': Lt, 'pore2': L2}
예제 #2
0
def piecewise(target,
              throat_endpoints='throat.endpoints',
              throat_centroid='throat.centroid'):
    r"""
    Calculate throat length from end points and optionally a centroid

    Parameters
    ----------
    target : OpenPNM Object
        The object which this model is associated with. This controls the
        length of the calculated array, and also provides access to other
        necessary properties.

    throat_endpoints : string
        Dictionary key of the throat endpoint values.

    throat_centroid : string
        Dictionary key of the throat centroid values, optional.

    Returns
    -------
    Lt : ndarray
        Array containing throat lengths for the given geometry.

    Notes
    -----
    (1) By default, the model assumes that the centroids of pores and the
    connecting throat in each conduit are colinear.

    (2) If `throat_centroid` is passed, the model accounts for the extra
    length. This could be useful for Voronoi or extracted networks.

    """
    network = target.project.network
    throats = network.map_throats(throats=target.Ts, origin=target)
    # Get throat endpoints
    EP1 = network[throat_endpoints + '.head'][throats]
    EP2 = network[throat_endpoints + '.tail'][throats]
    # Calculate throat length
    Lt = _norm(EP1 - EP2, axis=1)
    # Handle the case where pores & throat centroids are not colinear
    try:
        Ct = network[throat_centroid][throats]
        Lt = _norm(Ct - EP1, axis=1) + _norm(Ct - EP2, axis=1)
    except KeyError:
        pass
    return Lt
예제 #3
0
def discrete_error(X, Y):
    """Compute the absolute and relative l2-norm errors between two snapshot
    sets X and Y where Y is an approximation to X,

        Abs_Err_j = ||X_j - Y_j||_2,
        Rel_Err_j = ||X_j - Y_j||_2 / ||X_j||_2 = Abs_Err_j / ||X_j||_2.

    Parameters
    ----------
    X : (n,k) or (n,) ndarray
        The "true" data. Each column is one snapshot, i.e., X[:,j] is the data
        at some time t[j]. If one-dimensional, all of X is a single snapshot.

    Y : (n,k) or (n,) ndarray
        An approximation to X, i.e., Y[:,j] approximates X[:,j] and corresponds
        to some time t[j]. If one-dimensional, all of Y is a single snapshot
        approximation.

    Returns
    -------
    abs_err : (k,) ndarray or float
        The absolute error of each pair of snapshots X[:,j] and Y[:,j]. If X
        and Y are one-dimensional, X and Y are treated as single snapshots, so
        the error is a float.

    rel_err : (k,) ndarray or float
        The relative error of each pair of snapshots X[:,j] and Y[:,j]. If X
        and Y are one-dimensional, X and Y are treated as single snapshots, so
        the error is a float. Note that this error may be deceptively large
        when the norm of a true snapshot, ||X_j|| is small.
    """
    # Check dimensions.
    if X.shape != Y.shape:
        raise ValueError("truth X and approximation Y not aligned")
    if X.ndim not in (1, 2):
        raise ValueError("X and Y must be one- or two-dimensional")

    # Compute the error.
    norm_of_data = _norm(X, axis=0)
    absolute_error = _norm(X - Y, axis=0)
    return absolute_error, absolute_error / norm_of_data
예제 #4
0
def ctc(target, pore_diameter='pore.diameter'):
    r"""
    Calculate throat length assuming point-like pores, i.e. center-to-center
    distance between pores. Also, this models assumes that pores and throat
    centroids are colinear.

    Parameters
    ----------
    target : OpenPNM Object
        The object which this model is associated with. This controls the
        length of the calculated array, and also provides access to other
        necessary properties.

    pore_diameter : string
        Dictionary key of the pore diameter values

    """
    network = target.project.network
    throats = network.map_throats(throats=target.Ts, origin=target)
    cn = network['throat.conns'][throats]
    C1 = network['pore.coords'][cn[:, 0]]
    C2 = network['pore.coords'][cn[:, 1]]
    return _norm(C1 - C2, axis=1)
예제 #5
0
def norm(x, p=2):
    if not isfinite(x).all():
        return np.nan
    return _norm(x, p)
예제 #6
0
파일: util.py 프로젝트: stjordanis/arsenal
def norm(x, p=2):
    if not isfinite(x).all():
        return np.nan
    return _norm(x, p)