def test_zero_der_nz_dp(): """Test secant method with a non-zero dp, but an infinite newton step""" # pick a symmetrical functions and choose a point on the side that with dx # makes a secant that is a flat line with zero slope, EG: f = (x - 100)**2, # which has a root at x = 100 and is symmetrical around the line x = 100 # we have to pick a really big number so that it is consistently true # now find a point on each side so that the secant has a zero slope dx = np.finfo(float).eps**0.33 # 100 - p0 = p1 - 100 = p0 * (1 + dx) + dx - 100 # -> 200 = p0 * (2 + dx) + dx p0 = (200.0 - dx) / (2.0 + dx) with suppress_warnings() as sup: sup.filter(RuntimeWarning, "RMS of") x = zeros.newton(lambda y: (y - 100.0)**2, x0=[p0] * 10) assert_allclose(x, [100] * 10) # test scalar cases too p0 = (2.0 - 1e-4) / (2.0 + 1e-4) with suppress_warnings() as sup: sup.filter(RuntimeWarning, "Tolerance of") x = zeros.newton(lambda y: (y - 1.0)**2, x0=p0, disp=False) assert_allclose(x, 1) with pytest.raises(RuntimeError, match='Tolerance of'): x = zeros.newton(lambda y: (y - 1.0)**2, x0=p0, disp=True) p0 = (-2.0 + 1e-4) / (2.0 + 1e-4) with suppress_warnings() as sup: sup.filter(RuntimeWarning, "Tolerance of") x = zeros.newton(lambda y: (y + 1.0)**2, x0=p0, disp=False) assert_allclose(x, -1) with pytest.raises(RuntimeError, match='Tolerance of'): x = zeros.newton(lambda y: (y + 1.0)**2, x0=p0, disp=True)
def test_array_newton_failures(): """Test that array newton fails as expected""" # p = 0.68 # [MPa] # dp = -0.068 * 1e6 # [Pa] # T = 323 # [K] diameter = 0.10 # [m] # L = 100 # [m] roughness = 0.00015 # [m] rho = 988.1 # [kg/m**3] mu = 5.4790e-04 # [Pa*s] u = 2.488 # [m/s] reynolds_number = rho * u * diameter / mu # Reynolds number def colebrook_eqn(darcy_friction, re, dia): return (1 / np.sqrt(darcy_friction) + 2 * np.log10(roughness / 3.7 / dia + 2.51 / re / np.sqrt(darcy_friction))) # only some failures with pytest.warns(RuntimeWarning): result = zeros.newton(colebrook_eqn, x0=[0.01, 0.2, 0.02223, 0.3], maxiter=2, args=[reynolds_number, diameter], full_output=True) assert not result.converged.all() # they all fail with pytest.raises(RuntimeError): result = zeros.newton(colebrook_eqn, x0=[0.01] * 2, maxiter=2, args=[reynolds_number, diameter], full_output=True)
def test_array_newton(self): """test newton with array""" def f1(x, *a): b = a[0] + x * a[3] return a[1] - a[2] * (np.exp(b / a[5]) - 1.0) - b / a[4] - x def f1_1(x, *a): b = a[3] / a[5] return -a[2] * np.exp(a[0] / a[5] + x * b) * b - a[3] / a[4] - 1 def f1_2(x, *a): b = a[3] / a[5] return -a[2] * np.exp(a[0] / a[5] + x * b) * b**2 a0 = np.array([ 5.32725221, 5.48673747, 5.49539973, 5.36387202, 4.80237316, 1.43764452, 5.23063958, 5.46094772, 5.50512718, 5.42046290 ]) a1 = (np.sin(range(10)) + 1.0) * 7.0 args = (a0, a1, 1e-09, 0.004, 10, 0.27456) x0 = [7.0] * 10 x = zeros.newton(f1, x0, f1_1, args) x_expected = (6.17264965, 11.7702805, 12.2219954, 7.11017681, 1.18151293, 0.143707955, 4.31928228, 10.5419107, 12.7552490, 8.91225749) assert_allclose(x, x_expected) # test halley's x = zeros.newton(f1, x0, f1_1, args, fprime2=f1_2) assert_allclose(x, x_expected) # test secant x = zeros.newton(f1, x0, args=args) assert_allclose(x, x_expected)
def test_complex_halley(): """Test Halley's works with complex roots""" def f(x, *a): return a[0] * x**2 + a[1] * x + a[2] def f_1(x, *a): return 2 * a[0] * x + a[1] def f_2(x, *a): retval = 2 * a[0] try: size = len(x) except TypeError: return retval else: return [retval] * size z = complex(1.0, 2.0) coeffs = (2.0, 3.0, 4.0) y = zeros.newton(f, z, args=coeffs, fprime=f_1, fprime2=f_2, tol=1e-6) # (-0.75000000000000078+1.1989578808281789j) assert_allclose(f(y, *coeffs), 0, atol=1e-6) z = [z] * 10 coeffs = (2.0, 3.0, 4.0) y = zeros.newton(f, z, args=coeffs, fprime=f_1, fprime2=f_2, tol=1e-6) assert_allclose(f(y, *coeffs), 0, atol=1e-6)
def test_array_newton_integers(self): # test secant with float x = zeros.newton(lambda y, z: z - y**2, [4.0] * 2, args=([15.0, 17.0], )) assert_allclose(x, (3.872983346207417, 4.123105625617661)) # test integer becomes float x = zeros.newton(lambda y, z: z - y**2, [4] * 2, args=([15, 17], )) assert_allclose(x, (3.872983346207417, 4.123105625617661))
def test_deriv_zero_warning(self): func = lambda x: x**2 - 2.0 dfunc = lambda x: 2 * x assert_warns(RuntimeWarning, zeros.newton, func, 0.0, dfunc, disp=False) with pytest.raises(RuntimeError, match='Derivative was zero'): zeros.newton(func, 0.0, dfunc)
def test_newton(self): for f, f_1, f_2 in [(self.f1, self.f1_1, self.f1_2), (self.f2, self.f2_1, self.f2_2)]: x = zeros.newton(f, 3, tol=1e-6) assert_allclose(f(x), 0, atol=1e-6) x = zeros.newton(f, 3, x1=5, tol=1e-6) # secant, x0 and x1 assert_allclose(f(x), 0, atol=1e-6) x = zeros.newton(f, 3, fprime=f_1, tol=1e-6) # newton assert_allclose(f(x), 0, atol=1e-6) x = zeros.newton(f, 3, fprime=f_1, fprime2=f_2, tol=1e-6) # halley assert_allclose(f(x), 0, atol=1e-6)
def test_newton_full_output(self): # Test the full_output capability, both when converging and not. # Use simple polynomials, to avoid hitting platform dependencies # (e.g., exp & trig) in number of iterations x0 = 3 expected_counts = [(6, 7), (5, 10), (3, 9)] for derivs in range(3): kwargs = { 'tol': 1e-6, 'full_output': True, } for k, v in [['fprime', self.f1_1], ['fprime2', self.f1_2]][:derivs]: kwargs[k] = v x, r = zeros.newton(self.f1, x0, disp=False, **kwargs) assert_(r.converged) assert_equal(x, r.root) assert_equal((r.iterations, r.function_calls), expected_counts[derivs]) if derivs == 0: assert (r.function_calls <= r.iterations + 1) else: assert_equal(r.function_calls, (derivs + 1) * r.iterations) # Now repeat, allowing one fewer iteration to force convergence failure iters = r.iterations - 1 x, r = zeros.newton(self.f1, x0, maxiter=iters, disp=False, **kwargs) assert_(not r.converged) assert_equal(x, r.root) assert_equal(r.iterations, iters) if derivs == 1: # Check that the correct Exception is raised and # validate the start of the message. with pytest.raises( RuntimeError, match= 'Failed to converge after %d iterations, value is .*' % (iters)): x, r = zeros.newton(self.f1, x0, maxiter=iters, disp=True, **kwargs)
def test_gh9551_raise_error_if_disp_true(): """Test that if disp is true then zero derivative raises RuntimeError""" def f(x): return x * x + 1 def f_p(x): return 2 * x assert_warns(RuntimeWarning, zeros.newton, f, 1.0, f_p, disp=False) with pytest.raises( RuntimeError, match= r'^Derivative was zero\. Failed to converge after \d+ iterations, value is [+-]?\d*\.\d+\.$' ): zeros.newton(f, 1.0, f_p) root = zeros.newton(f, complex(10.0, 10.0), f_p) assert_allclose(root, complex(0.0, 1.0))
def test_array_newton_complex(self): def f(x): return x + 1 + 1j def fprime(x): return 1.0 t = np.full(4, 1j) x = zeros.newton(f, t, fprime=fprime) assert_allclose(f(x), 0.) # should work even if x0 is not complex t = np.ones(4) x = zeros.newton(f, t, fprime=fprime) assert_allclose(f(x), 0.) x = zeros.newton(f, t) assert_allclose(f(x), 0.)
def test_array_newton_zero_der_failures(self): # test derivative zero warning assert_warns(RuntimeWarning, zeros.newton, lambda y: y**2 - 2, [0., 0.], lambda y: 2 * y) # test failures and zero_der with pytest.warns(RuntimeWarning): results = zeros.newton(lambda y: y**2 - 2, [0., 0.], lambda y: 2 * y, full_output=True) assert_allclose(results.root, 0) assert results.zero_der.all() assert not results.converged.any()
def test_gh_9608_preserve_array_shape(): """ Test that shape is preserved for array inputs even if fprime or fprime2 is scalar """ def f(x): return x**2 def fp(x): return 2 * x def fpp(x): return 2 x0 = np.array([-2], dtype=np.float32) rt, r = newton(f, x0, fprime=fp, fprime2=fpp, full_output=True) assert (r.converged) x0_array = np.array([-2, -3], dtype=np.float32) # This next invocation should fail with pytest.raises(IndexError): result = zeros.newton(f, x0_array, fprime=fp, fprime2=fpp, full_output=True) def fpp_array(x): return np.full(np.shape(x), 2, dtype=np.float32) result = zeros.newton(f, x0_array, fprime=fp, fprime2=fpp_array, full_output=True) assert result.converged.all()
def test_gh8904_zeroder_at_root_fails(): """Test that Newton or Halley don't warn if zero derivative at root""" # a function that has a zero derivative at it's root def f_zeroder_root(x): return x**3 - x**2 # should work with secant r = zeros.newton(f_zeroder_root, x0=0) assert_allclose(r, 0, atol=zeros._xtol, rtol=zeros._rtol) # test again with array r = zeros.newton(f_zeroder_root, x0=[0] * 10) assert_allclose(r, 0, atol=zeros._xtol, rtol=zeros._rtol) # 1st derivative def fder(x): return 3 * x**2 - 2 * x # 2nd derivative def fder2(x): return 6 * x - 2 # should work with newton and halley r = zeros.newton(f_zeroder_root, x0=0, fprime=fder) assert_allclose(r, 0, atol=zeros._xtol, rtol=zeros._rtol) r = zeros.newton(f_zeroder_root, x0=0, fprime=fder, fprime2=fder2) assert_allclose(r, 0, atol=zeros._xtol, rtol=zeros._rtol) # test again with array r = zeros.newton(f_zeroder_root, x0=[0] * 10, fprime=fder) assert_allclose(r, 0, atol=zeros._xtol, rtol=zeros._rtol) r = zeros.newton(f_zeroder_root, x0=[0] * 10, fprime=fder, fprime2=fder2) assert_allclose(r, 0, atol=zeros._xtol, rtol=zeros._rtol) # also test that if a root is found we do not raise RuntimeWarning even if # the derivative is zero, EG: at x = 0.5, then fval = -0.125 and # fder = -0.25 so the next guess is 0.5 - (-0.125/-0.5) = 0 which is the # root, but if the solver continued with that guess, then it will calculate # a zero derivative, so it should return the root w/o RuntimeWarning r = zeros.newton(f_zeroder_root, x0=0.5, fprime=fder) assert_allclose(r, 0, atol=zeros._xtol, rtol=zeros._rtol) # test again with array r = zeros.newton(f_zeroder_root, x0=[0.5] * 10, fprime=fder) assert_allclose(r, 0, atol=zeros._xtol, rtol=zeros._rtol)
def test_array_secant_active_zero_der(self): """test secant doesn't continue to iterate zero derivatives""" x = zeros.newton(lambda x, *a: x * x - a[0], x0=[4.123, 5], args=[np.array([17, 25])]) assert_allclose(x, (4.123105625617661, 5.0))