def curve_fit(f, xdata, ydata, p0=None, sigma=None, absolute_sigma=False, check_finite=True, bounds=(-np.inf, np.inf), method=None, jac=None, **kwargs): if p0 is None: # determine number of parameters by inspecting the function from scipy._lib._util import getargspec_no_self as _getargspec args, varargs, varkw, defaults = _getargspec(f) if len(args) < 2: raise ValueError("Unable to determine number of fit parameters.") n = len(args) - 1 else: p0 = np.atleast_1d(p0) n = p0.size lb, ub = prepare_bounds(bounds, n) if p0 is None: p0 = mp._initialize_feasible(lb, ub) bounded_problem = np.any((lb > -np.inf) | (ub < np.inf)) if method is None: if bounded_problem: method = 'trf' else: method = 'lm' if method == 'lm' and bounded_problem: raise ValueError("Method 'lm' only works for unconstrained problems. " "Use 'trf' or 'dogbox' instead.") # NaNs can not be handled if check_finite: ydata = np.asarray_chkfinite(ydata) else: ydata = np.asarray(ydata) if isinstance(xdata, (list, tuple, np.ndarray)): # `xdata` is passed straight to the user-defined `f`, so allow # non-array_like `xdata`. if check_finite: xdata = np.asarray_chkfinite(xdata) else: xdata = np.asarray(xdata) weights = 1.0 / np.asarray(sigma) if sigma is not None else None func = mp._wrap_func(f, xdata, ydata, weights) if callable(jac): jac = mp._wrap_jac(jac, xdata, weights) elif jac is None and method != 'lm': jac = '2-point' # Remove full_output from kwargs, otherwise we're passing it in twice. return_full = kwargs.pop('full_output', False) if method == 'lm': res = mp.leastsq(func, p0, Dfun=jac, full_output=1, **kwargs) popt, pcov, infodict, errmsg, ier = res cost = np.sum(infodict['fvec'] ** 2) else: res = least_squares(func, p0, jac=jac, bounds=bounds, method=method, **kwargs) cost = 2 * res.cost # res.cost is half sum of squares! popt = res.x # Do Moore-Penrose inverse discarding zero singular values. _, s, VT = svd(res.jac, full_matrices=False) threshold = np.finfo(float).eps * max(res.jac.shape) * s[0] s = s[s > threshold] VT = VT[:s.size] pcov = np.dot(VT.T / s**2, VT) # infodict = dict(nfev=res.nfev, fvec=res.fun, fjac=res.jac, ipvt=None, # qtf=None) infodict = None ier = res.status errmsg = res.message if ier not in [1, 2, 3, 4]: raise RuntimeError("Optimal parameters not found: " + errmsg) warn_cov = False if pcov is None: # indeterminate covariance pcov = np.zeros((len(popt), len(popt)), dtype=float) pcov.fill(np.inf) warn_cov = True elif not absolute_sigma: if ydata.size > p0.size: s_sq = cost / (ydata.size - p0.size) pcov = pcov * s_sq else: pcov.fill(np.inf) warn_cov = True if warn_cov: warnings.warn('Covariance of the parameters could not be estimated', category=OptimizeWarning) if return_full: return popt, pcov, infodict, errmsg, ier else: return popt, pcov
def curve_fit_2(f, strg,xdata, ydata, p0=None, sigma=None, absolute_sigma=False, check_finite=True, bounds=(-np.inf, np.inf), method=None, **kwargs): """ Use non-linear least squares to fit a function, f, to data. Assumes ``ydata = f(xdata, *params) + eps`` Parameters ---------- f : callable The model function, f(x, ...). It must take the independent variable as the first argument and the parameters to fit as separate remaining arguments. xdata : An M-length sequence or an (k,M)-shaped array for functions with k predictors. The independent variable where the data is measured. ydata : M-length sequence The dependent data --- nominally f(xdata, ...) p0 : None, scalar, or N-length sequence, optional Initial guess for the parameters. If None, then the initial values will all be 1 (if the number of parameters for the function can be determined using introspection, otherwise a ValueError is raised). sigma : None or M-length sequence, optional If not None, the uncertainties in the ydata array. These are used as weights in the least-squares problem i.e. minimising ``np.sum( ((f(xdata, *popt) - ydata) / sigma)**2 )`` If None, the uncertainties are assumed to be 1. absolute_sigma : bool, optional If False, `sigma` denotes relative weights of the data points. The returned covariance matrix `pcov` is based on *estimated* errors in the data, and is not affected by the overall magnitude of the values in `sigma`. Only the relative magnitudes of the `sigma` values matter. If True, `sigma` describes one standard deviation errors of the input data points. The estimated covariance in `pcov` is based on these values. check_finite : bool, optional If True, check that the input arrays do not contain nans of infs, and raise a ValueError if they do. Setting this parameter to False may silently produce nonsensical results if the input arrays do contain nans. Default is True. bounds : 2-tuple of array_like, optional Lower and upper bounds on independent variables. Defaults to no bounds. Each element of the tuple must be either an array with the length equal to the number of parameters, or a scalar (in which case the bound is taken to be the same for all parameters.) Use ``np.inf`` with an appropriate sign to disable bounds on all or some parameters. .. versionadded:: 0.17 method : {'lm', 'trf', 'dogbox'}, optional Method to use for optimization. See `least_squares` for more details. Default is 'lm' for unconstrained problems and 'trf' if `bounds` are provided. The method 'lm' won't work when the number of observations is less than the number of variables, use 'trf' or 'dogbox' in this case. .. versionadded:: 0.17 kwargs Keyword arguments passed to `leastsq` for ``method='lm'`` or `least_squares` otherwise. Returns ------- popt : array Optimal values for the parameters so that the sum of the squared error of ``f(xdata, *popt) - ydata`` is minimized pcov : 2d array The estimated covariance of popt. The diagonals provide the variance of the parameter estimate. To compute one standard deviation errors on the parameters use ``perr = np.sqrt(np.diag(pcov))``. How the `sigma` parameter affects the estimated covariance depends on `absolute_sigma` argument, as described above. If the Jacobian matrix at the solution doesn't have a full rank, then 'lm' method returns a matrix filled with ``np.inf``, on the other hand 'trf' and 'dogbox' methods use Moore-Penrose pseudoinverse to compute the covariance matrix. Raises ------ OptimizeWarning if covariance of the parameters can not be estimated. ValueError if either `ydata` or `xdata` contain NaNs. See Also -------- least_squares : Minimize the sum of squares of nonlinear functions. stats.linregress : Calculate a linear least squares regression for two sets of measurements. Notes ----- With ``method='lm'``, the algorithm uses the Levenberg-Marquardt algorithm through `leastsq`. Note that this algorithm can only deal with unconstrained problems. Box constraints can be handled by methods 'trf' and 'dogbox'. Refer to the docstring of `least_squares` for more information. Examples -------- >>> import numpy as np >>> from scipy.optimize import curve_fit >>> def func(x, a, b, c): ... return a * np.exp(-b * x) + c >>> xdata = np.linspace(0, 4, 50) >>> y = func(xdata, 2.5, 1.3, 0.5) >>> ydata = y + 0.2 * np.random.normal(size=len(xdata)) >>> popt, pcov = curve_fit(func, xdata, ydata) Constrain the optimization to the region of ``0 < a < 3``, ``0 < b < 2`` and ``0 < c < 1``: >>> popt, pcov = curve_fit(func, xdata, ydata, bounds=(0, [3., 2., 1.])) """ if p0 is None: # determine number of parameters by inspecting the function from scipy._lib._util import getargspec_no_self as _getargspec args, varargs, varkw, defaults = _getargspec(f) if len(args) < 2: raise ValueError("Unable to determine number of fit parameters.") n = len(args) - 1 else: p0 = np.atleast_1d(p0) n = p0.size lb, ub = minpack.prepare_bounds(bounds, n) if p0 is None: p0 = minpack._initialize_feasible(lb, ub) bounded_problem = np.any((lb > -np.inf) | (ub < np.inf)) if method is None: if bounded_problem: method = 'trf' else: method = 'lm' if method == 'lm' and bounded_problem: raise ValueError("Method 'lm' only works for unconstrained problems. " "Use 'trf' or 'dogbox' instead.") # NaNs can not be handled if check_finite: ydata = np.asarray_chkfinite(ydata) else: ydata = np.asarray(ydata) if isinstance(xdata, (list, tuple, np.ndarray)): # `xdata` is passed straight to the user-defined `f`, so allow # non-array_like `xdata`. if check_finite: xdata = np.asarray_chkfinite(xdata) else: xdata = np.asarray(xdata) args = (xdata, ydata, f, strg) if sigma is None: func = _general_function else: func = minpack._weighted_general_function args += (1.0 / asarray(sigma),) if method == 'lm': # Remove full_output from kwargs, otherwise we're passing it in twice. return_full = kwargs.pop('full_output', False) res = leastsq(func, p0, args=args, full_output=1, **kwargs) popt, pcov, infodict, errmsg, ier = res cost = np.sum(infodict['fvec'] ** 2) if ier not in [1, 2, 3, 4]: raise RuntimeError("Optimal parameters not found: " + errmsg) else: res = minpack.least_squares(func, p0, args=args, bounds=bounds, method=method,**kwargs) if res==False: return [0],[0],res,0 if not res.success: return res.x,[0],True, res.nfev #raise RuntimeError("Optimal parameters not found: " + res.message) cost = 2 * res.cost # res.cost is half sum of squares! popt = res.x # Do Moore-Penrose inverse discarding zero singular values. _, s, VT = minpack.svd(res.jac, full_matrices=False) threshold = np.finfo(float).eps * max(res.jac.shape) * s[0] s = s[s > threshold] VT = VT[:s.size] pcov = np.dot(VT.T / s**2, VT) return_full = False warn_cov = False if pcov is None: # indeterminate covariance pcov = zeros((len(popt), len(popt)), dtype=float) pcov.fill(inf) warn_cov = True elif not absolute_sigma: if ydata.size > p0.size: s_sq = cost / (ydata.size - p0.size) pcov = pcov * s_sq else: pcov.fill(inf) warn_cov = True if warn_cov: minpack.warnings.warn('Covariance of the parameters could not be estimated', category=minpack.OptimizeWarning) if return_full: return popt, pcov, infodict, errmsg, ier else: return popt, pcov, res.success, res.nfev
def _run_least_squares(self, **kwargs): p0 = kwargs.pop("p0", self.p0) bounds = kwargs.pop("bounds", (-np.inf, np.inf)) method = kwargs.pop("method", "trf") loss = kwargs.pop("loss", "huber") max_nfev = kwargs.pop("max_nfev", 10000) f_scale = kwargs.pop("f_scale", 0.1) jac = kwargs.pop("jac", "2-point") # loss_fcn = _loss_fcns.pop(loss, loss) # Copied from `curve_fit` line 704 (20200527) if p0 is None: # determine number of parameters by inspecting the function from scipy._lib._util import getargspec_no_self as _getargspec args, varargs, varkw, defaults = _getargspec(self.function) if len(args) < 2: raise ValueError( "Unable to determine number of fit parameters.") n = len(args) - 1 else: p0 = np.atleast_1d(p0) n = p0.size if isinstance(bounds, dict): # Monkey patch to work with bounds being stored as # dict for TeX_info. (20201202) bounds = [bounds[k] for k in self.argnames] bounds = np.array(bounds).T # Copied from `curve_fit` line 715 (20200527) lb, ub = prepare_bounds(bounds, n) if p0 is None: p0 = _initialize_feasible(lb, ub) if "args" in kwargs: raise ValueError( "Adopted `curve_fit` convention for which'args' is not a supported keyword argument." ) xdata = self.observations.used.x ydata = self.observations.used.y sigma = self.observations.used.w # Copied from `curve_fit` line 749 (20200527) # Determine type of sigma if sigma is not None: sigma = np.asarray(sigma) # sigma = sigma / np.nansum(sigma) # if 1-d, sigma are errors, define transform = 1/sigma if sigma.shape == (ydata.size, ): transform = 1.0 / sigma # if 2-d, sigma is the covariance matrix, # define transform = L such that L L^T = C elif sigma.shape == (ydata.size, ydata.size): try: # scipy.linalg.cholesky requires lower=True to return L L^T = A transform = cholesky(sigma, lower=True) except LinAlgError: raise ValueError("`sigma` must be positive definite.") else: raise ValueError("`sigma` has incorrect shape.") else: transform = None # Copied from `curve_fit` line 769 (20200527) loss_func = _wrap_func(self.function, xdata, ydata, transform) # Already define default `jac` with `kwargs`. Don't need ELSE clause. if callable(jac): jac = _wrap_jac(jac, xdata, transform) res = least_squares( loss_func, p0, jac=jac, bounds=bounds, method=method, loss=loss, max_nfev=max_nfev, f_scale=f_scale, **kwargs, ) if not res.success: raise RuntimeError("Optimal parameters not found: " + res.message) fit_bounds = np.concatenate([lb, ub]).reshape((2, -1)).T fit_bounds = { k: FitBounds(*b) for k, b in zip(self.argnames, fit_bounds) } fit_bounds = tuple(fit_bounds.items()) self._fit_bounds = fit_bounds # self._loss_fcn = loss_fcn return res, p0
def curve_fit_m(f, xdata, ydata, p0=None, sigma=None, absolute_sigma=False, check_finite=True, bounds=(-np.inf, np.inf), method=None, jac=None, **kwargs): """ Instruction and source of `scipy.optimize.curve_fit` can be found in https://github.com/scipy/scipy/blob/adc4f4f7bab120ccfab9383aba272954a0a12fb0/scipy/optimize/minpack.py#L511-L813 """ if p0 is None: # determine number of parameters by inspecting the function from ._helpers import funcArgsNr n = funcArgsNr(f)-1 #except independent variable if n < 1: raise ValueError("Unable to determine number of fit parameters.") else: p0 = np.atleast_1d(p0) n = p0.size lb, ub = prepare_bounds(bounds, n) if p0 is None: p0 = _initialize_feasible(lb, ub) bounded_problem = np.any((lb > -np.inf) | (ub < np.inf)) if method is None: if bounded_problem: method = 'trf' else: method = 'lm' if method == 'lm' and bounded_problem: raise ValueError("Method 'lm' only works for unconstrained problems. " "Use 'trf' or 'dogbox' instead.") # optimization may produce garbage for float32 inputs, cast them to float64 # NaNs can not be handled if check_finite: ydata = np.asarray_chkfinite(ydata, float) else: ydata = np.asarray(ydata, float) if isinstance(xdata, (list, tuple, np.ndarray)): # `xdata` is passed straight to the user-defined `f`, so allow # non-array_like `xdata`. if check_finite: xdata = np.asarray_chkfinite(xdata, float) else: xdata = np.asarray(xdata, float) if ydata.size == 0: raise ValueError("`ydata` must not be empty!") # Determine type of sigma if sigma is not None: sigma = np.asarray(sigma) # if 1-d, sigma are errors, define transform = 1/sigma if sigma.shape == (ydata.size, ): transform = 1.0 / sigma # if 2-d, sigma is the covariance matrix, # define transform = L such that L L^T = C elif sigma.shape == (ydata.size, ydata.size): try: # scipy.linalg.cholesky requires lower=True to return L L^T = A transform = cholesky(sigma, lower=True) except LinAlgError: raise ValueError("`sigma` must be positive definite.") else: raise ValueError("`sigma` has incorrect shape.") else: transform = None func = _wrap_func(f, xdata, ydata, transform) if callable(jac): jac = _wrap_jac(jac, xdata, transform) elif jac is None and method != 'lm': jac = '2-point' if 'args' in kwargs: # The specification for the model function `f` does not support # additional arguments. Refer to the `curve_fit` docstring for # acceptable call signatures of `f`. raise ValueError("'args' is not a supported keyword argument.") #print(method) if method == 'lm': # Remove full_output from kwargs, otherwise we're passing it in twice. return_full = kwargs.pop('full_output', False) res = leastsq(func, p0, Dfun=jac, full_output=1, **kwargs) popt, pcov, infodict, errmsg, ier = res ysize = len(infodict['fvec']) cost = np.sum(infodict['fvec'] ** 2) if ier not in [1, 2, 3, 4]: raise RuntimeError("Optimal parameters not found: " + errmsg) else: # Rename maxfev (leastsq) to max_nfev (least_squares), if specified. if 'max_nfev' not in kwargs: kwargs['max_nfev'] = kwargs.pop('maxfev', None) res = least_squares(func, p0, jac=jac, bounds=bounds, method=method, **kwargs) if not res.success: raise RuntimeError("Optimal parameters not found: " + res.message) ysize = len(res.fun) cost = 2 * res.cost # res.cost is half sum of squares! popt = res.x # Do Moore-Penrose inverse discarding zero singular values. _, s, VT = svd(res.jac, full_matrices=False) threshold = np.finfo(float).eps * max(res.jac.shape) * s[0] s = s[s > threshold] VT = VT[:s.size] pcov = np.dot(VT.T / s**2, VT) return_full = False warn_cov = False if pcov is None: # indeterminate covariance pcov = zeros((len(popt), len(popt)), dtype=float) pcov.fill(inf) warn_cov = True elif not absolute_sigma: if ysize > p0.size: s_sq = cost / (ysize - p0.size) pcov = pcov * s_sq else: pcov.fill(inf) warn_cov = True if warn_cov: warnings.warn('Covariance of the parameters could not be estimated', category=OptimizeWarning) #add `cost` output if return_full: return popt, pcov, cost, infodict, errmsg, ier else: return popt, pcov, cost