예제 #1
0
    def __strikes_and_weights(self, opt, swaption, strike, period):
        if isinstance(swaption, BlackLognormalModel):  # lognormal model
            strike_at_maxvega = swaption.forward * np.exp(
                swaption.stdev**2 / 2)  # at which max vega occurs
            lower_bound = 1e-10  # rate must be positive
        else:  # normal model
            strike_at_maxvega = swaption.forward  # at which max vega occurs
            lower_bound = -1e2  # rate can be negative
        cutoff_vega = swaption.vega(
            strike_at_maxvega
        ) / 100.0  # cutoff at vega that is 100 times smaller

        find_strike = lambda k: swaption.vega(k) - cutoff_vega
        if opt == self.Option.Cap:
            cutoff_rate = solver(find_strike, strike_at_maxvega,
                                 1e2)  # to high end
        else:  # == self.Option.Floor
            cutoff_rate = solver(find_strike, lower_bound,
                                 strike_at_maxvega)  # to low end

        def curves(t, h):  # bumped by h, new curve with (t, T, h)
            def bump(curve):
                def newcurve(T):  # T can be float or Numpy.Array
                    return curve(T) * np.exp(
                        -h * self.__b(t, T))  # curve(t) = 1.0

                return DiscountCurve.from_fn(t, newcurve)

            return bump(self.proj), bump(self.disc)

        def rate_to_h(swaprate):
            def find_h(h):
                newproj, newdisc = curves(period.fixdate.t, h)
                return swaption.underlier.pleg_parrate(newproj,
                                                       newdisc) - swaprate

            try:  # clamped to avoid double precision overflow
                return solver(find_h, -self.__shift_clamp, self.__shift_clamp)
            except ValueError:
                return self.__shift_clamp  # only positive h causes trouble

        h_stt = rate_to_h(strike)
        h_end = rate_to_h(cutoff_rate)  # clamped if too large

        n = self.nswpns
        H = np.linspace(h_stt, h_end, n + 1)
        K = np.zeros_like(H)
        G = np.zeros_like(H)
        for i, h in enumerate(H):
            newproj, newdisc = curves(period.fixdate.t, h)
            K[i] = swaption.underlier.pleg_parrate(newproj, newdisc)
            G[i] = period.accr_cov * newdisc(
                period.paydate.t) / swaption.underlier.pleg.get_annuity(
                    newdisc)
        GK = G * (K - K[0])  # [g * (k - K[0]) for g, k in zip(G, K)]

        W = np.zeros(n)
        for i in range(1, n):
            W[i - 1] = (GK[i] - W[:i].dot(K[i] - K[:i])) / (K[i] - K[i - 1])
        return K[:-1], W  # swaption at K[n] is not used
예제 #2
0
    def __strikes_and_weights(self, opt, swaption, strike, period):
        if isinstance(swaption, BlackLognormalModel):  # lognormal model
            strike_at_maxvega = swaption.forward * np.exp(swaption.stdev ** 2 / 2)  # at which max vega occurs
            lower_bound = 1e-10  # rate must be positive
        else:  # normal model
            strike_at_maxvega = swaption.forward  # at which max vega occurs
            lower_bound = -1e2  # rate can be negative
        cutoff_vega = swaption.vega(strike_at_maxvega) / 100.0  # cutoff at vega that is 100 times smaller

        find_strike = lambda k: swaption.vega(k) - cutoff_vega
        if opt == self.Option.Cap:
            cutoff_rate = solver(find_strike, strike_at_maxvega, 1e2)  # to high end
        else:  # == self.Option.Floor
            cutoff_rate = solver(find_strike, lower_bound, strike_at_maxvega)  # to low end

        def curves(t, h):  # bumped by h, new curve with (t, T, h)
            def bump(curve):
                def newcurve(T):  # T can be float or Numpy.Array
                    return curve(T) * np.exp(-h * self.__b(t, T))  # curve(t) = 1.0

                return DiscountCurve.from_fn(t, newcurve)

            return bump(self.proj), bump(self.disc)

        def rate_to_h(swaprate):
            def find_h(h):
                newproj, newdisc = curves(period.fixdate.t, h)
                return swaption.underlier.pleg_parrate(newproj, newdisc) - swaprate

            try:  # clamped to avoid double precision overflow
                return solver(find_h, -self.__shift_clamp, self.__shift_clamp)
            except ValueError:
                return self.__shift_clamp  # only positive h causes trouble

        h_stt = rate_to_h(strike)
        h_end = rate_to_h(cutoff_rate)  # clamped if too large

        n = self.nswpns
        H = np.linspace(h_stt, h_end, n + 1)
        K = np.zeros_like(H)
        G = np.zeros_like(H)
        for i, h in enumerate(H):
            newproj, newdisc = curves(period.fixdate.t, h)
            K[i] = swaption.underlier.pleg_parrate(newproj, newdisc)
            G[i] = period.accr_cov * newdisc(period.paydate.t) / swaption.underlier.pleg.get_annuity(newdisc)
        GK = G * (K - K[0])  # [g * (k - K[0]) for g, k in zip(G, K)]

        W = np.zeros(n)
        for i in range(1, n):
            W[i - 1] = (GK[i] - W[:i].dot(K[i] - K[:i])) / (K[i] - K[i - 1])
        return K[:-1], W  # swaption at K[n] is not used
예제 #3
0
    def __payer_swpn_value(self, swap, strike):
        def eta(x): #constant multiplicative spread between proj and disc curve
            return self.disc(x.matdate.t) / self.disc(x.effdate.t) * self.proj(x.effdate.t) / self.proj(x.matdate.t) 
        # floating leg cashflows
        dateflows = [(swap.rleg.effdate, 1.), (swap.rleg.matdate, -1.)] # P(T,te ) - P(T,tm )
        dateflows += [(p.index.effdate, eta(p.index) - 1.) for p in swap.rleg.cp]
        # fixed leg cashflows
        dateflows += [(p.paydate, -strike * p.accr_cov) for p in swap.pleg.cp]

        t = swap.effdate.t # option expiry (should have been swap.fixdate, but has been offset to swap.effdate) 
        def disc_tf(T, z): # bond price under t-forward measure, a martingale 
            # bond price: P(t,T)/P(s,t,T) = exp(-xi2(s,t,t,T)/2 - xi(s,t,t,T)*z),  z ~ N(0,1)
            xi2 = self.vol.xi2(None,t,t,T)
            return self.disc(T) / self.disc(t) * np.exp(-xi2 / 2 - xi2 ** 0.5 * z)

        def find_zstar(z):            
            return sum(cf * disc_tf(d.t,z) for d, cf in dateflows) # sum of cashflows = 0
        bound = 5.0
        while True:
            try:                
                zstar = solver(find_zstar, -bound, bound) # z can be regarded as a standard normal
                break
            except ValueError:
                print("bound exception: z=%s" % bound)
                bound *= 2 
        return sum(cf * self.disc(d.t) * norm.cdf(-zstar - self.vol.xi2(None,t,t,d.t) ** 0.5) for d, cf in dateflows)
예제 #4
0
 def callvalue_to_vol(self, value, strike=None):
     if strike is None: 
         strike = self.forward
     def find_vol(vol):
         self.stdev = vol * self.sqr_term
         return self.value(strike=strike) - value      
     return solver(find_vol, 1e-10, 1e2)
예제 #5
0
def TofX(X, ho, n, omega, phi):
    '''
    numerically solve
        T = X + ho/(omega*(1-n))*sin(omega*(T-nX)+phi)
    for T
    '''
    return solver(lambda T: X + ho/(omega*(1-n))*(np.sin(omega*(T-n*X)+phi)-np.sin(phi)) - T, X)
예제 #6
0
        def rate_to_h(swaprate):
            def find_h(h):
                newproj, newdisc = curves(period.fixdate.t, h)
                return swaption.underlier.pleg_parrate(newproj, newdisc) - swaprate

            try:  # clamped to avoid double precision overflow
                return solver(find_h, -self.__shift_clamp, self.__shift_clamp)
            except ValueError:
                return self.__shift_clamp  # only positive h causes trouble
예제 #7
0
    def callvalue_to_vol(self, value, strike=None):
        if strike is None:
            strike = self.forward

        def find_vol(vol):
            self.stdev = vol * self.sqr_term
            return self.value(strike=strike) - value

        return solver(find_vol, 1e-10, 1e2)
예제 #8
0
    def process(self, data):
        text_lines = data['lines']

        rects = text_lines.rects
        centers = np.stack(((rects[:, 0] + rects[:, 2]) / 2,
                           (rects[:, 1] + rects[:, 3]) / 2), axis=1)  # Nx2
        min_height = 1
        ratios = []
        for rect in rects:
            width = (rect[2] - rect[0])
            height = (rect[3] - rect[1])
            ratio = width / height
            ratios.append(ratio)
            if ratio < 1:
                min_height = 1 / ratio

        ratios = np.array(ratios)
        heights = np.empty([rects.shape[0]])
        heights.fill(min_height)
        widths = ratios * heights
        shapes = np.stack((widths, heights), axis=1) / 2
        min_rects = np.zeros_like(rects)
        min_rects[:, :2] = centers - shapes
        min_rects[:, 2:] = centers + shapes

        for rect in rects:
            data['image'] = Visualize.visualize_rect(data['image'], rect, color=(0, 255, 0))

        for rect in min_rects:
            data['image'] = Visualize.visualize_rect(data['image'], rect)


        best_ratio = 100
        area = data['image'].shape[0] * data['image'].shape[1]

        def F(r):
            new_rects = self.expand(min_rects, r)
            return self.loss(new_rects, area)


        best_ratio = solver(F, best_ratio, f_tol=1e-2, maxiter=1000)
        print(best_ratio)
        best_rects = self.expand(min_rects, best_ratio)
        for rect in best_rects:
            data['image'] = Visualize.visualize_rect(data['image'], rect, color=(255, 0, 0))

        data['min_rects'] = min_rects
        data['rects'] = rects
        return data
예제 #9
0
 def calcWeightShares(self, day):
     """Solve system of equations and get number of shares for each intrument
        so that if every instrument is purchased at current price,
        its weight in portfolio is equal to the definition"""
     """w_i = (no0_i+no_i)*price_i/sum((no0_j+no_j)*price_j)
        inv = sum(no_j*price_j*(1+relfee_j) + absfee_j)"""
     # If no shares were purchased yet, equations do not converge
     # In that case determine noShares same way like during initial investment
     if all([True if noShares<=0 else False for noShares in self.sharesArray]):
         pointerIter = self.portIter()
         for _ in range(len(self.portfolio)):
             pointer = next(pointerIter)
             availVol = (self.invAvailable*self.portfolio[pointer][1] - self.portfolio[pointer][2])/(1+self.portfolio[pointer][3])
             self.weightSharesArray[pointer] = int(availVol/self.portfolio[pointer][0]['data'][day])
         return
     # Solve SOE
     def fun(*args):
         nonlocal day
         vol = 0.0
         for i in range(len(self.portfolio)):
             vol += (self.sharesArray[i]+args[0][i])*self.portfolio[i][0]['data'][day]
         out = list()
         for i in range(len(self.portfolio)):
             out.append(((self.sharesArray[i]+args[0][i])*self.portfolio[i][0]['data'][day]/vol) - self.portfolio[i][1])
         fourth = 0.0
         for i in range(len(self.portfolio)):
             fourth += args[0][i]*self.portfolio[i][0]['data'][day]*(1+self.portfolio[i][3]) + self.portfolio[i][2]
         fourth -= (self.invAvailable + self.remainInvAfterPurchase)
         out.append(fourth)
         return tuple(out)
     solution = solver(fun, tuple(0 for _ in range(len(self.portfolio))), method='lm')
     # Print warning in case solver did not find solution
     if any(np.isnan(solution['x'])):
         print('%s: Solver could not determine noShares to preserve weights!' % day.strftime('%d. %m. %Y'))
         pointerIter = self.portIter()
         for _ in range(len(self.portfolio)):
             pointer = next(pointerIter)
             self.weightSharesArray[pointer] = 0
     self.weightSharesArray = solution['x']
예제 #10
0
파일: GIM.py 프로젝트: turbosnail9/clic-app
def SimulateCobelliDay(modelData):
    
   # modelData = np.zeros((22,1))
    eatingTime = 30 # [min ]
    # Data is unpacked
    
    bHour = modelData[1]
    bMin = modelData[2]
    bCHO = 1000*modelData[3]*18.018  # converted to mg
    bInsulin = 6.945*modelData[4]/1000  # converted from IU/L to pmol/L
    lHour = modelData[5] 
    lMin = modelData[6] 
    lCHO = 1000*modelData[7]*18.018  # converted to mg
    lInsulin = 6.945*modelData[8]/1000  # converted to pmol/L
    dHour = modelData[9]
    dMin = modelData[10]
    dCHO = 1000*modelData[11]*18.018 # converted to mg
    dInsulin = 6.945*modelData[12]/1000 # converted to pmol/L
    insulinTime = modelData[13]
    
    # Initialize the time vector
    t = np.zeros((11,1)) 
    # Relevant moments are calculated
    t[0] = 0
    t[1] = bHour*60 + bMin - insulinTime 
    t[2] = bHour*60 + bMin 
    t[3] = bHour*60 + bMin + eatingTime 
    t[4] = lHour*60 + lMin - insulinTime 
    t[5] = lHour*60 + lMin 
    t[6] = lHour*60 + lMin + eatingTime 
    t[7] = dHour*60 + dMin - insulinTime 
    t[8] = dHour*60 + dMin 
    t[9] = dHour*60 + dMin + eatingTime 
    t[10] = 24*60
    V_G = 1.88 #1.49 # [dL/kg]
    k_1 = 0.065 #0.042 # [min ^-1]
    k_2 = 0.079 #0.071 # [min ^-1]
    V_I = 0.05 #0.04 # [L/kg]
    m_1 = 0.190 #0.379 # [min ^-1]
    m_2 = 0.484 #0.673 # [min ^-1]
    m_4 = 0.194 #0.269 # [min ^-1]
    m_5 = 0.0304 #0.0526 # [min *kg/pmol ]
    m_6 = 0.6471 #0.8118 # [-]
    HE_b = 0.6  # [-]
    k_max = 0.0558 #0.0465 # [min ^-1]
    k_min = 0.0080 #0.0076 # [min ^-1]
    k_abs = 0.057 #0.023 # [min ^-1]
    k_gri = 0.0558 #0.0465 # [min ^-1]
    f = 0.90 # [-]
    a = 0.00013 #0.00006 # [mg ^-1]
    b = 0.82 #0.68 # [-]
    c = 0.00236 #0.00023 # [mg ^-1]
    d = 0.010 # 0.09 # [-]
    k_p1 = 2.70 #3.09 # [mg/kg/min ]
    k_p2 = 0.0021 #0.0007 # [min ^-1]
    k_p3 = 0.009 #0.005 # [mg/kg/min per pmol/L]
    k_p4 = 0.0618 #0.0786 # [mg/kg/min per pmol/kg]
    k_i = 0.0079 #0.0066 # [min ^-1]
    F_cns = 1 # [mg/kg/min ]
    V_m0 = 2.50 #4.65 # [mg/kg/min ]
    V_mx = 0.047 #0.034 # [mg/kg/min per pmol/L]
    K_m0 = 225.59 #466.21 # [mg/kg]
    p_2U = .0331 #0.084 # [min ^-1]
    K = 2.30 #0.99 # [pmol/kg per mg/dL]
    alpha = 0.050 #0.013 # [min ^-1]
    beta = 0.11 #0.05 # [pmol/kg/min per mg/dL]
    gamma = 0.5 # [min ^-1]
    k_e1 = 0.0005 #0.0007 # [min ^-1]
    k_e2 = 339 #269 # [mg/kg]
     
    p = [V_G ,k_1 ,k_2 , V_I ,m_1 ,m_2 ,m_4 ,m_5 ,m_6 ,HE_b, k_max , k_min , k_abs , 
         k_gri,f,a,b,c,d, k_p1,k_p2, k_p3, k_p4,k_i , F_cns , V_m0,V_mx ,K_m0, p_2U,K,
        alpha,beta, gamma , k_e1, k_e2]
    
    
    u = 0 #0.0954119*BW, #7.15
    X = []
    # Calculate the steady state values
    xStart = [90,90,54.18,54.18,0,0,0,4.4,4.4,0,0,0] #zeros(16,1) ,
    
    # (xStart,u,0,p,modelData)
    xInitial0 = solver(CobelliWrap,xStart,args=(u,0,p,modelData))
    
    
    # Midnight to first insulinshot
    
    r = ode(Cobelli).set_integrator('vode', method='bdf', order=15).set_initial_value(xInitial0, t[0]).set_f_params(u ,0,p,modelData)
    while r.successful() and r.t < t[1]:
        r.integrate(r.t+1)
        X.append(r.y[0])
       
    # Insulinshot before breakfast
    xInitial1 = r.y.T
    xInitial1[2] = xInitial1[2] + bInsulin
    r1 = ode(Cobelli).set_integrator('vode', method='bdf', order=15).set_initial_value(xInitial1, t[1]).set_f_params(u ,0,p,modelData)
    while r1.successful() and r1.t < t[2]:
        r1.integrate(r1.t+1)
        X.append(r1.y[0])
     
    # Breakfast start
    xInitial2 = r1.y.T
    r2 = ode(Cobelli).set_integrator('vode', method='bdf', order=15).set_initial_value(xInitial2, t[2]).set_f_params(u ,bCHO/(eatingTime),p,modelData)
    while r2.successful() and r2.t < t[3]:
        r2.integrate(r2.t+1)
        X.append(r2.y[0])
     
    # Breakfast stop
    xInitial3 = r2.y.T
    r3 = ode(Cobelli).set_integrator('vode', method='bdf', order=15).set_initial_value(xInitial3, t[3]).set_f_params(u ,0,p,modelData)
    while r3.successful() and r3.t < t[4]:
        r3.integrate(r3.t+1)
        X.append(r3.y[0])
       
    # Insulinshot before lunch
    xInitial4 = r3.y.T
    xInitial4[2] = xInitial4[2] + lInsulin 
    r4 = ode(Cobelli).set_integrator('vode', method='bdf', order=15).set_initial_value(xInitial4, t[4]).set_f_params(u ,0,p,modelData)
    while r4.successful() and r4.t < t[5]:
        r4.integrate(r4.t+1)
        X.append(r4.y[0])
       
    # Lunch start
    xInitial5 = r4.y.T
    r5 = ode(Cobelli).set_integrator('vode', method='bdf', order=15).set_initial_value(xInitial5, t[5]).set_f_params(u ,lCHO/(eatingTime),p,modelData)
    while r5.successful() and r5.t < t[6]:
        r5.integrate(r5.t+1)
        X.append(r5.y[0])
      
    # Lunch stop
    xInitial6 = r5.y.T
    r6 = ode(Cobelli).set_integrator('vode', method='bdf', order=15).set_initial_value(xInitial6, t[6]).set_f_params(u ,0,p,modelData)
    while r6.successful() and r6.t < t[7]:
        r6.integrate(r6.t+1)
        X.append(r6.y[0])
     
    # Insulinshot before dinner
    xInitial7 = r6.y.T
    xInitial7[2] = xInitial7[2] + dInsulin 
    r7 = ode(Cobelli).set_integrator('vode', method='bdf', order=15).set_initial_value(xInitial7, t[7]).set_f_params(u ,0,p,modelData)
    while r7.successful() and r7.t < t[8]:
        r7.integrate(r7.t+1)
        X.append(r7.y[0])
    
    # Dinner start
    xInitial8 = r7.y.T
    r8 = ode(Cobelli).set_integrator('vode', method='bdf', order=15).set_initial_value(xInitial8, t[8]).set_f_params(u ,dCHO/(eatingTime),p,modelData)
    while r8.successful() and r8.t < t[9]:
        r8.integrate(r8.t+1)
        X.append(r8.y[0])
       
    
    # Dinner stop
    xInitial9 = r8.y.T
    r9 = ode(Cobelli).set_integrator('vode', method='bdf', order=15).set_initial_value(xInitial9, t[9]).set_f_params(u ,0,p,modelData)
    while r9.successful() and r9.t < t[10]:
        r9.integrate(r9.t+1)
        X.append(r9.y[0])
        #sys.exit(0)
    
    # Collects all the simulated intervals
  
    G = [x / V_G for x in X]
    T = r.t
   
    return (T,G,t)    
예제 #11
0
        def get_spread(self, proj, disc, pv):
            def find_spread(spread):
                return self.value(proj, disc, spread=spread) - pv

            return solver(find_spread, -1e2, 1e2)
예제 #12
0
    def RunSimulation(self, t, x, u, p, modelType, modelData, malady):
        from scipy.optimize import fsolve as solver
        from scipy.integrate import ode
        self.t = t
        self.x = x
        self.u = u
        self.modelType = modelType
        self.p = p
        self.model_data = modelData
        self.malady = malady

        breakfast_carbpermin = self.model_data[8]
        lunch_carbpermin = self.model_data[9]
        dinner_carbpermin = self.model_data[10]

        insulin = self.u

        G_p = []
        G_t = []
        I_l = []
        I_p = []
        Q_sto1 = []
        Q_sto2 = []
        Q_gut = []
        I_1 = []
        I_d = []
        X = []
        Y = []
        I_po = []
        if malady == "type1":
            G_s = []
            G_M = []
            I_sc1 = []
            I_sc2 = []

        # State vector for training Neural Network
        if malady == "type1":
            stateVector = [G_p, G_t, I_l, I_p, Q_sto1,
                           Q_sto2, Q_gut, I_1, I_d, X,
                           Y, I_po, G_s, G_M, I_sc1, I_sc2]
        else:
            stateVector = [G_p, G_t, I_l, I_p, Q_sto1, Q_sto2, Q_gut, I_1,
                       I_d, X, Y, I_po]


        # (xStart,u,0,p,modelData)
        xInitial0 = solver(self.CobelliWrap,x,
                           args=(u,0,p,modelData,malady))

        #Initialize empty meal vector
        mealVector = []
        mealVectorAppend = mealVector.append
        stateVector_0_Append = stateVector[0].append
        stateVector_1_Append = stateVector[1].append
        stateVector_2_Append = stateVector[2].append
        stateVector_3_Append = stateVector[3].append
        stateVector_4_Append = stateVector[4].append
        stateVector_5_Append = stateVector[5].append
        stateVector_6_Append = stateVector[6].append
        stateVector_7_Append = stateVector[7].append
        stateVector_8_Append = stateVector[8].append
        stateVector_9_Append = stateVector[9].append
        stateVector_10_Append = stateVector[10].append
        stateVector_11_Append = stateVector[11].append

        # Midnight to first insulin shot
        r = ode(modelType).set_integrator('vode', method='bdf',
            order=15).set_initial_value(xInitial0,
            t[0]).set_f_params(self.u , 0, self.p, self.model_data)
        while r.successful() and r.t < t[1]:
            r.integrate(r.t+1)
            mealVectorAppend(r.f_params[1])
            stateVector_0_Append(r.y[0])
            stateVector_1_Append(r.y[1])
            stateVector_2_Append(r.y[2])
            stateVector_3_Append(r.y[3])
            stateVector_4_Append(r.y[4])
            stateVector_5_Append(r.y[5])
            stateVector_6_Append(r.y[6])
            stateVector_7_Append(r.y[7])
            stateVector_8_Append(r.y[8])
            stateVector_9_Append(r.y[9])
            stateVector_10_Append(r.y[10])
            stateVector_11_Append(r.y[11])
            if malady == "type1":
                stateVector[12].append(r.y[12])
                stateVector[13].append(r.y[13])
                stateVector[14].append(r.y[14])
                stateVector[15].append(r.y[15])

        # Insulin shot before breakfast
        xInitial1 = r.y.T
        xInitial1[1] = xInitial1[1] + insulin
        r1 = ode(modelType).set_integrator('vode', method='bdf',
                order=15).set_initial_value(xInitial1,
                t[1]).set_f_params(self.u , 0, self.p, self.model_data)
        while r1.successful() and r1.t < t[2]:
            r1.integrate(r1.t+1)
            mealVectorAppend(r1.f_params[1])
            stateVector_0_Append(r1.y[0])
            stateVector_1_Append(r1.y[1])
            stateVector_2_Append(r1.y[2])
            stateVector_3_Append(r1.y[3])
            stateVector_4_Append(r1.y[4])
            stateVector_5_Append(r1.y[5])
            stateVector_6_Append(r1.y[6])
            stateVector_7_Append(r1.y[7])
            stateVector_8_Append(r1.y[8])
            stateVector_9_Append(r1.y[9])
            stateVector_10_Append(r1.y[10])
            stateVector_11_Append(r1.y[11])
            if malady == "type1":
                stateVector[12].append(r1.y[12])
                stateVector[13].append(r1.y[13])
                stateVector[14].append(r1.y[14])
                stateVector[15].append(r1.y[15])

        # Breakfast start
        xInitial2 = r1.y.T

        r2 = ode(modelType).set_integrator('vode', method='bdf',
                order=15).set_initial_value(xInitial2,
                t[2]).set_f_params(u, breakfast_carbpermin, p, modelData)
        while r2.successful() and r2.t < t[3]:
            r2.integrate(r2.t+1)
            mealVectorAppend(r2.f_params[1])
            stateVector_0_Append(r2.y[0])
            stateVector_1_Append(r2.y[1])
            stateVector_2_Append(r2.y[2])
            stateVector_3_Append(r2.y[3])
            stateVector_4_Append(r2.y[4])
            stateVector_5_Append(r2.y[5])
            stateVector_6_Append(r2.y[6])
            stateVector_7_Append(r2.y[7])
            stateVector_8_Append(r2.y[8])
            stateVector_9_Append(r2.y[9])
            stateVector_10_Append(r2.y[10])
            stateVector_11_Append(r2.y[11])
            if malady == "type1":
                stateVector[12].append(r2.y[12])
                stateVector[13].append(r2.y[13])
                stateVector[14].append(r2.y[14])
                stateVector[15].append(r2.y[15])

        # Breakfast stop
        xInitial3 = r2.y.T
        r3 = ode(self.modelType).set_integrator('vode', method='bdf',
                order=15).set_initial_value(xInitial3,
                t[3]).set_f_params(self.u, 0, self.p, self.model_data)
        while r3.successful() and r3.t < t[4]:
            r3.integrate(r3.t+1)
            mealVectorAppend(r3.f_params[1])
            stateVector_0_Append(r3.y[0])
            stateVector_1_Append(r3.y[1])
            stateVector_2_Append(r3.y[2])
            stateVector_3_Append(r3.y[3])
            stateVector_4_Append(r3.y[4])
            stateVector_5_Append(r3.y[5])
            stateVector_6_Append(r3.y[6])
            stateVector_7_Append(r3.y[7])
            stateVector_8_Append(r3.y[8])
            stateVector_9_Append(r3.y[9])
            stateVector_10_Append(r3.y[10])
            stateVector_11_Append(r3.y[11])
            if malady == "type1":
                stateVector[12].append(r3.y[12])
                stateVector[13].append(r3.y[13])
                stateVector[14].append(r3.y[14])
                stateVector[15].append(r3.y[15])

        # Insulin shot before lunch
        xInitial4 = r3.y.T
        r4 = ode(self.modelType).set_integrator('vode', method='bdf',
                order=15).set_initial_value(xInitial4,
                t[4]).set_f_params(self.u, 0, self.p, self.model_data)
        while r4.successful() and r4.t < t[5]:
            r4.integrate(r4.t+1)
            mealVectorAppend(r4.f_params[1])
            stateVector_0_Append(r4.y[0])
            stateVector_1_Append(r4.y[1])
            stateVector_2_Append(r4.y[2])
            stateVector_3_Append(r4.y[3])
            stateVector_4_Append(r4.y[4])
            stateVector_5_Append(r4.y[5])
            stateVector_6_Append(r4.y[6])
            stateVector_7_Append(r4.y[7])
            stateVector_8_Append(r4.y[8])
            stateVector_9_Append(r4.y[9])
            stateVector_10_Append(r4.y[10])
            stateVector_11_Append(r4.y[11])
            if malady == "type1":
                stateVector[12].append(r4.y[12])
                stateVector[13].append(r4.y[13])
                stateVector[14].append(r4.y[14])
                stateVector[15].append(r4.y[15])

        # Lunch start
        xInitial5 = r4.y.T

        r5 = ode(modelType).set_integrator('vode', method='bdf',
                order=15).set_initial_value(xInitial5,
                t[5]).set_f_params(u,lunch_carbpermin,p,modelData)
        while r5.successful() and r5.t < t[6]:
            r5.integrate(r5.t+1)
            mealVectorAppend(r5.f_params[1])
            stateVector_0_Append(r5.y[0])
            stateVector_1_Append(r5.y[1])
            stateVector_2_Append(r5.y[2])
            stateVector_3_Append(r5.y[3])
            stateVector_4_Append(r5.y[4])
            stateVector_5_Append(r5.y[5])
            stateVector_6_Append(r5.y[6])
            stateVector_7_Append(r5.y[7])
            stateVector_8_Append(r5.y[8])
            stateVector_9_Append(r5.y[9])
            stateVector_10_Append(r5.y[10])
            stateVector_11_Append(r5.y[11])
            if malady == "type1":
                stateVector[12].append(r5.y[12])
                stateVector[13].append(r5.y[13])
                stateVector[14].append(r5.y[14])
                stateVector[15].append(r5.y[15])

        # Lunch stop
        xInitial6 = r5.y.T
        r6 = ode(self.modelType).set_integrator('vode', method='bdf',
                order=15).set_initial_value(xInitial6,
                t[6]).set_f_params(self.u, 0, self.p, self.model_data)
        while r6.successful() and r6.t < t[7]:
            r6.integrate(r6.t+1)
            mealVectorAppend(r6.f_params[1])
            stateVector_0_Append(r6.y[0])
            stateVector_1_Append(r6.y[1])
            stateVector_2_Append(r6.y[2])
            stateVector_3_Append(r6.y[3])
            stateVector_4_Append(r6.y[4])
            stateVector_5_Append(r6.y[5])
            stateVector_6_Append(r6.y[6])
            stateVector_7_Append(r6.y[7])
            stateVector_8_Append(r6.y[8])
            stateVector_9_Append(r6.y[9])
            stateVector_10_Append(r6.y[10])
            stateVector_11_Append(r6.y[11])
            if malady == "type1":
                stateVector[12].append(r6.y[12])
                stateVector[13].append(r6.y[13])
                stateVector[14].append(r6.y[14])
                stateVector[15].append(r6.y[15])

        # Insulin shot before dinner
        xInitial7 = r6.y.T
        r7 = ode(self.modelType).set_integrator('vode', method='bdf',
                order=15).set_initial_value(xInitial7,
                t[7]).set_f_params(self.u, 0, self.p, self.model_data)
        while r7.successful() and r7.t < t[8]:
            r7.integrate(r7.t+1)
            mealVectorAppend(r7.f_params[1])
            stateVector_0_Append(r7.y[0])
            stateVector_1_Append(r7.y[1])
            stateVector_2_Append(r7.y[2])
            stateVector_3_Append(r7.y[3])
            stateVector_4_Append(r7.y[4])
            stateVector_5_Append(r7.y[5])
            stateVector_6_Append(r7.y[6])
            stateVector_7_Append(r7.y[7])
            stateVector_8_Append(r7.y[8])
            stateVector_9_Append(r7.y[9])
            stateVector_10_Append(r7.y[10])
            stateVector_11_Append(r7.y[11])
            if malady == "type1":
                stateVector[12].append(r7.y[12])
                stateVector[13].append(r7.y[13])
                stateVector[14].append(r7.y[14])
                stateVector[15].append(r7.y[15])

        # Dinner start
        xInitial8 = r7.y.T

        r8 = ode(modelType).set_integrator('vode', method='bdf',
                order=15).set_initial_value(xInitial8,
                t[8]).set_f_params(u,dinner_carbpermin,p,modelData)
        while r8.successful() and r8.t < t[9]:
            r8.integrate(r8.t+1)
            mealVectorAppend(r8.f_params[1])
            stateVector_0_Append(r8.y[0])
            stateVector_1_Append(r8.y[1])
            stateVector_2_Append(r8.y[2])
            stateVector_3_Append(r8.y[3])
            stateVector_4_Append(r8.y[4])
            stateVector_5_Append(r8.y[5])
            stateVector_6_Append(r8.y[6])
            stateVector_7_Append(r8.y[7])
            stateVector_8_Append(r8.y[8])
            stateVector_9_Append(r8.y[9])
            stateVector_10_Append(r8.y[10])
            stateVector_11_Append(r8.y[11])
            if malady == "type1":
                stateVector[12].append(r8.y[12])
                stateVector[13].append(r8.y[13])
                stateVector[14].append(r8.y[14])
                stateVector[15].append(r8.y[15])

        # Dinner stop
        xInitial9 = r8.y.T
        r9 = ode(self.modelType).set_integrator('vode', method='bdf',
                order=15).set_initial_value(xInitial9,
                t[9]).set_f_params(self.u, 0, self.p, self.model_data)
        while r9.successful() and r9.t < t[10]:
            r9.integrate(r9.t+1)
            mealVectorAppend(r9.f_params[1])
            stateVector_0_Append(r9.y[0])
            stateVector_1_Append(r9.y[1])
            stateVector_2_Append(r9.y[2])
            stateVector_3_Append(r9.y[3])
            stateVector_4_Append(r9.y[4])
            stateVector_5_Append(r9.y[5])
            stateVector_6_Append(r9.y[6])
            stateVector_7_Append(r9.y[7])
            stateVector_8_Append(r9.y[8])
            stateVector_9_Append(r9.y[9])
            stateVector_10_Append(r9.y[10])
            stateVector_11_Append(r9.y[11])
            if malady == "type1":
                stateVector[12].append(r9.y[12])
                stateVector[13].append(r9.y[13])
                stateVector[14].append(r9.y[14])
                stateVector[15].append(r9.y[15])

        #Convert stateVector into a NumPy Array
        outputArray = np.array(stateVector)

        # Collects all the simulated intervals
        outputArray[0] = [x / self.p[0] for x in outputArray[0]]
        return {'outputArray': outputArray,'mealVector':  mealVector}
예제 #13
0
def simple_bootstrap_cycle(mach, m, e_recirc, H_cab_ft, Tcab, n_pax, Qrequired, alpha, print_results=False):
    """

    :param mach:
    :param m:
    :param H_cab_ft:
    :param Tcab:
    :return:
    """

    # Flight Conditions
    H_ft = 38000
    H_m = H_ft * ft_2_m

    H_cab_m = H_cab_ft * ft_2_m
    H_m = H_ft * ft_2_m
    deltaT = 0
    Tcab = 24 + 273
    rho, Pcab, T = atmosferaISA(H_cab_m, deltaT)
    Pcab = Pcab / 1000

    n_pack = 2
    min_ventilation = n_pax * 0.55 * lbmin_2_kgs / n_pack

    if m < min_ventilation:
        print('Insuficient mass')
        m = min_ventilation

    gamma = 1.4
    eta_d = 0.84
    eta_c = 0.82
    hx_eff = 0.8
    eta_t = 0.77

    rho, P1, T1 = atmosferaISA(H_m, deltaT)

    T1 = -57 + 273
    P1 = 20  # Kpa

    T2, P2, w_r = ram_compression(m, T1, P1, mach, gamma, eta_d)

    P3 = 250

    T3a, P3a, w_pc = compressor(m, T2, P2, P3 / P2, gamma, eta_c)

    T3b = 200 + 247  # Fixed
    P3b = P3a  # No loss in preecooler

    P4a = 200  # Pressure after PRSOV
    T4a = T3b  # Same temperature after PRSOV

    P4b = P4a  # No pressure drop in hx
    T4b, Qphx = heat_exchanger(m, T4a, T2, hx_eff)

    P7 = Pcab

    P50 = np.array([100])
    resfunc = lambda P5: get_residual(m, T2, P4b, T4b, P5, P7, gamma, hx_eff, eta_c, eta_t, alpha)

    sol = solver(resfunc, np.array([P50]))
    P5 = sol.x[0]
    P6 = P5
    P7 = Pcab

    T5, T6, T7, Qshx, w_t, w_sc = loop(m, T2, P4b, T4b, P5, P7, gamma, hx_eff, eta_c, eta_t)

    m_recirc = e_recirc * m
    m_mixer = m_recirc + m

    T8 = (m_recirc * Cp * Tcab * 1.1 + m * Cp * T7) / (m_mixer * Cp)
    P8 = P7
    Qcooling = m_mixer * Cp * (Tcab - T8)

    # Pressurization work
    _, _, w_press = compressor(m, T2, P2, P7 / P2, gamma, eta_c)
    w_press = w_press + w_r
    COPP = Qcooling / (w_r + w_pc)
    COP = Qcooling / (w_r + w_pc - w_press)

    T = np.array([T1, T2, T3a, T3b, T4a, T4b, T5, T6, T7, T8, Tcab])
    P = np.array([P1, P2, P3a, P3b, P4a, P4b, P5, P6, P7, P8, Pcab])
    W = np.array([w_r, w_pc, w_sc, w_t, w_press])
    s = np.zeros_like(T)

    for idx, _ in enumerate(T):
        s[idx] = PropsSI('S', 'T', T[idx], 'P', P[idx] * 1000, 'air') / 1000

    label = ('1', '2', '3a', '3b', '4a', '4b', '5', '6', '7', '8', 'cab')

    if print_results:
        for idx in range(0, len(P)):
            print('T%s: %.2f P%s: %.2f' % (label[idx], T[idx], label[idx], P[idx]))

        print('\nTurbine Work: %.2f kW\nCompressor Work: %.2f kW' % (w_t, w_sc))
        print('Cooling effect: %.2f kW\t %.2f BTU/hr' % (Qcooling, Qcooling * kW2btumin))
        print('COP %.2f \tCOPP %.2f' % (COP, COPP))

    return W, T, P, s, Qcooling, COP, COPP
예제 #14
0
def SimulateCobelliDay(modelData):

    # modelData = np.zeros((22,1))
    eatingTime = 30  # [min ]
    # Data is unpacked

    bHour = modelData[1]
    bMin = modelData[2]
    bCHO = 1000 * modelData[3] * 18.018  # converted to mg
    bInsulin = 6.945 * modelData[4] / 1000  # converted from IU/L to pmol/L
    lHour = modelData[5]
    lMin = modelData[6]
    lCHO = 1000 * modelData[7] * 18.018  # converted to mg
    lInsulin = 6.945 * modelData[8] / 1000  # converted to pmol/L
    dHour = modelData[9]
    dMin = modelData[10]
    dCHO = 1000 * modelData[11] * 18.018  # converted to mg
    dInsulin = 6.945 * modelData[12] / 1000  # converted to pmol/L
    insulinTime = modelData[13]

    # Initialize the time vector
    t = np.zeros((11, 1))
    # Relevant moments are calculated
    t[0] = 0
    t[1] = bHour * 60 + bMin - insulinTime
    t[2] = bHour * 60 + bMin
    t[3] = bHour * 60 + bMin + eatingTime
    t[4] = lHour * 60 + lMin - insulinTime
    t[5] = lHour * 60 + lMin
    t[6] = lHour * 60 + lMin + eatingTime
    t[7] = dHour * 60 + dMin - insulinTime
    t[8] = dHour * 60 + dMin
    t[9] = dHour * 60 + dMin + eatingTime
    t[10] = 24 * 60
    V_G = 1.88  #1.49 # [dL/kg]
    k_1 = 0.065  #0.042 # [min ^-1]
    k_2 = 0.079  #0.071 # [min ^-1]
    V_I = 0.05  #0.04 # [L/kg]
    m_1 = 0.190  #0.379 # [min ^-1]
    m_2 = 0.484  #0.673 # [min ^-1]
    m_4 = 0.194  #0.269 # [min ^-1]
    m_5 = 0.0304  #0.0526 # [min *kg/pmol ]
    m_6 = 0.6471  #0.8118 # [-]
    HE_b = 0.6  # [-]
    k_max = 0.0558  #0.0465 # [min ^-1]
    k_min = 0.0080  #0.0076 # [min ^-1]
    k_abs = 0.057  #0.023 # [min ^-1]
    k_gri = 0.0558  #0.0465 # [min ^-1]
    f = 0.90  # [-]
    a = 0.00013  #0.00006 # [mg ^-1]
    b = 0.82  #0.68 # [-]
    c = 0.00236  #0.00023 # [mg ^-1]
    d = 0.010  # 0.09 # [-]
    k_p1 = 2.70  #3.09 # [mg/kg/min ]
    k_p2 = 0.0021  #0.0007 # [min ^-1]
    k_p3 = 0.009  #0.005 # [mg/kg/min per pmol/L]
    k_p4 = 0.0618  #0.0786 # [mg/kg/min per pmol/kg]
    k_i = 0.0079  #0.0066 # [min ^-1]
    F_cns = 1  # [mg/kg/min ]
    V_m0 = 2.50  #4.65 # [mg/kg/min ]
    V_mx = 0.047  #0.034 # [mg/kg/min per pmol/L]
    K_m0 = 225.59  #466.21 # [mg/kg]
    p_2U = .0331  #0.084 # [min ^-1]
    K = 2.30  #0.99 # [pmol/kg per mg/dL]
    alpha = 0.050  #0.013 # [min ^-1]
    beta = 0.11  #0.05 # [pmol/kg/min per mg/dL]
    gamma = 0.5  # [min ^-1]
    k_e1 = 0.0005  #0.0007 # [min ^-1]
    k_e2 = 339  #269 # [mg/kg]

    p = [
        V_G, k_1, k_2, V_I, m_1, m_2, m_4, m_5, m_6, HE_b, k_max, k_min, k_abs,
        k_gri, f, a, b, c, d, k_p1, k_p2, k_p3, k_p4, k_i, F_cns, V_m0, V_mx,
        K_m0, p_2U, K, alpha, beta, gamma, k_e1, k_e2
    ]

    u = 0  #0.0954119*BW, #7.15
    X = []
    # Calculate the steady state values
    xStart = [90, 90, 54.18, 54.18, 0, 0, 0, 4.4, 4.4, 0, 0, 0]  #zeros(16,1) ,

    # (xStart,u,0,p,modelData)
    xInitial0 = solver(CobelliWrap, xStart, args=(u, 0, p, modelData))

    # Midnight to first insulinshot

    r = ode(Cobelli).set_integrator('vode', method='bdf',
                                    order=15).set_initial_value(
                                        xInitial0,
                                        t[0]).set_f_params(u, 0, p, modelData)
    while r.successful() and r.t < t[1]:
        r.integrate(r.t + 1)
        X.append(r.y[0])

    # Insulinshot before breakfast
    xInitial1 = r.y.T
    xInitial1[2] = xInitial1[2] + bInsulin
    r1 = ode(Cobelli).set_integrator(
        'vode', method='bdf',
        order=15).set_initial_value(xInitial1,
                                    t[1]).set_f_params(u, 0, p, modelData)
    while r1.successful() and r1.t < t[2]:
        r1.integrate(r1.t + 1)
        X.append(r1.y[0])

    # Breakfast start
    xInitial2 = r1.y.T
    r2 = ode(Cobelli).set_integrator(
        'vode', method='bdf',
        order=15).set_initial_value(xInitial2,
                                    t[2]).set_f_params(u, bCHO / (eatingTime),
                                                       p, modelData)
    while r2.successful() and r2.t < t[3]:
        r2.integrate(r2.t + 1)
        X.append(r2.y[0])

    # Breakfast stop
    xInitial3 = r2.y.T
    r3 = ode(Cobelli).set_integrator(
        'vode', method='bdf',
        order=15).set_initial_value(xInitial3,
                                    t[3]).set_f_params(u, 0, p, modelData)
    while r3.successful() and r3.t < t[4]:
        r3.integrate(r3.t + 1)
        X.append(r3.y[0])

    # Insulinshot before lunch
    xInitial4 = r3.y.T
    xInitial4[2] = xInitial4[2] + lInsulin
    r4 = ode(Cobelli).set_integrator(
        'vode', method='bdf',
        order=15).set_initial_value(xInitial4,
                                    t[4]).set_f_params(u, 0, p, modelData)
    while r4.successful() and r4.t < t[5]:
        r4.integrate(r4.t + 1)
        X.append(r4.y[0])

    # Lunch start
    xInitial5 = r4.y.T
    r5 = ode(Cobelli).set_integrator(
        'vode', method='bdf',
        order=15).set_initial_value(xInitial5,
                                    t[5]).set_f_params(u, lCHO / (eatingTime),
                                                       p, modelData)
    while r5.successful() and r5.t < t[6]:
        r5.integrate(r5.t + 1)
        X.append(r5.y[0])

    # Lunch stop
    xInitial6 = r5.y.T
    r6 = ode(Cobelli).set_integrator(
        'vode', method='bdf',
        order=15).set_initial_value(xInitial6,
                                    t[6]).set_f_params(u, 0, p, modelData)
    while r6.successful() and r6.t < t[7]:
        r6.integrate(r6.t + 1)
        X.append(r6.y[0])

    # Insulinshot before dinner
    xInitial7 = r6.y.T
    xInitial7[2] = xInitial7[2] + dInsulin
    r7 = ode(Cobelli).set_integrator(
        'vode', method='bdf',
        order=15).set_initial_value(xInitial7,
                                    t[7]).set_f_params(u, 0, p, modelData)
    while r7.successful() and r7.t < t[8]:
        r7.integrate(r7.t + 1)
        X.append(r7.y[0])

    # Dinner start
    xInitial8 = r7.y.T
    r8 = ode(Cobelli).set_integrator(
        'vode', method='bdf',
        order=15).set_initial_value(xInitial8,
                                    t[8]).set_f_params(u, dCHO / (eatingTime),
                                                       p, modelData)
    while r8.successful() and r8.t < t[9]:
        r8.integrate(r8.t + 1)
        X.append(r8.y[0])

    # Dinner stop
    xInitial9 = r8.y.T
    r9 = ode(Cobelli).set_integrator(
        'vode', method='bdf',
        order=15).set_initial_value(xInitial9,
                                    t[9]).set_f_params(u, 0, p, modelData)
    while r9.successful() and r9.t < t[10]:
        r9.integrate(r9.t + 1)
        X.append(r9.y[0])
        #sys.exit(0)

    # Collects all the simulated intervals

    G = [x / V_G for x in X]
    T = r.t

    return (T, G, t)