def bench1(mode = 'diag'): #=========================================== # GMM of 20 comp, 20 dimension, 1e4 frames #=========================================== d = 15 k = 30 nframes = 1e5 niter = 10 mode = 'diag' print "=============================================================" print "(%d dim, %d components) GMM with %d iterations, for %d frames" \ % (d, k, niter, nframes) #+++++++++++++++++++++++++++++++++++++++++++ # Create an artificial GMM model, samples it #+++++++++++++++++++++++++++++++++++++++++++ print "Generating the mixture" # Generate a model with k components, d dimensions w, mu, va = GM.gen_param(d, k, mode, spread = 3) # gm = GM(d, k, mode) # gm.set_param(w, mu, va) gm = GM.fromvalues(w, mu, va) # Sample nframes frames from the model data = gm.sample(nframes) #++++++++++++++++++++++++ # Learn the model with EM #++++++++++++++++++++++++ # Init the model print "Init a model for learning, with kmean for initialization" lgm = GM(d, k, mode) gmm = GMM(lgm, 'kmean') gmm.init(data) # Keep the initialized model for drawing gm0 = copy.copy(lgm) # The actual EM, with likelihood computation like = N.zeros(niter) print "computing..." for i in range(niter): print "iteration %d" % i g, tgd = gmm.sufficient_statistics(data) like[i] = N.sum(N.log(N.sum(tgd, 1))) gmm.update_em(data, g)
def bench1(mode='diag'): #=========================================== # GMM of 20 comp, 20 dimension, 1e4 frames #=========================================== d = 15 k = 30 nframes = 1e5 niter = 10 mode = 'diag' print "=============================================================" print "(%d dim, %d components) GMM with %d iterations, for %d frames" \ % (d, k, niter, nframes) #+++++++++++++++++++++++++++++++++++++++++++ # Create an artificial GMM model, samples it #+++++++++++++++++++++++++++++++++++++++++++ print "Generating the mixture" # Generate a model with k components, d dimensions w, mu, va = GM.gen_param(d, k, mode, spread=3) # gm = GM(d, k, mode) # gm.set_param(w, mu, va) gm = GM.fromvalues(w, mu, va) # Sample nframes frames from the model data = gm.sample(nframes) #++++++++++++++++++++++++ # Learn the model with EM #++++++++++++++++++++++++ # Init the model print "Init a model for learning, with kmean for initialization" lgm = GM(d, k, mode) gmm = GMM(lgm, 'kmean') gmm.init(data) # Keep the initialized model for drawing gm0 = copy.copy(lgm) # The actual EM, with likelihood computation like = N.zeros(niter) print "computing..." for i in range(niter): print "iteration %d" % i g, tgd = gmm.sufficient_statistics(data) like[i] = N.sum(N.log(N.sum(tgd, 1))) gmm.update_em(data, g)
from scipy.sandbox.pyem import GM, GMM, EM import copy seed(2) k = 4 d = 2 mode = 'diag' nframes = 1e3 #+++++++++++++++++++++++++++++++++++++++++++ # Create an artificial GMM model, samples it #+++++++++++++++++++++++++++++++++++++++++++ w, mu, va = GM.gen_param(d, k, mode, spread = 1.0) gm = GM.fromvalues(w, mu, va) # Sample nframes frames from the model data = gm.sample(nframes) #++++++++++++++++++++++++ # Learn the model with EM #++++++++++++++++++++++++ # List of learned mixtures lgm[i] is a mixture with i+1 components lgm = [] kmax = 6 bics = N.zeros(kmax) em = EM() for i in range(kmax): lgm.append(GM(d, i+1, mode))
# Meta parameters of the model # - k: Number of components # - d: dimension of each Gaussian # - mode: Mode of covariance matrix: full or diag (string) # - nframes: number of frames (frame = one data point = one # row of d elements) k = 2 d = 2 mode = 'diag' nframes = 1e3 #+++++++++++++++++++++++++++++++++++++++++++ # Create an artificial GM model, samples it #+++++++++++++++++++++++++++++++++++++++++++ w, mu, va = GM.gen_param(d, k, mode, spread=1.5) gm = GM.fromvalues(w, mu, va) # Sample nframes frames from the model data = gm.sample(nframes) #++++++++++++++++++++++++ # Learn the model with EM #++++++++++++++++++++++++ # Init the model lgm = GM(d, k, mode) gmm = GMM(lgm, 'kmean') gmm.init(data) # Keep a copy for drawing later gm0 = copy.copy(lgm)