def initialize_online_notchfilter(fsample, fnotch, quality, x, axis=-1): nyquist = fsample / 2. ndim = len(x.shape) axis = axis % ndim if fnotch != None: fnotch = fnotch / nyquist if fnotch < 0.001: fnotch = None elif fnotch > 0.999: fnotch = None if not (fnotch == None) and (quality > 0): print('using NOTCH filter', [fnotch, quality]) b, a = iirnotch(fnotch, quality) else: # no filtering at all print('using IDENTITY filter', [fnotch, quality]) b = np.ones(1) a = np.ones(1) # initialize the state for the filtering based on the previous data if ndim == 1: zi = zi = lfiltic(b, a, x, x) elif ndim == 2: f = lambda x: lfiltic(b, a, x, x) zi = np.apply_along_axis(f, axis, x) return b, a, zi
def initialize_online_filter(fsample, highpass, lowpass, order, x, axis=-1): # boxcar, triang, blackman, hamming, hann, bartlett, flattop, parzen, bohman, blackmanharris, nuttall, barthann filtwin = 'nuttall' nyquist = fsample / 2. ndim = len(x.shape) axis = axis % ndim if highpass != None: highpass = highpass / nyquist if highpass < 0.001: print('Warning: highpass is too low, disabling') highpass = None elif highpass > 0.999: print('Warning: highpass is too high, disabling') highpass = None if lowpass != None: lowpass = lowpass / nyquist if lowpass < 0.001: print('Warning: lowpass is too low, disabling') lowpass = None elif lowpass > 0.999: print('Warning: lowpass is too low, disabling') lowpass = None if not (highpass is None) and not (lowpass is None) and highpass >= lowpass: # totally blocking all signal print('using NULL filter', [highpass, lowpass, order]) b = np.zeros(order) a = np.ones(1) elif not (lowpass is None) and (highpass is None): print('using lowpass filter', [highpass, lowpass, order]) b = firwin(order, cutoff=lowpass, window=filtwin, pass_zero=True) a = np.ones(1) elif not (highpass is None) and (lowpass is None): print('using highpass filter', [highpass, lowpass, order]) b = firwin(order, cutoff=highpass, window=filtwin, pass_zero=False) a = np.ones(1) elif not (highpass is None) and not (lowpass is None): print('using bandpass filter', [highpass, lowpass, order]) b = firwin(order, cutoff=[highpass, lowpass], window=filtwin, pass_zero=False) a = np.ones(1) else: # no filtering at all print('using IDENTITY filter', [highpass, lowpass, order]) b = np.ones(1) a = np.ones(1) # initialize the state for the filtering based on the previous data if ndim == 1: zi = zi = lfiltic(b, a, x, x) elif ndim == 2: f = lambda x: lfiltic(b, a, x, x) zi = np.apply_along_axis(f, axis, x) return b, a, zi
def __init__(self, order=2, freq=0.7,y=[],x=[]): self.b,self.a=iirfilter(order, freq, btype="lowpass") if len(y)>0: print "here" self.z=lfiltic(self.b,self.a, y) else: self.z=array([0.]*order) self.z=lfiltic(self.b,self.a, y,x=x)
def smooth(time, vals, dt=None, gapFactor=20, T=T_M2): from scipy import signal if dt is None: dt = np.diff(time).mean() ta = timeArray.timeArray(time, 'epoch') # try to calculate exact dt by omitting large gaps gaps, ranges, t = ta.detectGaps(dt=dt, gapFactor=gapFactor) diff = [] for i in range(ranges.shape[0]): twin = time[ranges[i, 0]:ranges[i, 1]] diff.append(np.diff(twin)) diff = np.concatenate(tuple(diff), axis=0) dt = diff.mean() # filter design, low-pass butterworth T0 = (2 * dt) # period of Nyquist frequency Tpass = 8 * T # period of pass frequency Gpass = 3.0 # max dB loss in pass band Tstop = 1 * T # period of stop frequency Gstop = 30.0 # min dB atennuation in stop band o, Wn = signal.buttord(T0 / Tpass, T0 / Tstop, Gpass, Gstop) if o < 0: raise Exception( 'Cannot create tidal filter. Data sampling frequency may be too low, dt=' + str(dt)) b, a = signal.butter(o, Wn, 'low') newvals = [] newtime = [] # filter each contiquous data range separately for i in range(ranges.shape[0]): twin = time[ranges[i, 0]:ranges[i, 1]] vwin = vals[ranges[i, 0]:ranges[i, 1]] if len(vwin) > 3 * len(a): try: # default forward-backward filter # filtered = signal.filtfilt(b, a, vwin, padtype='constant') # forward-backward filter with custom boundary conditions # pad with mean of 1/2 pass window lenght N_init = int(np.ceil(Tpass / dt / 2 / 4)) # forward filter x_init = vwin[:N_init] y_init = x_init.mean() * np.ones_like(x_init) z_init = signal.lfiltic(b, a, y_init, x_init) filtered, _ = signal.lfilter(b, a, vwin, zi=z_init) # backward filter x_init = vwin[-N_init:][::-1] y_init = x_init.mean() * np.ones_like(x_init) z_init = signal.lfiltic(b, a, y_init, x_init) filtered, _ = signal.lfilter(b, a, filtered[::-1], zi=z_init) filtered = filtered[::-1] newvals.append(filtered) newtime.append(twin) except Exception as e: print a.shape, vwin.shape raise e newvals = np.concatenate(tuple(newvals), axis=0) newtime = np.concatenate(tuple(newtime), axis=0) return newtime, newvals
def test_lfiltic_bad_zi(self): # Regression test for #3699: bad initial conditions a = np.ones(1).astype(self.dt) b = np.ones(1).astype(self.dt) # "y" sets the datatype of zi, so it truncates if int zi = lfiltic(b, a, [1., 0]) zi_1 = lfiltic(b, a, [1, 0]) zi_2 = lfiltic(b, a, [True, False]) assert_array_equal(zi, zi_1) assert_array_equal(zi, zi_2)
def initialize_online_filter(fsample, highpass, lowpass, order, x, axis=-1): # boxcar, triang, blackman, hamming, hann, bartlett, flattop, parzen, bohman, blackmanharris, nuttall, barthann filtwin = 'nuttall' nyquist = fsample / 2. ndim = len(x.shape) axis = axis % ndim if highpass != None: highpass = highpass/nyquist if highpass < 0.01: highpass = None elif highpass > 0.99: highpass = None if lowpass != None: lowpass = lowpass/nyquist if lowpass < 0.01: lowpass = None elif lowpass > 0.99: lowpass = None if not(highpass is None) and not(lowpass is None) and highpass>=lowpass: # totally blocking all signal print 'using NULL filter', [highpass, lowpass] b = np.zeros(window) a = np.ones(1) elif not(lowpass is None) and (highpass is None): print 'using lowpass filter', [highpass, lowpass] b = firwin(order, cutoff = lowpass, window = filtwin, pass_zero = True) a = np.ones(1) elif not(highpass is None) and (lowpass is None): print 'using highpass filter', [highpass, lowpass] b = firwin(order, cutoff = highpass, window = filtwin, pass_zero = False) a = np.ones(1) elif not(highpass is None) and not(lowpass is None): print 'using bandpass filter', [highpass, lowpass] b = firwin(order, cutoff = [highpass, lowpass], window = filtwin, pass_zero = False) a = np.ones(1) else: # no filtering at all print 'using IDENTITY filter', [highpass, lowpass] b = np.ones(1) a = np.ones(1) # initialize the state for the filtering based on the previous data if ndim == 1: zi = zi = lfiltic(b, a, x, x) elif ndim == 2: f = lambda x : lfiltic(b, a, x, x) zi = np.apply_along_axis(f, axis, x) return b, a, zi
def test_lfiltic(): # this would return f32 when given a mix of f32 / f64 args b_f32 = np.array([1, 2, 3], dtype=np.float32) a_f32 = np.array([4, 5, 6], dtype=np.float32) x_f32 = np.ones(32, dtype=np.float32) b_f64 = b_f32.astype(np.float64) a_f64 = a_f32.astype(np.float64) x_f64 = x_f32.astype(np.float64) assert_(lfiltic(b_f64, a_f32, x_f32).dtype == np.float64) assert_(lfiltic(b_f32, a_f64, x_f32).dtype == np.float64) assert_(lfiltic(b_f32, a_f32, x_f64).dtype == np.float64) assert_(lfiltic(b_f32, a_f32, x_f32, x_f64).dtype == np.float64)
def runController(self, error, error_dot, ref_dot_feedfwd): if self.z_state is None: self.z_state = sps.lfiltic(self.tf_state['num'], self.tf_state['den'], y=np.zeros_like(self.tf_state['den'])) # initial filter delays self.z_state = np.tile(self.z_state, error.shape) self.z_state_dot = sps.lfiltic(self.tf_state_dot['num'], self.tf_state_dot['den'], y=np.zeros_like(self.tf_state_dot['den'])) self.z_state_dot = np.tile(self.z_state_dot, error_dot.shape) u_state, self.z_state = sps.lfilter(self.tf_state['num'], self.tf_state['den'], error, axis=1, zi=self.z_state) u_state_dot, self.z_state_dot = sps.lfilter(self.tf_state_dot['num'], self.tf_state_dot['den'], error_dot, axis=1, zi=self.z_state_dot) u = u_state + u_state_dot + ref_dot_feedfwd v_cmd = u[0:2, 0] omega_cmd = u[2, 0] return v_cmd, omega_cmd
def test_2d_active(self): shape = self.shape2D known_data = np.random.normal(size=shape).astype(np.float32).view( np.complex64) idata = bf.ndarray(known_data, space='cuda_managed') odata = bf.empty_like(idata) coeffs = self.coeffs * 1.0 coeffs.shape += (1, ) coeffs = np.repeat(coeffs, idata.shape[1], axis=1) coeffs.shape = (coeffs.shape[0], idata.shape[1]) coeffs = bf.ndarray(coeffs, space='cuda_managed') fir = Fir() fir.init(coeffs, 1) fir.execute(idata, odata) fir.execute(idata, odata) stream_synchronize() for i in range(known_data.shape[1]): zf = lfiltic(self.coeffs, 1.0, 0.0) known_result, zf = lfilter(self.coeffs, 1.0, known_data[:, i], zi=zf) known_result, zf = lfilter(self.coeffs, 1.0, known_data[:, i], zi=zf) compare(odata[:, i], known_result)
def process(self, data): """Applies the filter to the input. Parameters ---------- data : ndarray, shape (n_channels, n_samples) Input signals. """ if data.ndim != 2: raise ValueError("data must be 2-dimensional.") if self._x_prev is None: # first pass has no initial conditions out = signal.lfilter(self.b, self.a, data, axis=-1) else: # subsequent passes get ICs from previous input/output num_ch = data.shape[0] K = max(len(self.a)-1, len(self.b)-1) self._zi = np.zeros((num_ch, K)) # unfortunately we have to get zi channel by channel for c in range(data.shape[0]): self._zi[c, :] = signal.lfiltic( self.b, self.a, self._y_prev[c, -(self.overlap+1)::-1], self._x_prev[c, -(self.overlap+1)::-1]) out, zf = signal.lfilter(self.b, self.a, data, axis=-1, zi=self._zi) self._x_prev = data self._y_prev = out return out
def __init__( self, band_start, band_stop ): nyquist_frequency = float(SAMPLES_PER_SECOND) / 2.0 band_start /= nyquist_frequency band_stop /= nyquist_frequency assert( band_start >= 0 and band_start <= 1 ) assert( band_stop >= 0 and band_stop <= 1 ) assert( band_stop >= band_start ) passband_edges = [] stopband_edges = [] if band_start >= 0.05: # if not, make LPF only passband_edges.append( band_start * 1.025 ) stopband_edges.append( band_start * 0.975 ) if band_stop <= 0.95: # if not, make HPF only passband_edges.append( band_stop * 0.975 ) stopband_edges.append( band_stop * 1.025 ) (self.feedforward_taps, self.feedback_taps) = iirdesign( passband_edges, stopband_edges, 0.1, # max attenuation (dB) in passband 30 ) # min attenuation (dB) in stopband self.filter_state = lfiltic( self.feedforward_taps, self.feedback_taps, [] )
def geth(self, params): ''' Parameters ---------- params : tuple, (ar, ma) try to keep the params conversion in loglike copied from generate_gjrgarch needs to be extracted to separate function ''' #mu, ar, ma = params ar, ma, mu = params #etax = self.endog #this would be enough for basic garch version etax = self._etax + mu icetax = self._icetax #read ic-eta-x, initial condition #TODO: where does my go with lfilter ????????????? # shouldn't matter except for interpretation nobs = etax.shape[0] #check arguments of lfilter zi = signal.lfiltic(ma,ar, icetax) #h = signal.lfilter(ar, ma, etax, zi=zi) #np.atleast_1d(etax[:,1].mean())) #just guessing: b/c ValueError: BUG: filter coefficient a[0] == 0 not supported yet h = signal.lfilter(ma, ar, etax, zi=zi)[0] return h
def __init__(self, band_start, band_stop): nyquist_frequency = float(SAMPLES_PER_SECOND) / 2.0 band_start /= nyquist_frequency band_stop /= nyquist_frequency assert (band_start >= 0 and band_start <= 1) assert (band_stop >= 0 and band_stop <= 1) assert (band_stop >= band_start) passband_edges = [] stopband_edges = [] if band_start >= 0.05: # if not, make LPF only passband_edges.append(band_start * 1.025) stopband_edges.append(band_start * 0.975) if band_stop <= 0.95: # if not, make HPF only passband_edges.append(band_stop * 0.975) stopband_edges.append(band_stop * 1.025) (self.feedforward_taps, self.feedback_taps) = iirdesign( passband_edges, stopband_edges, 0.1, # max attenuation (dB) in passband 30) # min attenuation (dB) in stopband self.filter_state = lfiltic(self.feedforward_taps, self.feedback_taps, [])
def _design_filter(self, frequency, type, slice): ''' Create filter settings for channel groups with equal filter parameters @param frequency: filter frequeny in Hz @param type: filter type, "low", "high" or "bandstop" @param slice: channel group indices @return: filter parameters and state vector ''' self.shm.eegchs = slice.stop if (frequency == 0.0) or (frequency > self.samplefreq / 2.0): return None if type == "bandstop": cut1 = (frequency - 1.0) / self.samplefreq * 2.0 cut2 = (frequency + 1.0) / self.samplefreq * 2.0 b, a = signal.filter_design.iirfilter(2, [cut1, cut2], btype=type, ftype='butter') #b,a = signal.filter_design.iirfilter(2, [cut1, cut2], rs=40.0, rp=0.5, btype=type, ftype='elliptic') else: cut = frequency / self.samplefreq * 2.0 b, a = signal.filter_design.butter(self.filterorder, cut, btype=type) zi = signal.lfiltic(b, a, (0.0, )) czi = np.resize(zi, (slice.stop - slice.start, len(zi))) return { 'slice': slice, 'a': a, 'b': b, 'zi': czi, 'frequency': frequency }
def update_plots(self, fs, data): self.current_update += 1 data = signal.detrend(data.ravel()) # Plot RMS if self._coefs is None: self._coefs = signal.iirfilter(2, (400.0/(fs/2), 40e3/(fs/2))) b, a = self._coefs self._zf = signal.lfiltic(b, a, data[:len(a)-1], data[:len(b)-1]) b, a = self._coefs data, self._zf = signal.lfilter(b, a, data, zi=self._zf) rms = np.mean(data**2)**0.5 db_rms = db(rms)-self.paradigm.mic_sens_dbv-db(20e-6) self.append_data(time=self.current_time, rms=db_rms) self.current_time += len(data)/fs self.current_spl = db_rms self.current_spl_average = self.rms_data.get_data('rms')[-60:].mean() self.overall_spl_average = self.rms_data.get_data('rms').mean() w_frequency = psd_freq(data, fs) w_psd = psd(data, fs, 'hamming') w_psd_db = db(w_psd)-self.paradigm.mic_sens_dbv-db(20e-6) self.rms_data.update_data(frequency=w_frequency, psd=w_psd_db)
def exponential_moving_average_v3(series: pd.Series, alpha: float = 0.0, min_periods: int = 5): """ The exponential moving average (EMA) is a technical indicator that tracks the price of an investment (like a stock or commodity) over time. The EMA is a type of weighted moving average (WMA) that gives more weighting or importance to more recent price data. Args: values (pd.Series): closing price alpha (float, optional): smoothing factor, usually between .1 - .3 Defaults to 2/(N+1). min_periods (int, optional): periods for window function. Defaults to 5. Returns: EMA (pd.Series): series named EMA """ if not alpha: alpha = 2 / (min_periods + 1) values = series.to_numpy() b = [alpha] a = [1, alpha - 1] zi = lfiltic(b, a, values[0:1], [0]) output = pd.Series(lfilter(b, a, values, zi=zi)[0]) output.index = series.index output.rename('EMA', inplace=True) return output
def N2OEmssionstoConcs(emissions): ''' This function converts nitrous oxide (|N2O|) emissions into concentrations. :param emissions: |N2O| emissions [TgN2O/year] :returns: numpy.array -- containing the |N2O| concentrations for each year [ppb] ''' tauN2O = 114.0 # Lifetime of N2O lamN2O = 1.0 / tauN2O # inverse lifetime in years-1 scaleN2O = 4.8 # TgN2O per ppb (IPCC TAR report value, chapter 4) Result = np.zeros(len(emissions['N2O'])) decay = np.exp(-lamN2O) accum = (1.0 - decay) / (lamN2O * scaleN2O) #v = np.arange(1,len(emissions['N2O'])) #for i in range(1,len(emissions['N2O'])): # Result[i] = Result[i-1] * decay + emissions['N2O'][i-1] * accum #Result[v] = Result[v-1] * decay + emissions['N2O'][v-1] * accum # 'Result' is the output of a linear filter - see: # https://stackoverflow.com/questions/21336794/python-recursive-vectorization-with-timeseries/21338665#21338665 # filter soln b = np.array([0., accum]) a = np.array([1., -1. * decay]) zi = lfiltic(b, a, [0, emissions['N2O'][0] * accum], x=emissions['N2O'][1::-1]) y = np.empty_like(emissions['N2O']) y[:2] = [0, emissions['N2O'][0] * accum] y[2:], zo = lfilter(b, a, emissions['N2O'][2:], zi=zi) return y
def CH4EmssionstoConcs(emissions): ''' This function converts methane (|CH4|) emissions into concentrations. :param emissions: |CH4| emissions [TgCH4/year] :returns: numpy.array -- containing the |CH4| concentrations for each year [ppb] ''' TauCH4 = 10.0 # Lifetime of CH4 LamCH4 = 1.0 / TauCH4 # inverse lifetime in years-1 scaleCH4 = 2.78 # TgCH4 per ppb (IPCC TAR report value, chapter 4) Result = np.zeros(len(emissions['CH4'])) decay = np.exp(-LamCH4) accum = (1.0 - decay) / (LamCH4 * scaleCH4) #for i in range(1,len(emissions['CH4'])): # Result[i] = Result[i-1] * decay + emissions['CH4'][i-1] * accum # filter soln b = np.array([0., accum]) a = np.array([1., -1. * decay]) zi = lfiltic(b, a, [0, emissions['CH4'][0] * accum], x=emissions['CH4'][1::-1]) y = np.empty_like(emissions['CH4']) y[:2] = [0, emissions['CH4'][0] * accum] y[2:], zo = lfilter(b, a, emissions['CH4'][2:], zi=zi) return y
def geth(self, params): ''' Parameters ---------- params : tuple, (ar, ma) try to keep the params conversion in loglike copied from generate_gjrgarch needs to be extracted to separate function ''' #mu, ar, ma = params ar, ma, mu = params #etax = self.endog #this would be enough for basic garch version etax = self._etax + mu icetax = self._icetax #read ic-eta-x, initial condition #TODO: where does my go with lfilter ????????????? # should not matter except for interpretation nobs = etax.shape[0] #check arguments of lfilter zi = signal.lfiltic(ma,ar, icetax) #h = signal.lfilter(ar, ma, etax, zi=zi) #np.atleast_1d(etax[:,1].mean())) #just guessing: b/c ValueError: BUG: filter coefficient a[0] == 0 not supported yet h = signal.lfilter(ma, ar, etax, zi=zi)[0] return h
def applyOn(self, x): '''Apply the filter to a given array of signal Args: x (:obj:`numpy array`): The signal array on which the filter needs to be applied Returns: :obj:`numpy array`: Filtered signal array ''' if self.__storeState: if self.__zi is None: self.__zi = signal.lfiltic(self.__b, self.__a, x, self.__initOut) retDat, self.__zi = signal.lfilter(self.__b, self.__a, x, zi=self.__zi) return retDat else: if self.__zeroPhase: return signal.filtfilt(self.__b, self.__a, x) else: return signal.lfilter(self.__b, self.__a, x)
def process(self, data): if self.xPrev is None: # first pass has no initial conditions out = signal.lfilter( self.b, self.a, data, axis=0) else: # subsequent passes get ICs from previous input/output nCh = data.shape[1] K = max(len(self.a)-1, len(self.b)-1) self.zi = np.zeros((K, nCh)) # unfortunately we have to get zi channel by channel for c in range(data.shape[1]): self.zi[:, c] = signal.lfiltic( self.b, self.a, self.yPrev[-(self.overlap+1)::-1, c], self.xPrev[-(self.overlap+1)::-1, c]) out, zf = signal.lfilter( self.b, self.a, data, axis=0, zi=self.zi) self.xPrev = data self.yPrev = out return out
def filtered_deriv(y, x, tau=0): """Numerical derivative with optional lowpass filter. tau is the filter time constant expressed in same units as x (eg seconds if x is time). """ dy = np.empty(y.shape) dy[0] = (y[1] - y[0]) / (x[1] - x[0]) for i in range(1, (dy.shape[0] - 1)): dy[i] = (y[i + 1] - y[i - 1]) / (x[i + 1] - x[i - 1]) dy[-1] = (y[-1] - y[-2]) / (x[-1] - x[-2]) # No filter if tau <= 0: return dy # sample freq fs = x.shape[0] / (x[-1] - x[0]) nyqfreq = fs / 2 w0 = 1 / (tau * 2 * np.pi * nyqfreq) lowpass = signal.iirfilter(1, w0, btype='lowpass', analog=False) # Create initial conditions so y=0 at t=0 zi = signal.lfiltic(*lowpass, y=[0], x=dy[:1]) filtered, _ = signal.lfilter(*lowpass, dy, zi=-zi) return filtered
def test_3d_initial(self): shape = self.shape3D known_data = np.random.normal(size=shape).astype(np.float32).view( np.complex64) idata = bf.ndarray(known_data, space='cuda') odata = bf.empty_like(idata) coeffs = self.coeffs * 1.0 coeffs.shape += (1, ) coeffs = np.repeat(coeffs, idata.shape[1] * idata.shape[2], axis=1) coeffs.shape = (coeffs.shape[0], idata.shape[1], idata.shape[2]) coeffs = bf.ndarray(coeffs, space='cuda') fir = Fir() fir.init(coeffs, 1) fir.execute(idata, odata) odata = odata.copy('system') for i in range(known_data.shape[1]): for j in range(known_data.shape[2]): zf = lfiltic(self.coeffs, 1.0, 0.0) known_result, zf = lfilter(self.coeffs, 1.0, known_data[:, i, j], zi=zf) compare(odata[:, i, j], known_result)
def plot_result(x, n_p, n_d): b = x n = np.arange(n_d + 1) y = np.exp(b[0] * n) - np.exp(b[1] * n) n_max = np.log(b[0] / b[1]) / (b[1] - b[0]) y_max = np.exp(b[0] * n_max) - np.exp(b[1] * n_max) print("y_max: " + str(y_max)) #y_max=np.max(y) y_arg_max = np.argmax(y) y /= y_max print("Value at n_p: %f" % (20 * np.log10(y[n_p]), )) print("Value at n_d: %f" % (20 * np.log10(y[n_d]), )) print("Location of peak: %d" % (y_arg_max, )) print("Desired peak: %d" % (n_p, )) print("n_d: %d" % (n_d, )) s = np.zeros_like(y) s[0] = 1 b_, a_ = get_filter_coeffs(b, 1 / y_max) print("b_: " + str(b_)) print("a_: " + str(a_)) y_f, v_n = signal.lfilter(b_, a_, s, zi=[0, 0]) print("v_n_: " + str(signal.lfiltic(b_, a_, y_f[::-1], [0, 0]))) print("v_n: " + str(v_n)) plt.plot(n, 20 * np.log10(y), label='computed') plt.plot(n, 20 * np.log10(y_f), label='filter') y_f_2, _ = signal.lfilter(b_, a_, y_f, zi=[0, 0]) plt.plot(n, 20 * np.log10(y_f_2 / np.max(y_f_2)), label='filter2') plt.legend()
def test_2d_decimate_active(self): shape = self.shape2D known_data = np.random.normal(size=shape).astype(np.float32).view( np.complex64) idata = bf.ndarray(known_data, space='cuda') odata = bf.empty((idata.shape[0] // 2, idata.shape[1]), dtype=idata.dtype, space='cuda') coeffs = self.coeffs * 1.0 coeffs.shape += (1, ) coeffs = np.repeat(coeffs, idata.shape[1], axis=1) coeffs.shape = (coeffs.shape[0], idata.shape[1]) coeffs = bf.ndarray(coeffs, space='cuda') fir = Fir() fir.init(coeffs, 2) fir.execute(idata, odata) fir.execute(idata, odata) odata = odata.copy('system') for i in range(known_data.shape[1]): zf = lfiltic(self.coeffs, 1.0, 0.0) known_result, zf = lfilter(self.coeffs, 1.0, known_data[:, i], zi=zf) known_result, zf = lfilter(self.coeffs, 1.0, known_data[:, i], zi=zf) known_result = known_result[0::2] compare(odata[:, i], known_result)
def initializeFilter(self): # Read impulse response. self.rawImpulseResponse = [] with open(self.filename,'rb') as csvfile: reader = csv.reader(csvfile,delimiter=' ', quotechar='|') for row in reader: self.rawImpulseResponse.append(float(row[1])) # Window it. self.windowedImpulseResponse = self.rawImpulseResponse * self.window # Now normalize it. # This is what *we* call an impulse response. self.impulseResponse = self.windowedImpulseResponse/np.linalg.norm(self.windowedImpulseResponse) # Store the impulse peak normalization # This is what you normalize an impulse by. self.impulseNorm = (np.max(self.impulseResponse) - np.min(self.impulseResponse))/2 # Generate an IIR from it. self.filter = prony.prony(self.impulseResponse, self.order, self.order) # And construct the initial conditions. self.filterState = lfiltic(self.filter[0], self.filter[1], np.zeros(len(self.filter[1]-1)), np.zeros(len(self.filter[0]-1)))
def butter_bandpass_filter(data, lowcut=180000000.0, highcut=1200000000.0, fs=2600000000.0, order=8): from noise import generate_noise b, a = butter_bandpass(lowcut, highcut, fs, order=order) y = generate_noise(len(a),noise_sigma=32.0,filter_flag=0) x = np.linspace(0.0,(1.0/fs)*len(data),len(b)) zi = lfiltic(b,a,y,x) y,zf = lfilter(b,a,data,zi=zi) return y
def make_filter_func(b, a): zi = lfiltic(b, a, []) def filter_func(x): y, zi[:] = lfilter(b, a, x, zi=zi) return y return filter_func
def datfilt(dat, channels, out, order, highpass, lowpass, filttype): params = read_metadata(dat) dtype = params["dtype"] nchannels = params["n_channels"] rate = params["sampling_rate"] if highpass: params["highpass"] = highpass if lowpass: params["lowpass"] = lowpass params["filter_order"] = order if not channels: channels = np.arange(nchannels) # select all channels params["filter_channels"] = channels if not out: out = dat + "_filt.dat" # load and reshape dat file data = np.memmap(dat, dtype=dtype, mode="r").reshape(-1, nchannels) if filttype == "butter": fil = butter elif filttype == "bessel": fil = bessel else: raise Exception("filter must be 'butter' or 'bessel'") if highpass and not lowpass: coefs = [fil(order, highpass / (rate / 2.), btype="highpass")] * nchannels elif lowpass and not highpass: coefs = [fil(order, lowpass / (rate / 2.), btype="lowpass")] * nchannels elif lowpass and highpass: coefs = [ fil(order, np.array((highpass, lowpass)) / (rate / 2.), btype="bandpass") ] * nchannels else: raise Exception("must set either '--lowpass' or '--highpass'") states = [lfiltic(c[0], c[1], [0]) for c in coefs] copyfile(dat, out) # make a copy of the data to write over outdat = np.memmap(out, dtype=dtype, mode="r+", shape=data.shape) for i in range(0, len(data), BUFFER_SIZE): for c in channels: buffer = data[i:i + BUFFER_SIZE, c] outdat[i:i + BUFFER_SIZE, c], states[c] = lfilter(coefs[c][0], coefs[c][1], buffer, zi=states[c]) # run filter backwards (zero phase) for i in list(range(0, len(data), BUFFER_SIZE))[::-1]: for c in channels: buffer = data[i:i + BUFFER_SIZE, c][::-1] newbuffer, states[c] = lfilter(coefs[c][0], coefs[c][1], buffer, zi=states[c]) outdat[i:i + BUFFER_SIZE, c] = newbuffer[::-1] write_metadata(out, **params)
def miso_lfilter(ar, ma, x, useic=False): """ Filter multiple time series into a single time series. Uses a convolution to merge inputs, and then lfilter to produce output. Parameters ---------- ar : array_like The coefficients of autoregressive lag polynomial including lag zero, ar(L) in the expression ar(L)y_t. ma : array_like, same ndim as x, currently 2d The coefficient of the moving average lag polynomial, ma(L) in ma(L)x_t. x : array_like The 2-d input data series, time in rows, variables in columns. useic : bool Flag indicating whether to use initial conditions. Returns ------- y : ndarray The filtered output series. inp : ndarray, 1d The combined input series. Notes ----- currently for 2d inputs only, no choice of axis Use of signal.lfilter requires that ar lag polynomial contains floating point numbers does not cut off invalid starting and final values miso_lfilter find array y such that: ar(L)y_t = ma(L)x_t with shapes y (nobs,), x (nobs, nvars), ar (narlags,), and ma (narlags, nvars). """ ma = array_like(ma, 'ma') ar = array_like(ar, 'ar') inp = signal.correlate(x, ma[::-1, :])[:, (x.shape[1] + 1) // 2] # for testing 2d equivalence between convolve and correlate # inp2 = signal.convolve(x, ma[:,::-1])[:, (x.shape[1]+1)//2] # np.testing.assert_almost_equal(inp2, inp) nobs = x.shape[0] # cut of extra values at end # TODO: initialize also x for correlate if useic: return signal.lfilter([1], ar, inp, zi=signal.lfiltic(np.array([1., 0.]), ar, useic))[0][:nobs], inp[:nobs] else: return signal.lfilter([1], ar, inp)[:nobs], inp[:nobs]
def recursive_filter(x, ar_coeff, init=None): ''' Autoregressive, or recursive, filtering. Parameters ---------- x : array-like Time-series data. Should be 1d or n x 1. ar_coeff : array-like AR coefficients in reverse time order. See Notes init : array-like Initial values of the time-series prior to the first value of y. The default is zero. Returns ------- y : array Filtered array, number of columns determined by x and ar_coeff. If a pandas object is given, a pandas object is returned. Notes ----- Computes the recursive filter :: y[n] = ar_coeff[0] * y[n-1] + ... + ar_coeff[n_coeff - 1] * y[n - n_coeff] + x[n] where n_coeff = len(n_coeff). ''' _pandas_wrapper = _maybe_get_pandas_wrapper(x) x = np.asarray(x).squeeze() ar_coeff = np.asarray(ar_coeff).squeeze() if x.ndim > 1 or ar_coeff.ndim > 1: raise ValueError('x and ar_coeff have to be 1d') if init is not None: # integer init are treated differently in lfiltic if len(init) != len(ar_coeff): raise ValueError("ar_coeff must be the same length as init") init = np.asarray(init, dtype=float) if init is not None: zi = signal.lfiltic([1], np.r_[1, -ar_coeff], init, x) else: zi = None y = signal.lfilter([1.], np.r_[1, -ar_coeff], x, zi=zi) if init is not None: result = y[0] else: result = y if _pandas_wrapper: return _pandas_wrapper(result) return result
def LPC(previous_sig, next_sig, gap_start, gap_end, lpc_order): target_length = gap_end - gap_start ab, _, _ = _arburg2(previous_sig, lpc_order) Zb = lfiltic(b=[1], a=ab, y=previous_sig[:-lpc_order - 1:-1]) forw_pred, _ = lfilter(b=[1], a=ab, x=np.zeros((target_length)), zi=Zb) next_sig = np.flipud(next_sig) af, _, _ = _arburg2(next_sig, lpc_order) Zf = lfiltic([1], af, next_sig[:-lpc_order - 1:-1]) backw_pred, _ = lfilter([1], af, np.zeros((target_length)), zi=Zf) backw_pred = np.flipud(backw_pred) t = np.linspace(0, np.pi / 2, target_length) sqCos = np.cos(t)**2 sigout = sqCos * forw_pred + np.flipud(sqCos) * backw_pred return sigout
def __init__(self, hp_3dBHz=4, fs=250, filter_order=4): self.fs = fs self.filter_order = filter_order self.hp_3dBHz = hp_3dBHz if (self.hp_3dBHz >= 0) and (self.filter_order >= 0) and ( self.hp_3dBHz is not None) and (self.filter_order is not None): b, a = butter_highpass(self.hp_3dBHz, self.fs, self.filter_order) self.a = a self.b = b self.zi = signal.lfiltic(self.b, self.a, [0])
def initializeFilterFlatHistory(self, yout, yin=None): '''Initialize filter assuming the history has been a constant signal with output yout and, input yin (if None, assumed to be equal to yout)''' yout = np.ones(self.order) * yout if yin is None: yin = yout else: yin = np.ones(self.order) * yin self.zi = scs.lfiltic(self.b, self.a, y=yout, x=yin)
def miso_lfilter(ar, ma, x, useic=False): ''' use nd convolution to merge inputs, then use lfilter to produce output arguments for column variables return currently 1d Parameters ---------- ar : array_like, 1d, float autoregressive lag polynomial including lag zero, ar(L)y_t ma : array_like, same ndim as x, currently 2d moving average lag polynomial ma(L)x_t x : array_like, 2d input data series, time in rows, variables in columns Returns ------- y : array, 1d filtered output series inp : array, 1d combined input series Notes ----- currently for 2d inputs only, no choice of axis Use of signal.lfilter requires that ar lag polynomial contains floating point numbers does not cut off invalid starting and final values miso_lfilter find array y such that:: ar(L)y_t = ma(L)x_t with shapes y (nobs,), x (nobs,nvars), ar (narlags,), ma (narlags,nvars) ''' ma = array_like(ma, 'ma') ar = array_like(ar, 'ar') inp = signal.correlate(x, ma[::-1, :])[:, (x.shape[1] + 1) // 2] # for testing 2d equivalence between convolve and correlate # inp2 = signal.convolve(x, ma[:,::-1])[:, (x.shape[1]+1)//2] # np.testing.assert_almost_equal(inp2, inp) nobs = x.shape[0] # cut of extra values at end # TODO: initialize also x for correlate if useic: return signal.lfilter([1], ar, inp, zi=signal.lfiltic(np.array([1., 0.]), ar, useic))[0][:nobs], inp[:nobs] else: return signal.lfilter([1], ar, inp)[:nobs], inp[:nobs]
def __init__(self, hp_3dBHz=8, lp_3dBHz=12, fs=250, filter_order=4): self.fs = fs self.filter_order = filter_order self.hp_3dBHz = hp_3dBHz self.lp_3dBHz = lp_3dBHz b, a = butter_bandpass(self.hp_3dBHz, self.lp_3dBHz, self.fs, self.filter_order) self.a = a self.b = b self.zi = signal.lfiltic(self.b, self.a, [0] * (max(len(self.a), len(self.b)) - 1))
def __init__(self, lp_3dBHz=4, fs=250, filter_order=4): self.fs = fs self.filter_order = filter_order self.lp_3dBHz = lp_3dBHz if (self.lp_3dBHz >= 0) and (self.filter_order >= 0) and ( self.lp_3dBHz is not None) and (self.filter_order is not None): b, a = butter_lowpass(self.lp_3dBHz, self.fs, self.filter_order) self.a = a self.b = b self.zi = signal.lfiltic(self.b, self.a, [0] * (max(len(self.a), len(self.b)) - 1))
def step(self, node): b, a, x = node.getIn('B'), node.getIn('A'), node.getIn('X') if node.state is None: node.state = signal.lfilter_zi(b, a) result = signal.lfilter(b, a, x, zi=node.state) if node.state is None: data = result node.state = signal.lfiltic(b, a, data, x) else: data, node.state = result print(x.shape, x.dtype, data.shape, data.dtype) node.setOut('Y', data)
def PLL(xr, tipo, xi, omega, f0, Ts): """ Retorna las salidas del PLL dada la condición inicial y sus parámetros. Parámetros ---------- xr : list Señal de entrada representada con una lista con N elementos de la forma [x,y]. Tipo : str Filtro que se utiliza dentro del PLL. xi : float Coeficiente de amortiguamiento del filtro. omega : float Pulsación propia del filtro. f0 : float Frecuencia de oscilación natural del VCO. Ts : float Período de muestreo de la señal de entrada. Retorna ------- xr : list Señal de entrada representada con una lista con N elementos de la forma [x,y]. xd : list Señal de salida del detector de fase. xc : list Señal de salida del filtro. xv : list Señal de salida del VCO. """ R = traductor(tipo, omega, xi) # Primero arma la condición inicial coeficientes = coef_filtro(tipo, R, R, R, Ts) if tipo == 'rc': # Calcula la ganancia de lazo del VCO K = omega / (2 * xi) elif tipo == 'lead-lag activo': K = 2 * xi * omega xd = [[0, 0]] xc = [[0, 0]] # Antes de entrar la señal, los pasos intermedios son cero xv = [[0, 0]] # Para el detector de fase ph = 0 # fase de la salida inicial del VCO, xv zi = xd[0][1] * signal.lfiltic(coeficientes[0], coeficientes[1], [0]) for i in range(len(xr)): # Itera sobre cada elemento xd.append(detector([xr[i]], [xv[-1]])[-1]) # 1ro. el detector de fase xc_, zi = filtro([xd[-1]], zi, tipo, R, R, R, Ts) # 2do. el filtro xc.append(xc_[-1]) xv_, ph = vco([xc[-1]], Ts, K, f0, ph) # 3ro. el VCO xv.append(xv_[-1]) return xr, xd, xc, xv, K
def ewma(x, alpha, v0=0): ''' Causal exponential moving average implemented using scipy.signal.lfilter. With alpha as the forgetting factor close to one, x the signal to filter. Optionally, an initial estimate can be provided with the float v0. ''' b, a = ewma_filter(alpha) x = np.atleast_1d(x).flatten() v0 = float(v0) zi = signal.lfiltic(b, a, [v0]) return signal.lfilter(b, a, x, zi=zi)[0]
def __init__(self, reference, fir_coefficients=None, fir_fs=None, check_mode=None): # Convert to a Numpy record array (with named fields) to facilitate data # indexing and sorting #self.reference = np.array(reference).T.astype(calibration_dtype) reference = np.asanyarray(reference) self.reference = np.rec.fromarrays(reference.T, dtype=calibration_dtype) self.reference.sort(axis=0) self.ref_gains = np.unique(self.reference['gain']) self.ref_voltages = np.unique(self.reference['voltage']) self.ref_frequencies = np.unique(self.reference['frequency']) self.ref_spl = self.reference['spl'] self.ref_phi = self.reference['phase'] # Ensure that valid error-checking modes were passed for check_mode valid_modes = (None, 'exact', 'bounds') mode_error = 'Invalid mode for check_bounds' if type(check_mode) == type({}): if self.check_mode['gain'] not in valid_modes: raise ValueError, mode_error if self.check_mode['voltage'] not in valid_modes: raise ValueError, mode_error if self.check_mode['frequency'] not in valid_modes: raise ValueError, mode_error self.check_mode = check_mode elif check_mode not in valid_modes: raise ValueError, 'Invalid mode %s for check_bounds' % check_mode else: self.check_mode = {} self.check_mode['gain'] = check_mode self.check_mode['voltage'] = check_mode self.check_mode['frequency'] = check_mode # Reformat reference into a 3D arrays that we can use for trilinear # interpolation to estimate max SPL and average phase shift. gains = len(self.ref_gains) voltages = len(self.ref_voltages) frequencies = len(self.ref_frequencies) new_shape = gains, voltages, frequencies self.ref_spl.shape = new_shape self.ref_phi.shape = new_shape # Prepare the FIR coefficients for use self.fir_coefficients = fir_coefficients if fir_coefficients is not None: self.fir_zi = signal.lfiltic(fir_coefficients, 1, 0) if fir_fs is None: mesg = 'Must provide sampling frequency for fir_coefficients' raise ValueError(mesg) self.fir_fs = fir_fs
def apply_(self, d): b, a = self.filter if self.zi == []: self.zi = [signal.lfiltic(b, a, np.zeros(b.size)) for fi in range(d.nfeatures)] new_zi = [] xs = [] for i in range(d.nfeatures): xi, zii = signal.lfilter(b, a, d.xs[:, i], zi=self.zi[i]) xs.append(xi.reshape(-1, 1)) new_zi.append(zii) self.zi = new_zi return DataSet(xs=np.hstack(xs), default=d)
def apply_(self, d): b, a = self.filter if self.zi == []: self.zi = [signal.lfiltic(b, a, np.zeros(b.size)) for fi in range(d.nfeatures)] data, new_zi = signal.lfilter(b, a, d.data, zi=self.zi, axis=self.axis) #new_zi = [] #data = [] #for i in range(d.nfeatures): # xi, zii = signal.lfilter(b, a, d.data[i, :], zi=self.zi[i]) # data.append(xi[np.newaxis, :]) # new_zi.append(zii) self.zi = new_zi return DataSet(data=data, default=d)
def postprocess(self,fbin,data,field_name=None): """ Given a freebird_bin object and the data array, returns a list of tuples [(field_name,field_values,units),...] for new fields generated from the postprocessing For squid, assumes that there is a 'counts' field. field_name is either the name of a field in data, or some prefix for several fields, useful when multiple instruments of the same type are logged together, and are differentiated by some prefix. """ field_name=field_name or 'counts' raw=data['counts'] # Convert to voltage: Vx=raw*4.096 / 32768.0 Y=(Vx-self.squid_cal.a)/self.squid_cal.b C_dC=10*Y/self.sbe7_cal.K f_s=fbin.sample_rate_hz() # 1st order, # Wn=1.0/((f_s/2)*2*np.pi*self.squid_cal.Gd) # f_s=512Hz nyq=256Hz 256*2pi rad # Gd=0.02 s, so this should be a 7.98Hz cutoff [b,a]=butter(1,1.0/((f_s/2)*2*np.pi*self.squid_cal.Gd)) zi=lfiltic(b,a,[C_dC[0],C_dC[0]]) C,zf=lfilter(b,a,C_dC,zi=zi) # conductance * cell constant * S/m to mS/cm fields=[('cond',C,'mS/cm'),('cond_emph',C_dC,'mS/cm')] if self.mag_cal is not None: cal_mag = self.mag_cal.adjust(data['imu_m']) fields.append( ('cal_imu_m',cal_mag,'counts') ) # Remove offset from gyro, and scale based on the MPU6050 reference Arduino # code setting the gyro sensitivity to 250deg/s # Full scale is [-32768,32767] fields.append( ('cal_imu_g',(data['imu_g'] - data['imu_g'].mean(axis=0))*250./32768,'deg/s') ) return fields
def setup(self, channels=None, samplerate=None, blocksize=None, totalframes=None): super(IRITStartSeg, self).setup(channels, samplerate, blocksize, totalframes) self.input_blocksize = int(0.02 * samplerate) self.input_stepsize = int(0.008 * samplerate) sr = float(samplerate) lowFreq = 100.0 highFreq = sr / 5 f1 = lowFreq / sr f2 = highFreq / sr numtaps = 10 self.filtre = firwin(numtaps=numtaps, cutoff=[f1, f2], pass_zero=False) self.filtre_z = lfiltic(b=self.filtre, a=1, y=0) # Initial conditions
def _rebuildFilter(self): """rebuild the filter initial condition based upon current state """ if self.aCmplx: self._a = self._convertCmplx(self.a) else: self._a = self.a if self.bCmplx: self._b = self._convertCmplx(self.b) else: self._b = self.b #set up the initial conditions based up on our filters and our history self.zi = lfiltic(self._b,self._a,self.lastY, self.lastX) oldOutputCmplx = self.outputCmplx #if the taps are complex or the initial condition is complex we will be complex if self.aCmplx or self.bCmplx: self.outputCmplx = True #if we are changing between real and complex modes force an sri update to reflect this if (oldOutputCmplx != self.outputCmplx): self.forceSriUpdate = True self.updateFilter=False
def process(self, data): if self.zi is None: # initial pass, get ICs from filter coefficients zi = signal.lfilter_zi(self.b, self.a) self.zi = np.tile(zi, (data.shape[1], 1)).T else: # subsequent passes get ICs from previous input/output num_ch = data.shape[1] K = max(len(self.a)-1, len(self.b)-1) self.zi = np.zeros((K, num_ch)) # unfortunately we have to get zi channel by channel for c in range(data.shape[1]): self.zi[:, c] = signal.lfiltic( self.b, self.a, self.y_prev[-(self.overlap+1)::-1, c], self.x_prev[-(self.overlap+1)::-1, c]) out, zf = signal.lfilter( self.b, self.a, data, axis=0, zi=self.zi) self.x_prev = data self.y_prev = out return out
lwdfilter = Filter(order,wn,coeff_scale,rs=70,ftype=ftype,dtype=dtype) # lwdfilter = Filter(order,wn,coeff_scale,'butter',dtype=np.int32) # lwdfilter = Filter(order,wn,coeff_scale,'butter',dtype=dtype) # Perform sample-by-sample filtering ir_out = [] for x in ir: temp = lwdfilter.push(x) if dtype==np.float: ir_out.append((temp[0]+temp[1])/(2.0*(1<<coeff_scale))) else: ir_out.append((temp[0]+temp[1]+(1<<coeff_scale))>>(coeff_scale+1)) # Compare with SciPy equivalent if ftype=='cheby1': (B,A) = signal.iirfilter(order, wn, rp=1,btype='lowpass', analog=0, ftype='cheby1', output='ba') elif ftype=='cheby2': (B,A) = signal.iirfilter(order, wn, rs=rs,btype='lowpass', analog=0, ftype='cheby2', output='ba') else: (B,A) = signal.iirfilter(order, wn, btype='lowpass', analog=0, ftype=ftype, output='ba') zf = signal.lfiltic(B,A,np.zeros(len(A)-1), np.zeros(len(B)-1)) ir_comp, zf = signal.lfilter(B,A,ir,zi=zf) # Plot the data plt.plot(ir, 'k-', linewidth=2.0) plt.plot(ir_comp, 'r-', linewidth=2.0) plt.plot(ir_out, 'b-', linewidth=2.0) plt.grid() plt.legend(('Raw data', 'SciPy filtered - float32', 'LWDF - int32'), loc='upper left') plt.show()
def arma_acovf(ar, ma, nobs=10, sigma2=1, dtype=None): """ Theoretical autocovariance function of ARMA process Parameters ---------- ar : array_like, 1d coefficient for autoregressive lag polynomial, including zero lag ma : array_like, 1d coefficient for moving-average lag polynomial, including zero lag nobs : int number of terms (lags plus zero lag) to include in returned acovf sigma2 : float Variance of the innovation term. Returns ------- acovf : array autocovariance of ARMA process given by ar, ma See Also -------- arma_acf acovf References ---------- Brockwell, Peter J., and Richard A. Davis. 2009. Time Series: Theory and Methods. 2nd ed. 1991. New York, NY: Springer. """ if dtype is None: dtype = np.common_type(np.array(ar), np.array(ma), np.array(sigma2)) p = len(ar) - 1 q = len(ma) - 1 m = max(p, q) + 1 if sigma2.real < 0: raise ValueError('Must have positive innovation variance.') # Short-circuit for trivial corner-case if p == q == 0: out = np.zeros(nobs, dtype=dtype) out[0] = sigma2 return out # Get the moving average representation coefficients that we need ma_coeffs = arma2ma(ar, ma, lags=m) # Solve for the first m autocovariances via the linear system # described by (BD, eq. 3.3.8) A = np.zeros((m, m), dtype=dtype) b = np.zeros((m, 1), dtype=dtype) # We need a zero-right-padded version of ar params tmp_ar = np.zeros(m, dtype=dtype) tmp_ar[:p + 1] = ar for k in range(m): A[k, :(k + 1)] = tmp_ar[:(k + 1)][::-1] A[k, 1:m - k] += tmp_ar[(k + 1):m] b[k] = sigma2 * np.dot(ma[k:q + 1], ma_coeffs[:max((q + 1 - k), 0)]) acovf = np.zeros(max(nobs, m), dtype=dtype) acovf[:m] = np.linalg.solve(A, b)[:, 0] # Iteratively apply (BD, eq. 3.3.9) to solve for remaining autocovariances if nobs > m: zi = signal.lfiltic([1], ar, acovf[:m:][::-1]) acovf[m:] = signal.lfilter([1], ar, np.zeros(nobs - m, dtype=dtype), zi=zi)[0] return acovf[:nobs]
def removeTides(dc, dt=None, gapFactor=20, T=T_M2): """A low-pass filter to remove tidal signal from the data""" from scipy import signal time = dc.time.array vals = dc.data if dt is None: dt = np.diff(time).mean() # try to calculate exact dt by omitting large gaps gaps, ranges, t = dc.detectGaps(dt=dt, gapFactor=gapFactor) diff = [] for i in range(ranges.shape[0]): twin = time[ranges[i, 0]:ranges[i, 1]] diff.append(np.diff(twin)) diff = np.concatenate(tuple(diff), axis=0) dt = diff.mean() # filter design, low-pass butterworth T0 = (2 * dt) # period of Nyquist frequency Tpass = 8 * T # period of pass frequency Gpass = 3.0 # max dB loss in pass band Tstop = 1 * T # period of stop frequency Gstop = 30.0 # min dB atennuation in stop band o, Wn = signal.buttord(T0 / Tpass, T0 / Tstop, Gpass, Gstop) if o < 0: raise Exception( 'Cannot create tidal filter. Data sampling frequency may be too low, dt=' + str(dt)) b, a = signal.butter(o, Wn, 'low') # filter each contiquous data range separately npoints, nfields, ntime = vals.shape for k in range(nfields): for j in range(npoints): newvals = [] newtime = [] for i in range(ranges.shape[0]): twin = time[ranges[i, 0]:ranges[i, 1]] vwin = vals[j, k, ranges[i, 0]:ranges[i, 1]] if len(vwin) > 3*len(a): try: # default forward-backward filter # filtered = signal.filtfilt(b, a, vwin, padtype='constant') # forward-backward filter with custom boundary conditions # pad with mean of 1/2 pass window length N_init = int(np.ceil(Tpass/dt/2)) # forward filter x_init = vwin[:N_init] y_init = x_init.mean()*np.ones_like(x_init) z_init = signal.lfiltic(b, a, y_init, x_init) filtered = signal.lfilter(b, a, vwin, zi=z_init)[0] # backward filter x_init = vwin[-N_init:][::-1] y_init = x_init.mean()*np.ones_like(x_init) z_init = signal.lfiltic(b, a, y_init, x_init) filtered = signal.lfilter(b, a, filtered[::-1], zi=z_init)[0] filtered = filtered[::-1] newvals.append(filtered) newtime.append(twin) except Exception as e: print a.shape, vwin.shape raise e newvals = np.concatenate(tuple(newvals), axis=0) if j == 0 and k == 0: data_out = np.zeros((npoints, nfields, len(newvals))) time_out = np.concatenate(tuple(newtime), axis=0) data_out[j, k, :] = newvals ta = timeArray.timeArray(time_out, 'epoch') dc2 = dc.interpolateInTime(ta) dc2.data = data_out return dc2
def step(self,responses): retinal_image = nx.asarray( responses ) retinal_image = retinal_image.astype( self.compute_typecode ) assert retinal_image.shape == (self.n_receptors,) self._retinal_image = retinal_image[:,nx.newaxis] # we operate on rank-2 arrays if self.do_luminance_adaptation: if self.zi_luminance_adaptation is None: # This is the first step, so find filter coefficients # that produce zero output to produce perfectly # adapted filter state. y = nx.zeros_like(self._retinal_image) x = self._retinal_image n_elements_state_vec = max(len(self.b_lum_adapt),len(self.b_lum_adapt))-1 zi_shape = (self.n_receptors,n_elements_state_vec) if 0: self.zi_luminance_adaptation = signal.lfiltic( self.b_lum_adapt, self.a_lum_adapt, y, x, axis=1) else: self.zi_luminance_adaptation = nx.zeros( zi_shape, self.compute_typecode ) for i in range(self.n_receptors): this_zi = signal.lfiltic( self.b_lum_adapt, self.a_lum_adapt, y[i,:], x[i,:]) self.zi_luminance_adaptation[i,:] = this_zi.astype( self.compute_typecode) del y del x if zi_shape != self.zi_luminance_adaptation.shape: print 'wanted shape %s, got shape %s'%( str(zi_shape),str(self.zi_luminance_adaptation.shape)) raise ValueError('shape wrong') test_zero, tmpzi = signal.lfilter(self.b_lum_adapt, self.a_lum_adapt, self._retinal_image, axis=1, zi=self.zi_luminance_adaptation) epsilon = 1e-5 if test_zero.max() > epsilon: raise ValueError("maximum value shouldn't be greater than epsilon") (self._luminance_adapted, self.zi_luminance_adaptation) = signal.lfilter(self.b_lum_adapt, self.a_lum_adapt, self._retinal_image, axis=1, zi=self.zi_luminance_adaptation) #print 'set self._luminance_adapted' else: self._luminance_adapted = self._retinal_image # early vision (photoreceptor/LMC) filtering if not self.skip_earlyvis: self._earlyvis, self.zi_earlyvis = signal.lfilter(self.b_earlyvis, self.a_earlyvis, self._luminance_adapted, axis=1, zi=self.zi_earlyvis) else: self._earlyvis = self._retinal_image if self.early_contrast_saturation_params is not None: tmp = self.early_contrast_saturation_params csat_type = tmp[0] if csat_type == 'tanh+lin': a, b = self.early_contrast_saturation_params[1:] self._early_contrast_saturated = numpy.tanh( self._earlyvis * a) + self._earlyvis*b elif csat_type == 'tanh': a = self.early_contrast_saturation_params[1] self._early_contrast_saturated = numpy.tanh( self._earlyvis * a) else: raise ValueError('unknown contrast saturation type: %s'%csat_type) else: self._early_contrast_saturated = self._earlyvis # high pass filter if necessary if self.do_highpass: self._U, self.zi_hp = signal.lfilter(self.b_hp, self.a_hp, self._early_contrast_saturated, axis=1, zi=self.zi_hp) else: self._U = self._early_contrast_saturated # undelayed is just early vision filtering # emd lowpass filter self._D, self.zi_emd = signal.lfilter(self.b_emd, self.a_emd, self._U,axis=1, zi=self.zi_emd) self._U_pre_saturation = self._U self._D_pre_saturation = self._D if self.preEMD_saturation_s is not None: # compression/saturation, a la Dror. 2001, eqn. 5 ## sU = self.preEMD_saturation_s*self._U ## self._U = nx.tanh(sU) ## print sU[:5],'->',self._U[:5] self._U = nx.tanh(self.preEMD_saturation_s*self._U) self._D = nx.tanh(self.preEMD_saturation_s*self._D) # half correlators # A * Bdelayed self._subunit_A_Bd = self._U[self.emd_sideA_idxs] * self._D[self.emd_sideB_idxs] # Adelayed * B self._subunit_Ad_B = self._D[self.emd_sideA_idxs] * self._U[self.emd_sideB_idxs] # flicker insensitive if self.sign_convention: self.emd_outputs = (self.weights_A*self._subunit_A_Bd - self.S*self.weights_B*self._subunit_Ad_B) else: self.emd_outputs = (self.S*self.weights_B*self._subunit_Ad_B - self.weights_A*self._subunit_A_Bd) return self.emd_outputs[:,0] # make rank-1
def miso_lfilter(ar, ma, x, useic=False): ''' use nd convolution to merge inputs, then use lfilter to produce output arguments for column variables return currently 1d Parameters ---------- ar : array_like, 1d, float autoregressive lag polynomial including lag zero, ar(L)y_t ma : array_like, same ndim as x, currently 2d moving average lag polynomial ma(L)x_t x : array_like, 2d input data series, time in rows, variables in columns Returns ------- y : array, 1d filtered output series inp : array, 1d combined input series Notes ----- currently for 2d inputs only, no choice of axis Use of signal.lfilter requires that ar lag polynomial contains floating point numbers does not cut off invalid starting and final values miso_lfilter find array y such that:: ar(L)y_t = ma(L)x_t with shapes y (nobs,), x (nobs,nvars), ar (narlags,), ma (narlags,nvars) ''' ma = np.asarray(ma) ar = np.asarray(ar) #inp = signal.convolve(x, ma, mode='valid') #inp = signal.convolve(x, ma)[:, (x.shape[1]+1)//2] #Note: convolve mixes up the variable left-right flip #I only want the flip in time direction #this might also be a mistake or problem in other code where I #switched from correlate to convolve # correct convolve version, for use with fftconvolve in other cases #inp2 = signal.convolve(x, ma[:,::-1])[:, (x.shape[1]+1)//2] inp = signal.correlate(x, ma[::-1,:])[:, (x.shape[1]+1)//2] #for testing 2d equivalence between convolve and correlate #np.testing.assert_almost_equal(inp2, inp) nobs = x.shape[0] # cut of extra values at end #todo initialize also x for correlate if useic: return signal.lfilter([1], ar, inp, #zi=signal.lfilter_ic(np.array([1.,0.]),ar, ic))[0][:nobs], inp[:nobs] zi=signal.lfiltic(np.array([1.,0.]),ar, useic))[0][:nobs], inp[:nobs] else: return signal.lfilter([1], ar, inp)[:nobs], inp[:nobs]
e[t] = x[t] - y[t] for t in range(maxlag, nobs): #wrong broadcasting, 1d only y[t] = (x[t-arlag:t] * arcoefs_r).sum(0) + (e[t-malag:t] * macoefs_r).sum(0) e[t] = x[t] - y[t] return y, e arcoefs, macoefs = -np.array([1, -0.8, 0.2])[1:], np.array([1., 0.5, 0.1])[1:] print armaloop(arcoefs, macoefs, np.ones(10)) print armaloop([0.8], [], np.ones(10)) print armaloop([0.8], [], np.arange(2,10)) y, e = armaloop([0.1], [0.8], np.arange(2,10)) print e print signal.lfilter(np.array([1, -0.1]), np.array([1., 0.8]), np.arange(2,10)) y, e = armaloop([], [0.8], np.ones(10)) print e print signal.lfilter(np.array([1, -0.]), np.array([1., 0.8]), np.ones(10)) ic=signal.lfiltic(np.array([1, -0.1]), np.array([1., 0.8]), np.ones([0]), np.array([1])) print signal.lfilter(np.array([1, -0.1]), np.array([1., 0.8]), np.ones(10), zi=ic) zi = signal.lfilter_zi(np.array([1, -0.8, 0.2]), np.array([1., 0, 0])) print signal.lfilter(np.array([1, -0.1]), np.array([1., 0.8]), np.ones(10), zi=zi) print signal.filtfilt(np.array([1, -0.8]), np.array([1.]), np.ones(10)) #todo write examples/test across different versions
elif control=='VC': Pin = 0.5*sum((pdata[indx:h-2,1]-pdata[indx:h-2,2])* (pdata[indx+1:h-1,0]-pdata[indx:h-2,0]))/ \ sum(pdata[indx+1:h-1,0]-pdata[indx:h-2,0]); print(' \twdwdy\t:\t', Pin) PinN = Pin; PinP = Pin gamma = Pin/P0; print(' \tgamma\t:\t', gamma) # Computing uncertainties sbar_dudy=0.0; sbar_Ub=0.0; T0_dudy=0.0; T0_Ub=0.0 if elaborate: t = linspace(data[indx,0],data[m-2,0],m-indx-1); dt=t[1]-t[0] dudyI0 = zeros((1,m-indx-1)); dudyIn = zeros((1,m-indx-1)); dudyI0f = interp1d(data[indx-1:m-1,0], data[indx-1:m-1,1]); dudyI0[0,:] = dudyI0f(t) dudyInf = interp1d(data[indx-1:m-1,0], data[indx-1:m-1,2]); dudyIn[0,:] = dudyInf(t) ar_dudyI0 = arsel(dudyI0); ar_dudyIn = arsel(dudyIn) zi0 = lfiltic([1], ar_dudyI0.AR[0], ar_dudyI0.autocor[0]) zin = lfiltic([1], ar_dudyIn.AR[0], ar_dudyIn.autocor[0]) rho0 = ones(m-indx-1); rho0[1:] = lfilter([1], ar_dudyI0.AR[0], \ zeros(m-indx-2), zi=zi0)[0] rhon = ones(m-indx-1); rhon[1:] = lfilter([1], ar_dudyIn.AR[0], \ zeros(m-indx-2), zi=zin)[0] sbar_dudy = std(concatenate((data[indx:m-1,1], data[indx:m-1,2])))/ \ sqrt(ar_dudyI0.eff_N[0]+ar_dudyIn.eff_N[0]) T0_dudy = 0.5*dt*(ar_dudyI0.T0[0]+ar_dudyIn.T0[0]) if CPI: UbI = zeros((1,m-indx-1)) UbIf = interp1d(data[indx-1:m-1,0], data[indx-1:m-1,5]); UbI[0,:] = 0.5*UbIf(t) ar_UbI = arsel(UbI); ziUb = lfiltic([1], ar_UbI.AR[0], ar_UbI.autocor[0]) rhoU = ones(m-indx-1); rhoU[1:] = lfilter([1], ar_UbI.AR[0], \ zeros(m-indx-2), zi=ziUb)[0] sbar_Ub = std(data[indx:m-1,5])/sqrt(ar_UbI.eff_N[0])