예제 #1
0
	def _odes(self, x,y,args):
		derivs = [y[1]/x**2] if (x>0) else [0]
		derivs.append(-9.0*x**2*np.exp(y[0]))
		
		u = y[1]
		
		phi=y[0]
		phi0=args[0]
		eta=args[1]
		B = args[2]
	
		C = 1 - ((1-B)/eta**2)

		if phi>0:
			inf = gu(1.5,phi/eta**2)*np.exp(phi/eta**2)*g(1.5)
			if inf!=inf or inf==np.inf:
				inf = (phi/eta**2)**0.5
			inf2 = gu(1.5,phi0/eta**2)*np.exp(phi0/eta**2)*g(1.5)
			if inf2!=inf2 or inf2==np.inf:
				inf2 = (phi0/eta**2)**0.5

			dydt =[u/(x**2), -9*(x**2)*(self.mmb*(np.exp(phi)*g(1.5)*gl(1.5,phi)-(2.0/3.0)*phi**(1.5)*B- (4.0/15.0)*C*phi**(2.5)) + self.mmpe* ((1-B)*eta**3 *inf))/ (self.mmb*(np.exp(phi0)*g(1.5)*gl(1.5,phi0)-(2.0/3.0)*phi0**(1.5)*B- (4.0/15.0)*C*phi0**(2.5))+self.mmpe* ((1-B)*eta**3 *inf2))]

		if phi<0:
			inf_neg = np.exp(phi/eta**2)*g(1.5)
			inf2 = gu(1.5,phi0/eta**2)*np.exp(phi0/eta**2)*g(1.5)
			if inf2!=inf2 or inf2==np.inf:
				inf2 = (phi0/eta**2)**0.5
			dydt =[u/(x**2), -9*(x**2)*(self.mmpe*((1-B)*eta**3 *inf_neg))/(self.mmb*(np.exp(phi0)*g(1.5)*gl(1.5,phi0)-(2.0/3.0)*phi0**(1.5)*B- (4.0/15.0)*C*phi0**(2.5))+self.mmpe* ((1-B)*eta**3 *inf2))]
		return dydt
def solveNeuralNetworks():
    print(" X shape = ", X.shape, "\n Theta1 shape =", Theta1.shape)
    z2 = np.matmul(X, Theta1.T)
    a2 = g(z2)
    print(" a2 shape = ", a2.shape, "\n Theta2 shape =", Theta2.shape)
    a2 = np.hstack([np.zeros([5000, 1]), a2])
    z3 = np.matmul(a2, Theta2.T)
    h = g(z3)
    predict = np.argmax(h.T, axis=0)
예제 #3
0
def anderson_darlin(seq, F, alpha=.05, n=None, verbose=True):
    """
    Statistical test of whether a given sample of data is drawn from 
    a given probability distribution. 

    Inputs:
    - seq: Array of integers
    - F: Cumulative distribution function
    - alpha: Float desirible level of significance
    - n: Integer number of regions (default is None)
    - verbose: Boolean; If set to true then print logs

    Outputs:
    - Boolean; If hypothesis is ejected
    """
    seq = np.array(seq)
    if n is None:
        n = len(seq)
    else:
        seq = np.random.choice(seq, n)

    seq_sorted = sorted(seq)

    s = 0
    for i in range(1, n + 1):
        f = F(seq_sorted[i - 1])
        s += (2*i - 1) * np.log(f) / (2*n) + \
        (1 - (2*i - 1) / (2*n)) * np.log(1 - f)
    s = -n - 2 * s

    a2 = 0
    for j in range(15):
        a2 += (-1)**j * g(j + .5) * (4*j + 1) / g(.5) * g(j + 1) * \
        np.exp((4*j + 1)**2 * np.pi**2 / (-8 * s)) * \
        integrate.quad(lambda y: np.exp(s / (8 * (y**2 + 1)) - (4*j + 1)**2 \
                                * np.pi**2 * y**2 / (8 * s)), 0, np.inf)[0]

    a2 *= np.sqrt(2 * np.pi) / s
    p = 1 - a2

    is_rejected = p <= alpha

    if verbose:
        print(f'Significance level S = {s}')
        print(f'a2 = {a2}')
        print(f'p = {p}')
    return is_rejected
예제 #4
0
def costFunction(features, target, weights, reg_parameter):
    hypothesis = np.array(g(features.__matmul__(weights)))

    I = np.ones((m, 1))
    cost = (-1) * (target.T.__matmul__(np.log(hypothesis)) +
                   (I - target).T.__matmul__(np.log(I - hypothesis))) / m

    reg_func = (reg_parameter / (2 * m)) * (sum(weights**2) - weights[0][0]**2)

    return cost + reg_func
예제 #5
0
def costFunction(features, target, weights, reg_parameter):
    hypothesis = np.array(g(np.matmul(features, weights)))
    I = np.ones(target.shape)
    a = np.matmul(target.T, np.log(hypothesis))
    b = np.matmul((I - target).T, np.log(I - hypothesis))

    cost = (-1) * (sum(a) + sum(b)) / m
    reg_func = (reg_parameter / (2 * m)) * (sum(weights**2) - weights[0][0]**2)

    a = max(cost)
    return a + max(reg_func)
def trainGradientDescent(features,target,num_steps,learning_rate,add_intercept=False):
	if add_intercept:
		intercept=np.ones((features.shape[0],1))
		features =np.hstack([intercept,features])

	weights = np.zeros((features.shape[1],1))

	for step in range(int(num_steps)):
		score = np.matmul(features,weights)
		hypothesis = g(score)

		output_error_signal= target - hypothesis
		gradient = np.matmul(features.T,output_error_signal)
		weights += (learning_rate)*gradient
	return weights
예제 #7
0
def calcGradient(features,
                 target,
                 weights,
                 reg_parameter,
                 add_intercept=False):
    if add_intercept:
        intercept = np.ones((features.shape[0], 1))
        features = np.hstack([intercept, features])

    score = np.matmul(features, weights)
    hypothesis = g(score)

    output_error_signal = hypothesis - target
    gradient = np.matmul(features.T, output_error_signal)
    weights_zero = copy.deepcopy(weights)
    weights_zero[0][0] = 0
    reg_gradient = gradient / m + (reg_parameter / m) * weights_zero
    return reg_gradient
예제 #8
0
파일: mi.py 프로젝트: AlvaroGI/IDNNs
def h(x):
    shape = x.shape
    d = shape[1] * 1.
    N = shape[0]
    e = 0.00001

    rho = np.zeros((N, N))

    for i in range(N):
        for j in range(N):
            if i == j:
                continue
            else:
                rho[i, j] = np.linalg.norm(x[i, :] - x[j, :])

    rho = np.sort(rho, axis=0)
    rho_min = rho[1, :]

    h = d * np.average(rho)
    h = h + np.log((N - 1) * np.pi**(d / 2) / g(1 + d / 2))
    h = h + 0.577
    return h
예제 #9
0
def normalGamma(m, l, a, b):
    C = (b**a) * np.sqrt(l) / (g(a) * np.sqrt(2 * np.pi))
    return lambda x, tau: C * tau**(a - 0.5) * np.exp(-b * tau - 0.5 * l * tau
                                                      * (x - m)**2)
예제 #10
0
def gamma(a, b):
    C = b**a / g(a)
    return lambda tau: C * tau**(a - 1) * np.exp(-b * tau)
예제 #11
0
파일: SPES_mcmc.py 프로젝트: IClaydon/SPES
def lnlike_ian(theta, data):
    #print theta
    W0, eta, Mt, rh, B = theta
    #print theta
    rho_dat = data[0]
    sigma_dat = data[1]
    #discrete_dat = data[2]

    #try:
    eta = eta
    G = np.pi * 4.0 / 9.0
    init = W0, 0.0
    C = 1 - ((1 - B) / eta**2)

    params = [W0, eta, Mt, rh]

    if restart == 0:
        m = SPES(1000, W0, eta, B, 1, 0, 1)
    if restart == 1:
        m = SPES(1000, W0, eta, B, 1, 1, 1)
    r = m.r
    phi = m.phi

    minim = 0

    rt = m.rt
    dispersion = m.dispersion
    density = m.density

    count = 0
    Mss = []
    Mf = (4 * np.pi * np.trapz((r**2) * density, r))

    Mcs = []
    for l in range(len(phi) - 1):
        Mc = (4 * np.pi * np.trapz(
            (r[0:l + 1]**2) * density[0:l + 1], r[0:l + 1]))
        if (Mc > 0.5 * Mf) & (count == 0):
            count = 1
            rs = rh / r[l]
            break

    Ms = Mt / (Mf)
    vs = np.sqrt((Ms / rs) * (np.pi * 4.0 / 9.0))

    density_all = np.array(density) * (Ms) / (rs**3)
    disp_all = np.array(dispersion) * (vs)

    r_us = r
    r = r * rs

    prob = 0
    inf1 = (np.exp(W0 / (eta**2)) * gu(1.5, W0 / (eta**2))) * g(1.5)

    A = (Ms / ((vs**3) * (rs**3))) * 1. / (4 * np.pi * np.sqrt(2) *
                                           (np.exp(W0) * g(1.5) * gl(1.5, W0) -
                                            (2.0 / 3.0) * W0**(1.5) * B) -
                                           (4.0 / 15.0) * C * W0**(2.5) +
                                           ((1 - B) * eta**3 * inf1))

    values = np.loadtxt('data/equalmass_32')

    sigma_mod_interp = np.interp(sigma_dat[0], r, disp_all, right=-np.inf)
    rho_mod_interp = np.interp(rho_dat[0], r, density_all, right=-np.inf)
    loglike = 0
    for i in range(len(rho_dat[0])):

        loglike -= (rho_mod_interp[i] -
                    rho_dat[1][i])**2 / (2 * (rho_dat[2][i]**2))
        loglike -= log(sqrt(2 * pi * rho_dat[2][i]**2))

    # Likelihood: velocity dispersion
    for i in range(len(sigma_dat[0])):

        loglike -= (sigma_mod_interp[i] -
                    sigma_dat[1][i])**2 / (2 * (sigma_dat[2][i]**2))

        loglike -= log(sqrt(2 * pi * sigma_dat[2][i]**2))

    if numpy.isnan(loglike):
        print "nan"
        loglike = -np.inf
    return (loglike)
def costFunction(features,target,weights):
	prediction =np.array(g(features.__matmul__(weights)))
	I=np.ones((m,1),order='F')
	cost_function=(-1)*(target.T.__matmul__(np.log(prediction)) + (I-target).T.__matmul__(np.log(I-prediction)))/m
	return cost_function
예제 #13
0
	def __init__(self, rmax,phi0,eta,B,delta,res,mm):
		self.r = np.array([0])
		self.C = 1 - ((1-B)/eta**2)
                self.mmb=1
                self.mmpe=mm
		#print self.C
		#delta=rhm
		# The 2 variables in the Poisson equation: phi, U, where U = -GM(<r)
		self._y = [phi0, 0]  
		self.phi0 = phi0
		init = [phi0,0]
		self.G = 9/(4*pi)

		# Solve
		sol = ode(self._odes)
		#sol.set_integrator('dopri5',nsteps=1e6,max_step=0.1)
		if res == 0:
			sol.set_integrator('dopri5')#,nsteps=1e6,atol=1e-10,rtol=1e-10)
		if res==1:
			sol.set_integrator('dopri5',max_step=0.1,nsteps=1e6,atol=1e-10,rtol=1e-10)
		sol.set_f_params([phi0,eta,B])
		sol.set_solout(self._logcheck)
		sol.set_initial_value(numpy.array([phi0,0]),0.0001)
		sol.integrate(rmax)

		
		# Save phi, rho and M from Poisson solver
		self.phi = self._y[0] 
		#print self.phi
		phi_in = self.phi[self.phi>0]
		phi_out = self.phi[self.phi<0]
		
		###Checks for infinitys in density and dispersion
		inf1 = (np.exp(init[0]/(eta**2))*gu(1.5,init[0]/(eta**2)))*g(1.5)
		if (inf1==np.inf) or (inf1!=inf1):
			inf1=(init[0]/eta**2)**0.5
		inf = np.exp(phi_in/(eta**2))*gu(1.5,phi_in/(eta**2))*g(1.5)
		inf2 =np.exp(phi_in/(eta**2))*gu(2.5,phi_in/(eta**2))*g(2.5)
		for i in range(len(inf)):
			if (inf[i]==np.inf) or (inf[i]!=inf[i]):
				inf[i] = (phi_in[i]/eta**2)**0.5
			if (inf2[i]==np.inf) or (inf2[i]!=inf2[i]):
				inf2[i] =  (phi_in[i]/eta**2)**1.5
		###Density and Velocity dispersion for r<r_t
		self.rho0 = ((np.exp(init[0])*g(1.5)*gl(1.5,init[0])-(2.0/3.0)*init[0]**(1.5)*B) - (4.0/15.0)*self.C*init[0]**(2.5)+ ((1-B)*eta**3 *inf1))#*kv(0.25,eta**2/init[0])))
		self.rho_b = self.mmb* (np.exp(phi_in)*g(1.5)*gl(1.5,phi_in)-(2.0/3.0)*phi_in**(1.5)*B - (4.0/15.0)*self.C*phi_in**(2.5))
		self.rho_pe = self.mmpe* ((1-B)*eta**3 *inf)#*kv(0.25,eta**2/phi_in))
		self.rho_in = self.rho_b + self.rho_pe
		self.pressure_in = (((np.exp(phi_in)*g(2.5)*gl(2.5,(phi_in))-0.4*phi_in**(2.5)*B) - (4.0/35.0)*self.C*phi_in**(3.5)+ ((1-B)*eta**5 *inf2*kv(0.25,eta**2/phi_in))))
		self.pressure_b = (((np.exp(phi_in)*g(2.5)*gl(2.5,(phi_in))-0.4*phi_in**(2.5)*B) - (4.0/35.0)*self.C*phi_in**(3.5)))
		self.pressure_pe=((1-B)*eta**5 *inf2)#*kv(0.25,eta**2/phi_in))
		self.sigma_b = np.sqrt( 2*self.pressure_b/self.rho_b)
		self.sigma_pe = np.sqrt( 2*self.pressure_pe/self.rho_pe)
		sigma_in = np.sqrt( 2*self.pressure_in/self.rho_in)
		###Density and velocity dispersion for r>r_t
		inf_neg = np.exp(phi_out/eta**2)*g(1.5)
		inf2_neg = np.exp(phi_out/(eta**2))*g(2.5)
		self.rho_out = self.mmpe*(((1-B)*eta**3 *inf_neg))#/self.rho0
		sigma_out = np.sqrt( 2*eta**2*(inf2_neg/inf_neg))
		###Total rho_hat and sigma
		#print len(self.rho_in),len(self.rho_out)
		self.rhohat = np.array(np.concatenate([self.rho_in,self.rho_out]))/np.array(self.rho0)
		self.sigma = np.concatenate([sigma_in,sigma_out])

		###dM/dE & f(E)
		self.phii = np.linspace(0,-phi0,100)
		self.N1=[0]*len(phi_in)
		self.N2=[0]*len(self.phii)
		self.fe = [0]*len(phi_in)
		self.fe_1 = [0]*len(phi_in)
		self.fe_2 = [0]*len(phi_in)
		A = 1./(4*np.pi*np.sqrt(2)*(np.exp(init[0])*g(1.5)*gl(1.5,init[0])-(2.0/3.0)*init[0]**(1.5)*B) - (4.0/15.0)*self.C*init[0]**(2.5) + ((1-B)*eta**3 *inf1))
		self.fe2=[0]*len(self.phii)
		self.fe2_1=[0]*len(self.phii)
		self.fe2_2=[0]*len(self.phii)
		for i in range(len(phi_in)):
			self.N1[i] = ((4*np.pi)*(np.exp(phi_in[i])-B-(self.C*phi_in[i]))*simps((self.r[0:(i+1)]**2 * np.sqrt((-phi_in[i] + phi_in[0:(i+1)]))),self.r[0:(i+1)])/self.rho0)
			self.fe[i] = A*(np.exp(phi_in[i])-B-(self.C*phi_in[i]))
			self.fe_1[i] = A*(np.exp(phi_in[i])-self.C)
			self.fe_2[i] = A*(np.exp(phi_in[i]))	
		for i in range(len(self.phii)):
			self.N2[i] = ((1-B) * (4*np.pi/np.sqrt(2))*np.exp(self.phii[i]/eta**2)*simps(self.r[self.phi>0]**2 * np.sqrt(2*(-self.phii[i] + phi_in)),self.r[self.phi>0])/self.rho0)
			self.fe2[i] = A*(1-B)*(np.exp(self.phii[i]/eta**2))
			self.fe2_1[i] = A*(1-B)*(np.exp(self.phii[i]/eta**2))/eta**2
			self.fe2_2[i] = A*(1-B)*(np.exp(self.phii[i]/eta**2))/eta**4
 
		###Scale values 
		count = 0
		Mss = []
		
		self.Mf = (4*np.pi*simps((self.r[0:len(phi_in)]**2)*self.rhohat[0:len(phi_in)],self.r[0:len(phi_in)]))
		for i in range(len(phi_in)-1):
			Mc =(4*np.pi*simps((self.r[0:i+1]**2)*self.rhohat[0:i+1],self.r[0:i+1]))
			if (Mc > 0.5*self.Mf) & (count==0):
				count = 1
				self.rhm = self.r[i]
				break
		self.rt = np.interp(0,-self.phi,self.r)
		self.Mt = (4*np.pi*simps((self.r[self.r<self.rt]**2)*self.rhohat[self.r<self.rt],self.r[self.r<self.rt]))
		#self.rs = (1.1*rlb)/(delta*self.rt)
		#self.Ms = Mt/(Mf)
		#self.vs = np.sqrt( (self.Ms/self.rs)*(0.0043*(np.pi*4.0/9.0)))
		###Scaled Parameters
		#self.rhohat_s = self.rhohat*(self.Ms)/(self.rs**3)
		#self.rhob_s = (self.rho_b/self.rho0)*(self.Ms)/(self.rs**3)
		#self.rhope_s = (self.rho_pe/self.rho0)*(self.Ms)/(self.rs**3)

		self.Mb =(4*np.pi*simps((self.r[self.phi>0]**2)*self.rho_b/self.rho0,self.r[self.phi>0]))#-M_bp# (simps(N,-phi))
		self.Mpe = 4*np.pi*simps((self.r[self.phi>0]**2)*self.rho_pe/self.rho0,self.r[self.phi>0])
		self.Mfrac = self.Mpe/(self.Mb+self.Mpe)

		
		#self.sigma_s = self.sigma*(self.vs)
		#self.N1_s = np.array(self.N1)*(self.Ms/(self.vs**2))
		#self.N2_s = np.array(self.N2)*(self.Ms/(self.vs**2))
		#self.phi_s = self.phi*self.vs**2
		#self.phii_s = self.phii*self.vs**2
		#self.r_s = self.r*self.rs
		#self.rt = self.rt*self.rs
		
		###Surface Density and projected velocity dispersion
		R = self.r[self.r<delta*self.rt]

		self.density = self.rhohat[self.r<delta*self.rt]
		self.dispersion = self.sigma[self.r<delta*self.rt]
		self.surface_density = np.zeros(len(self.density)-1)
		self.surface_dispersion = np.zeros(len(self.density)-1)
		self.rall = self.r
		self.phi = self.phi[self.r<delta*self.rt]
		self.r = self.r[self.r<delta*self.rt]
		#self.sigma_b = self.sigma_b[self.r<delta*self.rt]
		#self.rho_b = self.rho_b[self.r<delta*self.rt]
		#self.sigma_pe = self.sigma_pe[self.r<delta*self.rt]
		#self.rho_pe = self.rho_pe[self.r<delta*self.rt]
		
		for i in range(len(self.r)-1):
			c = (self.r >= R[i])
			r_2 = self.r[c]
			z = sqrt(abs(r_2**2 - R[i]**2)) # avoid small neg. values
			self.surface_density[i] = 2.0*abs(simps(self.density[c], x=z))
			self.surface_dispersion[i] = np.sqrt((abs(2.0*(simps(self.density[c]*(1.0/3.0)*self.dispersion[c]**2,x=z))))/self.surface_density[i])
		#print self.surface_dispersion
		#self.surface_density = self.surface_density*(self.Ms)/(self.rs**2)
		#self.surface_dispersion = self.surface_dispersion*(self.vs)
		self.R = self.r[0:len(self.r)-1]
예제 #14
0
파일: Sampling.py 프로젝트: khan08/MLBayes
def acceptF(lambda_all,adv,p):
    return sum(log(g(1.+adv*lambda_all)/g(adv*lambda_all)*(p**(lambda_all*adv))))