def test_tukeylambda_stats_known_exact(): """Compare results with some known exact formulas.""" # Some exact values of the Tukey Lambda variance and kurtosis: # lambda var kurtosis # 0 pi**2/3 6/5 (logistic distribution) # 0.5 4 - pi (5/3 - pi/2)/(pi/4 - 1)**2 - 3 # 1 1/3 -6/5 (uniform distribution on (-1,1)) # 2 1/12 -6/5 (uniform distribution on (-1/2, 1/2)) # lambda = 0 var = tukeylambda_variance(0) assert_allclose(var, np.pi**2 / 3, atol=1e-12) kurt = tukeylambda_kurtosis(0) assert_allclose(kurt, 1.2, atol=1e-10) # lambda = 0.5 var = tukeylambda_variance(0.5) assert_allclose(var, 4 - np.pi, atol=1e-12) kurt = tukeylambda_kurtosis(0.5) desired = (5./3 - np.pi/2) / (np.pi/4 - 1)**2 - 3 assert_allclose(kurt, desired, atol=1e-10) # lambda = 1 var = tukeylambda_variance(1) assert_allclose(var, 1.0 / 3, atol=1e-12) kurt = tukeylambda_kurtosis(1) assert_allclose(kurt, -1.2, atol=1e-10) # lambda = 2 var = tukeylambda_variance(2) assert_allclose(var, 1.0 / 12, atol=1e-12) kurt = tukeylambda_kurtosis(2) assert_allclose(kurt, -1.2, atol=1e-10)
def test_tukeylambda_stats_mpmath(): """Compare results with some values that were computed using mpmath.""" a10 = dict(atol=1e-10, rtol=0) a12 = dict(atol=1e-12, rtol=0) data = [ # lambda variance kurtosis [-0.1, 4.78050217874253547, 3.78559520346454510], [-0.0649, 4.16428023599895777, 2.52019675947435718], [-0.05, 3.93672267890775277, 2.13129793057777277], [-0.001, 3.30128380390964882, 1.21452460083542988], [ 0.001, 3.27850775649572176, 1.18560634779287585], [ 0.03125, 2.95927803254615800, 0.804487555161819980], [ 0.05, 2.78281053405464501, 0.611604043886644327], [ 0.0649, 2.65282386754100551, 0.476834119532774540], [ 1.2, 0.242153920578588346, -1.23428047169049726], [ 10.0, 0.00095237579757703597, 2.37810697355144933], [ 20.0, 0.00012195121951131043, 7.37654321002709531], ] for lam, var_expected, kurt_expected in data: var = tukeylambda_variance(lam) assert_allclose(var, var_expected, **a12) kurt = tukeylambda_kurtosis(lam) assert_allclose(kurt, kurt_expected, **a10) # Test with vector arguments (most of the other tests are for single # values). lam, var_expected, kurt_expected = list(zip(*data)) var = tukeylambda_variance(lam) assert_allclose(var, var_expected, **a12) kurt = tukeylambda_kurtosis(lam) assert_allclose(kurt, kurt_expected, **a10)
def test_tukeylambda_stats_known_exact(): """Compare results with some known exact formulas.""" # Some exact values of the Tukey Lambda variance and kurtosis: # lambda var kurtosis # 0 pi**2/3 6/5 (logistic distribution) # 0.5 4 - pi (5/3 - pi/2)/(pi/4 - 1)**2 - 3 # 1 1/3 -6/5 (uniform distribution on (-1,1)) # 2 1/12 -6/5 (uniform distribution on (-1/2, 1/2)) # lambda = 0 var = tukeylambda_variance(0) assert_allclose(var, np.pi**2 / 3, atol=1e-12) kurt = tukeylambda_kurtosis(0) assert_allclose(kurt, 1.2, atol=1e-10) # lambda = 0.5 var = tukeylambda_variance(0.5) assert_allclose(var, 4 - np.pi, atol=1e-12) kurt = tukeylambda_kurtosis(0.5) desired = (5. / 3 - np.pi / 2) / (np.pi / 4 - 1)**2 - 3 assert_allclose(kurt, desired, atol=1e-10) # lambda = 1 var = tukeylambda_variance(1) assert_allclose(var, 1.0 / 3, atol=1e-12) kurt = tukeylambda_kurtosis(1) assert_allclose(kurt, -1.2, atol=1e-10) # lambda = 2 var = tukeylambda_variance(2) assert_allclose(var, 1.0 / 12, atol=1e-12) kurt = tukeylambda_kurtosis(2) assert_allclose(kurt, -1.2, atol=1e-10)
def test_tukeylambda_stats_mpmath(): """Compare results with some values that were computed using mpmath.""" a10 = dict(atol=1e-10, rtol=0) a12 = dict(atol=1e-12, rtol=0) data = [ # lambda variance kurtosis [-0.1, 4.78050217874253547, 3.78559520346454510], [-0.0649, 4.16428023599895777, 2.52019675947435718], [-0.05, 3.93672267890775277, 2.13129793057777277], [-0.001, 3.30128380390964882, 1.21452460083542988], [0.001, 3.27850775649572176, 1.18560634779287585], [0.03125, 2.95927803254615800, 0.804487555161819980], [0.05, 2.78281053405464501, 0.611604043886644327], [0.0649, 2.65282386754100551, 0.476834119532774540], [1.2, 0.242153920578588346, -1.23428047169049726], [10.0, 0.00095237579757703597, 2.37810697355144933], [20.0, 0.00012195121951131043, 7.37654321002709531], ] for lam, var_expected, kurt_expected in data: var = tukeylambda_variance(lam) assert_allclose(var, var_expected, **a12) kurt = tukeylambda_kurtosis(lam) assert_allclose(kurt, kurt_expected, **a10) # Test with vector arguments (most of the other tests are for single # values). lam, var_expected, kurt_expected = zip(*data) var = tukeylambda_variance(lam) assert_allclose(var, var_expected, **a12) kurt = tukeylambda_kurtosis(lam) assert_allclose(kurt, kurt_expected, **a10)
def test_tukeylambda_stats_invalid(): """Test values of lambda outside the domains of the functions.""" lam = [-1.0, -0.5] var = tukeylambda_variance(lam) assert_equal(var, np.array([np.nan, np.inf])) lam = [-1.0, -0.25] kurt = tukeylambda_kurtosis(lam) assert_equal(kurt, np.array([np.nan, np.inf]))