예제 #1
0
파일: VNA.py 프로젝트: docprofsky/pysdrvna
 def InitJackArrays(self,freq,samples):
   """Initialize Jack Arrays"""
   self.iIa = sp.zeros(samples).astype(sp.float32)
   self.iQa = sp.zeros(samples).astype(sp.float32)      
   
   self.oIa = sp.zeros(samples, dtype=sp.float32 )
   self.oQa = sp.zeros(samples, dtype=sp.float32 )
   
   ## 100 frames warmup
   sf = 0
   ef = self.rtframes2sync
   samples = sp.pi + (2*sp.pi*freq*(self.dt * sp.r_[sf:ef]))
   self.oIa[sf:ef] = self.amp * sp.cos(samples)
   self.oQa[sf:ef] = self.amp * sp.sin(samples)
   
   # For IQ balancing
   #self.oIa[sf:ef] = sp.cos(samples) - (sp.sin(samples)*(1+self.oalpha)*sp.sin(self.ophi))
   #self.oQa[sf:ef] = sp.sin(samples)*(1+self.oalpha)*sp.cos(self.ophi)
   
   ## 180 phase change 
   sf = ef
   ef = ef + self.sync2fft + self.fftn + self.fft2end
   samples = (2*sp.pi*freq*(self.dt * sp.r_[sf:ef]))
   self.oIa[sf:ef] = self.amp * sp.cos(samples) 
   self.oQa[sf:ef] = self.amp * sp.sin(samples)   
예제 #2
0
파일: environment.py 프로젝트: HKou/pybrain
 def __init__(self, renderer=True, realtime=True, ip="127.0.0.1", port="21560"):
     # initialize base class
     GraphicalEnvironment.__init__(self)
     self.actLen=12
     self.mySensors=sensors.Sensors(["EdgesReal"])
     self.dists=array([20.0, sqrt(2.0)*20, sqrt(3.0)*20])
     self.gravVect=array([0.0,-100.0,0.0])
     self.centerOfGrav=zeros((1,3),float)
     self.pos=ones((8,3),float)
     self.vel=zeros((8,3),float)
     self.SpringM = ones((8,8),float)
     self.d=60.0
     self.dt=0.02
     self.startHight=10.0
     self.dumping=0.4
     self.fraktMin=0.7
     self.fraktMax=1.3
     self.minAkt=self.dists[0]*self.fraktMin
     self.maxAkt=self.dists[0]*self.fraktMax
     self.reset()
     self.count=0
     self.setEdges()
     self.act(array([20.0]*12))
     self.euler()
     self.realtime=realtime
     self.step=0
     if renderer:
         self.setRenderInterface(FlexCubeRenderInterface(ip, port))
         self.getRenderInterface().updateData(self.pos, self.centerOfGrav)
예제 #3
0
 def test_mean_mode_equivalent(self):
     """Test 2 equivalent ways to deweight mean, see if they agree."""
     self.DM.nf = 1
     time_stream, ra, dec, az, el, time, mask_inds = \
                                            self.DM.get_all_trimmed()
     nt = len(time)
     # Frist Way.
     Noise1 = dirty_map.Noise(time_stream, time)
     thermal_noise_levels = sp.zeros((1,)) + 0.04  # Kelvin**2
     Noise1.add_thermal(thermal_noise_levels)
     Noise1.add_mask(mask_inds)
     Noise1.deweight_time_mean()
     Noise1.deweight_time_slope()
     Noise1.add_correlated_over_f(0.01, -1.2, 0.1)
     Noise1.finalize()
     N1 = Noise1.get_inverse()
     # Second Way.
     Noise2 = dirty_map.Noise(time_stream, time)
     thermal_noise_levels = sp.zeros((1,)) + 0.04  # Kelvin**2
     Noise2.add_thermal(thermal_noise_levels)
     Noise2.add_mask(mask_inds)
     Noise2.deweight_time_slope()
     Noise2.add_correlated_over_f(0.01, -1.2, 0.1)
     Noise2.freq_mode_noise += dirty_map.T_huge**2
     Noise2.finalize()
     N2 = Noise2.get_inverse()
     N2_m = N2.view()
     N2_m.shape = (nt, nt)
     self.assertTrue(sp.allclose(N2, N1))
def YICgen(X,Z,alpha, delta):
	"""
	Yt = (Kt**alpha)*((exp(Zt)*Lt)**(1-alpha))
	This function generates the output levels
	given the previously defined X = sp.array([[K],[L]])
	(X is a 2xT period matrix of capital on top and
	labor on the bottom row) and Z (previously generated
	technology shocks).
	
	It = Ktp1 - (1 - delta)*Kt
	This function generates the investment levels per period
	delta = depreciation rate of capital.
	
	Ct = Yt - It
	This function defines the consumption levels as a
	difference between output and investment.
	"""
	K = X[0,:]
	L = X[1,:]
	t = sp.shape(X)[1]
	Y = sp.zeros(t)
	I = sp.zeros(t)
	C = sp.zeros(t)
	#solve for Y in each period t
	for i in range(t):
		Y[i] = (K[i]**alpha)*((sp.exp(Z[i])*L[i])**(1.-alpha))
	#solve for I in each period t
	for i in range(t-1):
		I[i] = K[i+1] - (1. - delta)*K[i]
	#solve for C in each period t
	for i in range(t-1):
		C[i] = Y[i] - I[i]
	return Y, I, C
예제 #5
0
    def deactivated_test_extreme_index(self):
        """Set of parameters know to have cased issues in the past with
        numerical stability."""

        nf = 40
        nt = 150
        n = nf * nt
        dt = 0.26214
        BW = 1. / dt / 2.
        time_stream = sp.zeros((nf, nt))
        time_stream = al.make_vect(time_stream, axis_names=("freq", "time"))
        time = dt * (sp.arange(nt) + 50)
        N = dirty_map.Noise(time_stream, time)
        # Thermal.
        thermal = sp.zeros(nf, dtype=float) + 0.0002 * BW * 2.
        thermal[22] = dirty_map.T_infinity**2
        N.add_thermal(thermal)
        # Time mean and slope.
        N.deweight_time_mean()
        N.deweight_time_slope()
        # Extreem index over_f bit.
        mode = -sp.ones(nf, dtype=float) / sp.sqrt(nf - 1)
        mode[22] = 0
        # Parameters measured from one of the data sets.  Known to screw things
        # up.
        #N.add_over_f_freq_mode(8.128e-7, -4.586, 1.0, 1.422e-7, mode, True)
        N.add_over_f_freq_mode(0.001729, -0.777, 1.0, 1e-8, mode, True)
        #N.orthogonalize_modes()
        N.finalize()
        # Check if the fast inverse works.
        N_mat = N.get_mat()
        N_mat.shape = (n, n)
        N_inv = N.get_inverse()
        N_inv.shape = (n, n)
 def testMatrixSymmetries(self):
     """
     X and P should have the same pattern as the distance matrix defined by
     the lattice.
     """
     precision = 20
     polygon = self.calc.square_lattice(5)
     X,P = self.calc.correlations(polygon, self.maple_link, precision)
     
     # Round X and P down so we can see if elements are distinct or not.
     X = sympy.matrix2numpy(X)
     P = sympy.matrix2numpy(P)
     X = X.astype('float')
     P = P.astype('float')
     
     # Get the pattern of the distance matrix.
     D = spatial.distance.cdist(polygon,polygon)
     
     # The pattern of the distance matrix
     D_pat = sp.zeros(D.shape)
     getSignatureMatrix(D_pat,sp.nditer(D),D.shape)
     
     # Get the pattern of X and P.
     X_pat = sp.zeros(X.shape)
     P_pat = sp.zeros(P.shape)
     getSignatureMatrix(X_pat,sp.nditer(X),X.shape)
     getSignatureMatrix(P_pat,sp.nditer(P),P.shape)
     
     # Check if patterns match.
     eq_(False,(D_pat - X_pat).all())
     eq_(False,(D_pat - P_pat).all())
예제 #7
0
파일: __init__.py 프로젝트: cmateu/PyMGC3
def cov_dvrpmllbb_to_vxyz_single(d,e_d,e_vr,pmll,pmbb,cov_pmllbb,l,b):
    """
    NAME:
       cov_dvrpmllbb_to_vxyz
    PURPOSE:
       propagate distance, radial velocity, and proper motion uncertainties to
       Galactic coordinates for scalar inputs
    INPUT:
       d - distance [kpc, as/mas for plx]
       e_d - distance uncertainty [kpc, [as/mas] for plx]
       e_vr  - low velocity uncertainty [km/s]
       pmll - proper motion in l (*cos(b)) [ [as/mas]/yr ]
       pmbb - proper motion in b [ [as/mas]/yr ]
       cov_pmllbb - uncertainty covariance for proper motion
       l - Galactic longitude [rad]
       b - Galactic lattitude [rad]
    OUTPUT:
       cov(vx,vy,vz) [3,3]
    HISTORY:
       2010-04-12 - Written - Bovy (NYU)
    """
    M= _K*sc.array([[pmll,d,0.],[pmbb,0.,d]])
    cov_dpmllbb= sc.zeros((3,3))
    cov_dpmllbb[0,0]= e_d**2.
    cov_dpmllbb[1:3,1:3]= cov_pmllbb
    cov_vlvb= sc.dot(M,sc.dot(cov_dpmllbb,M.T))
    cov_vrvlvb= sc.zeros((3,3))
    cov_vrvlvb[0,0]= e_vr**2.
    cov_vrvlvb[1:3,1:3]= cov_vlvb
    R= sc.array([[m.cos(l)*m.cos(b), m.sin(l)*m.cos(b), m.sin(b)],
                 [-m.sin(l),m.cos(l),0.],
                 [-m.cos(l)*m.sin(b),-m.sin(l)*m.sin(b), m.cos(b)]])
    return sc.dot(R.T,sc.dot(cov_vrvlvb,R))
    def prop_ring(self):
        """
        Test properties for a ring, modelled as a thin walled something
        """

        radius = 1.
        # make sure the simple test cases go well
        x = np.linspace(0,radius,100000)
        y = np.sqrt(radius*radius - x*x)
        x = np.append(-x[::-1], x)
        y_up = np.append(y[::-1], y)
        tw1 = np.ndarray((len(x),3), order='F')
        tw1[:,0] = x
        tw1[:,1] = y_up
        tw1[:,2] = 0.01

        tw2 = np.ndarray((len(x),3), order='F')
        y_low = np.append(-y[::-1], -y)
        tw2[:,0] = x
        tw2[:,1] = y_low
        tw2[:,2] = 0.01

        # tw1 and tw2 need to be of the same size, give all zeros
        upper_bound = sp.zeros((4,2), order='F')
        lower_bound = sp.zeros((4,2), order='F')

        st_arr, EA, EIxx, EIyy = properties(upper_bound, lower_bound,
                    tw1=tw1, tw2=tw2, rho=1., rho_tw=1., E=1., E_tw=1.)

        headers = HawcPy.ModelData().st_column_header_list
        print '\nRING PROPERTIES'
        for index, item in enumerate(headers):
            tmp = item + ' :'
            print tmp.rjust(8), st_arr[index]
예제 #9
0
 def fgmres(self,rhs,tol=1e-6,restrt=None,maxiter=None,callback=None):
     if maxiter == None:
         maxiter = len(rhs)
     if restrt == None:
         restrt = 2*maxiter
     # implemented as in [Saad, 1993]
     # start
     x = zeros(len(rhs))
     H = zeros((restrt+1, restrt))
     V = zeros((len(rhs),restrt))
     Z = zeros((len(rhs),restrt))
     # Arnoldi process (with modified Gramm-Schmidt)
     res = 1.
     j = 0
     r = rhs - self.point.matvec(x)
     beta = norm(r)
     V[:,0]=r/beta
     while j < maxiter and res > tol:
         Z[:,j] = self.point.psolve(V[:,j])
         w = self.point.matvec(Z[:,j])
         for i in range(j+1):
             H[i,j]=dot(w,V[:,i])
             w = w - H[i,j]*V[:,i]
         H[j+1,j] = norm(w)
         V[:,j+1]=w/H[j+1,j]
         e = zeros(j+2)
         e[0]=1.
         y, res, rank, sing_val = lstsq(H[:j+2,:j+1],beta*e)
         j += 1
         print "# GMRES| iteration :", j, "res: ", res/beta
         self.resid = r_[self.resid,res/beta]
         Zy = dot(Z[:,:j],y)
     x = x + Zy
     info = 1
     return (x,info)
예제 #10
0
    def overlaps(sts, window):
        """Calculates a "boolean" dictonary, indicating for every spike in
        every spiketrain in sts whether it belongs to an overlap or not"""
        n = len(sts)
        O = {}
        for k in sts.keys():
            O[k] = sp.zeros(sts[k].shape, dtype=sp.bool_)
        Onums = sp.zeros(len(sts))
        # run over all pairs of spike trains in G
        for i in xrange(n):
            for j in xrange(i + 1, n):
                # for every pair run over all spikes in i and check whether a
                # spike in j overlaps
                trainI = sts[sts.keys()[i]]
                trainJ = sts[sts.keys()[j]]
                idxI = 0
                idxJ = 0
                while idxI < len(trainI) and idxJ < len(trainJ):
                    # Overlapping?
                    if abs(trainI[idxI] - trainJ[idxJ]) < window:
                        # Every spike can only be in one or no overlap.
                        # prevents triple counting
                        if O[sts.keys()[i]][idxI] == 0:
                            O[sts.keys()[i]][idxI] = 1
                            Onums[i] += 1
                        if O[sts.keys()[j]][idxJ] == 0:
                            O[sts.keys()[j]][idxJ] = 1
                            Onums[j] += 1

                    if trainI[idxI] < trainJ[idxJ]:
                        idxI += 1
                    else:
                        idxJ += 1
        ret = {'O': O, 'Onums': Onums}
        return ret
예제 #11
0
    def __init__(self, imageData=None):
        MarkerWindowInteractor.__init__(self)

        print "PlaneWidgetsXYZ.__init__()"

        self.vtksurface = None

        self.interactButtons = (1,2,3)
        self.sharedPicker = vtk.vtkCellPicker()
        #self.sharedPicker.SetTolerance(0.005)
        self.SetPicker(self.sharedPicker)
        
        self.pwX = vtk.vtkImagePlaneWidget()
        self.pwY = vtk.vtkImagePlaneWidget()
        self.pwZ = vtk.vtkImagePlaneWidget()

        
        self.textActors = {}
        self.boxes = {}

        self.set_image_data(imageData)
        self.Render()

        self.vtk_translation = zeros(3, 'd')
        self.vtk_rotation = zeros(3, 'd')
예제 #12
0
파일: gibbs.py 프로젝트: markchil/gptools
 def __init__(self, npts, k=None):
     self.npts = npts
     from ..gaussian_process import GaussianProcess
     if k is None:
         from .squared_exponential import SquaredExponentialKernel
         k = SquaredExponentialKernel(fixed_params=[True, False])
     self.gp = GaussianProcess(k, X=scipy.zeros(npts), y=scipy.zeros(npts))
예제 #13
0
파일: util.py 프로젝트: pmeier82/spikeval
def extract_spikes(data, epochs):
    """extract spike waveforms according to :epochs: from :data:

    :type data: ndarray
    :param data: the signal to extract from [samples, channels]
    :type epochs: ndarray
    :param epochs: epochs to cut [[start,end]], should have common length!
    :type mc: bool
    :returns: ndarray, extracted spike waveforms from :data:
    """

    # inits and checks
    if not all(map(isinstance, [data, epochs], [sp.ndarray] * 2)):
        raise TypeError('pass sp.ndarrays!')
    ns, nc = epochs.shape[0], data.shape[1]
    if epochs.shape[0] == 0:
        return sp.zeros((0, 0))
    tf = epochs[0, 1] - epochs[0, 0]

    # extract
    rval = sp.zeros((ns, tf * nc), dtype=data.dtype)
    for s in xrange(ns):
        for c in xrange(nc):
            correct_beg = min(0, epochs[s, 0])
            correct_end = max(0, epochs[s, 1] - data.shape[0])
            rval[s, c * tf - correct_beg:(c + 1) * tf - correct_end] =\
            data[epochs[s, 0] - correct_beg:epochs[s, 1] - correct_end, c]
    return rval
예제 #14
0
파일: vmc.py 프로젝트: EPFL-LQM/gpvmc
def GetSqAmpl(filename,Nsamp=1,channel=None,V=None,O=None,r=sc.zeros((1,2)),rp=sc.zeros((1,2)),q=None):
    """
    For the transverse channel:
    Calculates and returns Sq(sample,n,r)=<q,r|q,n><q,n|Sqp|GS>.
    Coordinates are in the order Sq(sample,n,r).
    For the longitudinal channel: input r has no effect.
    Calculates and return Sq(sample,n)=|<q,n|Sqz|GS>|^2.
    """
    if type(filename)==str:
        filename=[filename]
    attrs=GetAttr(filename[0])
    if channel==None:
        channel=attrs['channel']
    L=int(attrs['L'])
    if q==None:
        q=[float(attrs['qx']/L),float(attrs['qy'])/L]
    else:
        q=[float(q[0])/L,float(q[1])/L]
    shift=None
    if 'phasex' in attrs.keys():
        shift=[attrs['phasex']/2.0,attrs['phasey']/2.0]
    else:
        shift=[attrs['phase_shift_x']/2.0,attrs['phase_shift_y']/2.0]
    phi=attrs['phi']
    neel=attrs['neel']
    if O==None or V== None:
        H,O,E,V=GetEigSys(filename,Nsamp=Nsamp,channel=channel,q=q)
    if channel=='long':
        return sf.sqwlongamp(V,O,L,L,q,shift,phi,neel)
    elif channel=='trans':
        return sf.sqwtransamp(V,O,L,L,q,shift,phi,neel,r,rp)
    pass
예제 #15
0
파일: cluster.py 프로젝트: pmeier82/BOTMpy
    def _execute(self, x, *args, **kwargs):
        """run the clustering on a set of observations"""

        # init
        self._labels = sp.zeros((len(self.crange) * self.repeats,
                                 x.shape[0]), dtype=int) - 1
        self._gof = sp.zeros(len(self.crange) * self.repeats,
                             dtype=self.dtype)
        self._ll = sp.zeros(len(self.crange) * self.repeats,
                            dtype=self.dtype)
        self._parameters = [None] * len(self.crange) * self.repeats

        # clustering
        fit_func = {
            'kmeans': self._fit_kmeans,
            'gmm': self._fit_gmm,
            #'vbgmm': self._fit_vbgmm,
            'dpgmm': self._fit_dpgmm,
            'spectral': self._fit_spectral,
            'meanshift': self._fit_mean_shift,
            'dbscan': self._fit_dbscan
        }[self.clus_type](x)

        self._winner = sp.nanargmin(self._gof)
        self.parameters = self._parameters[self._winner]
        self.labels = self._labels[self._winner]
예제 #16
0
def rlsloo_ll(V, D, Y, lambdas=None):
	"""
	Input:
	V, D = eigenvectors and eigen values from eigen value decomposition
	lambdas = default used in our computation
	Output:
	cs = is a matrix of size representing function weights of lambda
	loos = total LOO error vector for nonlinear RLS with lambda
	
	"""

	n  = V.shape[0]
	cl = Y.shape[1]
	l = len(lambdas)

	cs = sp.zeros((l, cl, n))
	loos = sp.zeros((l,cl))
	loos[:] = sp.inf

	for i in range(l):
		#        print D, Y, lambdas[i]
		csll, looerrsll = rlsloo_ll1(V, D, Y, lambdas[i])
		cs[i][:][:] = csll
		loos[i][:] = sp.sqrt( sp.sum( looerrsll**2, axis=0) )
		
	return cs, loos
예제 #17
0
def make_line(m=1.0, b=25.0, points=100, xstep=1.0, ysigma=5.0, data=1):
    
    #generate arrays
    x = sc.zeros(points)
    y = sc.zeros(points)
    y_center = sc.zeros(points)

    #initialize random seed
    nu.random.seed(10)
    
    #fill arrays
    for i in range(points):
        x[i] = i*xstep
    y_center = m*x + b
    y = (ysigma*nu.random.randn(points) ) + y_center
    print x,y
    
    #save array to file
    if data==1:
        data_out = raw_input('data file name, ending in .txt: ')
        if data_out == '':
            data_out = 'new_file.txt'
        for j in range(points):
            f = open(data_out, "w")
            f.write(str(x[j])+','+'\t'+str(y[j]))  
            #f.write(y[j])
        f.close()
    print 'file', data_out, 'successfully written and closed'

    #plot line
    plt.scatter(x, y)
    plt.show()

    print 'ending program...'
예제 #18
0
def determine_sign_of_emat(emat,wt_seq):
    """determine what the correct sign is for an energy matrix. We will
    use the assumption that the wild type sequence must be better
    binding than a random sequence.

    INPUTS:
    emat: energy matrix
    wt_seq: wild type sequence of energy matrix

    OUTPUT:
    emat: energy matrix with correct sign
    """
    n_rand = 1000 # number of random sequences to check
    e_rand = sp.zeros(n_rand)
    # convert sequence to matrix
    seq_mat = seq2mat(wt_seq)
    e_wt = sp.sum(emat*seq_mat)

    for i in range(n_rand):
        seq_rand = sp.zeros((4,len(wt_seq)))

        for j in range(len(wt_seq)):
            seq_rand[sp.random.randint(4),j] = 1
        e_rand[i] = sp.sum(emat*seq_rand)
    if e_wt < sp.mean(e_rand):
        return emat
    else:
        return -emat
예제 #19
0
def gap(data, refs=None, nrefs=20, ks=range(1,11), method=None):
    shape = data.shape
    if refs is None:
        tops = data.max(axis=0)
        bots = data.min(axis=0)
        dists = scipy.matrix(scipy.diag(tops-bots))

        rands = scipy.random.random_sample(size=(shape[0], shape[1], nrefs))
        for i in range(nrefs):
            rands[:, :, i] = rands[:, :, i]*dists+bots
    else:
        rands = refs
    gaps = scipy.zeros((len(ks),))
    for (i, k) in enumerate(ks):
        g1 = method(n_clusters=k).fit(data)
        (kmc, kml) = (g1.cluster_centers_, g1.labels_)
        disp = sum([euclidean(data[m, :], kmc[kml[m], :]) for m in range(shape[0])])

        refdisps = scipy.zeros((rands.shape[2],))
        for j in range(rands.shape[2]):
            g2 = method(n_clusters=k).fit(rands[:, :, j])
            (kmc, kml) = (g2.cluster_centers_, g2.labels_)
            refdisps[j] = sum([euclidean(rands[m, :, j], kmc[kml[m],:]) for m in range(shape[0])])
        gaps[i] = scipy.log(scipy.mean(refdisps))-scipy.log(disp)
    return gaps
def Xgen(X0,Z,PP,QQ,Xbar):
    """
    This function generates a history of X given a history
    technology shocks (Z), a P matrix, a Q matrix, and an
    intial X (X0).
    Note Xt(tilde) = PXt-1(tilde) +QZt(tilde)
    Xt=Xbar*e^Xt(tilde)
    """
    num_endog=sp.shape(PP)[1]
    T=len(Z)#sp.shape(Z)[0]
    #display(T)
    X=sp.zeros((num_endog,T))
    X[:,0]=X0
    for i in range(1,T):
        Zt=Z[i]
        Xt_1=sp.zeros((num_endog,1))
        for j in range(num_endog):
            Xt_1[j,0]=X[j,i-1]
        Xt=sp.dot(PP,Xt_1)+sp.dot(QQ,Zt)
        for k in range(num_endog):
            X[k,i]=Xt[k,0]
    exponents=sp.exp(X)
    for p in range(T):
        for q in range(num_endog):
            X[q,p]=Xbar[0,q]*exponents[q,p]
    return X
예제 #21
0
def X_binding(par, qw):
    """Computation of the exciton binding energy given the electron and hole
    wave function and the variational parameter par
    Defined in Eq. 15(b) of Mares and Chuang, J. Appl. Phys. 74, 1388 (1993)

    Keyword arguments:
       par -- variational parameter in [nm]
       qw -- Object containing the electronic structure related magnitudes. See QW.
    """
    
    lam = par * 1.0E-9    
    Ry = spc.physical_constants['Rydberg constant times hc in eV'][0]
    R0 = Ry*qw.mu/qw.eps_r**2
    aB = spc.physical_constants['Bohr radius'][0]   
    ax = aB*qw.eps_r/qw.mu
    beta = ax/lam  
    C0 = R0*beta**2
    C1 = -R0*4.0*beta
    
    Ze = sp.zeros([1,qw.grid.shape[0]])
    Ze[0,:] = qw.grid[:]
    Zh = sp.zeros([qw.grid.shape[0],1])
    Zh[:,0] = qw.grid[:]
    X = 2.0*sp.absolute(Ze-Zh)/par
    Fe = sp.zeros([1,qw.grid.shape[0]])
    Fe[0,:] = qw.Elec.wf[:]**2
    Fh = sp.zeros([qw.grid.shape[0],1])
    Fh[:,0] = qw.Hole.wf[:]**2
    Int = Fe * Fh * G_int(X)
    Val = sp.trapz( sp.trapz(Int, Ze.flatten() ), Zh.flatten())
    
    return C0 + C1 * Val 
예제 #22
0
    def _LMLgrad_lik(self,hyperparams):
        """derivative of the likelihood parameters"""

	logtheta = hyperparams['covar']
        try:   
            KV = self.get_covariances(hyperparams)
        except linalg.LinAlgError:
            LG.error("exception caught (%s)" % (str(hyperparams)))
            return 1E6
	
        #loop through all dimensions
        #logdet term:
        Kd = 2*KV['Knoise']
        dldet = 0.5*(Kd*KV['Si']).sum(axis=0)
        #quadratic term
        y_roti = KV['y_roti']
        dlquad = -0.5 * (y_roti * Kd * y_roti).sum(axis=0)
        if VERBOSE:
            dldet_  = SP.zeros([self.d])
            dlquad_ = SP.zeros([self.d])
            for d in xrange(self.d):
                _K = KV['K'] + SP.diag(KV['Knoise'][:,d])
                _Ki = SP.linalg.inv(_K)
                dldet_[d] = 0.5* SP.dot(_Ki,SP.diag(Kd[:,d])).trace()
                dlquad_[d] = -0.5*SP.dot(self.y[:,d],SP.dot(_Ki,SP.dot(SP.diag(Kd[:,d]),SP.dot(_Ki,self.y[:,d]))))

            assert (SP.absolute(dldet-dldet_)<1E-3).all(), 'outch'
            assert (SP.absolute(dlquad-dlquad_)<1E-3).all(), 'outch'


        LMLgrad = dldet + dlquad
        RV = {'lik': LMLgrad}
    
        return RV
예제 #23
0
def makesumrule(ptype,plen,ts,lagtype='centered'):
    """ This function will return the sum rule.
        Inputs
            ptype - The type of pulse.
            plen - Length of the pulse in seconds.
            ts - Sample time in seconds.
            lagtype -  Can be centered forward or backward.
        Output
            sumrule - A 2 x nlags numpy array that holds the summation rule.
    """
    nlags = sp.round_(plen/ts)
    if ptype.lower()=='long':
        if lagtype=='forward':
            arback=-sp.arange(nlags,dtype=int)
            arforward = sp.zeros(nlags,dtype=int)
        elif lagtype=='backward':
            arback = sp.zeros(nlags,dtype=int)
            arforward=sp.arange(nlags,dtype=int)
        else:
            arback = -sp.ceil(sp.arange(0,nlags/2.0,0.5)).astype(int)
            arforward = sp.floor(sp.arange(0,nlags/2.0,0.5)).astype(int)
        sumrule = sp.array([arback,arforward])
    elif ptype.lower()=='barker':
        sumrule = sp.array([[0],[0]])
    return sumrule
예제 #24
0
파일: surface.py 프로젝트: icfaust/TRIPPy
    def split(self, sagi, meri):
        """ utilizes geometry.grid to change the rectangle into a generalized surface,
        it is specified with a single set of basis vectors to describe the meridonial,
        normal, and sagittal planes."""
        ins = float((sagi - 1))/sagi
        inm = float((meri - 1))/meri
        stemp = self.norm.s/sagi
        mtemp = self.meri.s/meri

        z,theta = scipy.meshgrid(scipy.linspace(-self.norm.s*ins,
                                                self.norm.s*ins,
                                                sagi),
                                 scipy.linspace(-self.meri.s*inm,
                                                self.meri.s*inm,
                                                meri))

        vecin =geometry.Vecr((self.sagi.s*scipy.ones(theta.shape),
                              theta+scipy.pi/2,
                              scipy.zeros(theta.shape))) #this produces an artificial
        # meri vector, which is in the 'y_hat' direction in the space of the cylinder
        # This is a definite patch over the larger problem, where norm is not normal
        # to the cylinder surface, but is instead the axis of rotation.  This was
        # done to match the Vecr input, which works better with norm in the z direction
               
        pt1 = geometry.Point(geometry.Vecr((scipy.zeros(theta.shape),
                                            theta,
                                            z)),
                             self)

        pt1.redefine(self._origin)

        vecin = vecin.split()

        x_hat = self + pt1 #creates a vector which includes all the centers of the subsurface

        out = []
        #this for loop makes me cringe super hard
        for i in xrange(meri):
            try:
                temp = []
                for j in xrange(sagi):
                    inp = self.rot(vecin[i][j])
                    temp += [Cyl(geometry.Vecx(x_hat.x()[:,i,j]),
                                 self._origin,
                                 [2*stemp,2*mtemp],
                                 self.sagi.s,
                                 vec=[inp, self.norm.copy()],
                                 flag=self.flag)]
                out += [temp]
            except IndexError:
                inp = self.rot(vecin[i])
                out += [Cyl(geometry.Vecx(x_hat.x()[:,i]),
                            self._origin,
                            [2*stemp,2*mtemp],
                            self.norm.s,
                            vec=[inp, self.norm.copy()],
                            flag=self.flag)]
                

        return out
예제 #25
0
파일: ga.py 프로젝트: jeepq/pybrain
 def crossOver(self, parents, nbChildren):
     """ generate a number of children by doing 1-point cross-over """
     """ change as the <choice> return quite often the same p1 and even
         several time p2 was return the same than p1 """
     xdim = self.numParameters
     shuffle(parents)
     children = []
     for i in range(len(parents)/2):
         p1 = parents[i]
         p2 = parents[i+(len(parents)/2)]
         if xdim < 2:
             children.append(p1)
             children.append(p2)
         else:
             point = choice(range(xdim-1))
             point += 1
             res = zeros(xdim)
             res[:point] = p1[:point]
             res[point:] = p2[point:]
             children.append(res)
             res = zeros(xdim)
             res[:point] = p2[:point]
             res[point:] = p1[point:]
             children.append(res)
     shuffle(children)
     if len(children) > nbChildren:
         children = children[:nbChildren]  
     elif len(children) < nbChildren:
         k = True
         while k:
            children +=sample(children,len(children)) 
            if len(children) >= nbChildren:
               children = children[:nbChildren]
               k = False
     return children
예제 #26
0
 def __init__(self,linear_solver,parameters=None):
     """ 
     input: 
     =====
         linear_solver (LinearSolver) 
             contains the linear solver that will be used in 
             each Newton iteration
         parameters (dict) 
             look at the docstring of getDefaultParameters() 
             to find out which fields there are
     behaviour:
     =========
         This class implements a Newton solver that stops when the 
         maximum number of iterations has been reached, OR the 
         relative OR absolute tolerance have been reached.
     """
     Solver.Solver.__init__(self,parameters)
     if isinstance(linear_solver,LinearSolver.LinearSolver):
         self.linsolv=linear_solver
     else:
         raise TypeError, "input argument " + linear_solver \
             + " should be a linear solver"
     self.nb_newt = 0 
     self.newton_residual = zeros((0,))
     self.newton_res_norm = zeros(0,)
    # self.newton_states = zeros((  param['max_iter'],len( self.point.getCurrentGuess()) ))
     self.newton_states = zeros((  0 ))
예제 #27
0
 def init(self, values):
     self.values = values.copy()
     self.prev_values = values.copy()
     self.more_prev_values = values.copy()
     self.previous_gradient = zeros(values.shape)
     self.step = zeros(values.shape)
     self.previous_error = float("-inf")
예제 #28
0
def makeinputh5(Iono,basedir):
    """This will make a h5 file for the IonoContainer that can be used as starting
    points for the fitter. The ionocontainer taken will be average over the x and y dimensions
    of space to make an average value of the parameters for each altitude.
    Inputs
    Iono - An instance of the Ionocontainer class that will be averaged over so it can
    be used for fitter starting points.
    basdir - A string that holds the directory that the file will be saved to.
    """
    # Get the parameters from the original data
    Param_List = Iono.Param_List
    dataloc = Iono.Cart_Coords
    times = Iono.Time_Vector
    velocity = Iono.Velocity
    zlist,idx = sp.unique(dataloc[:,2],return_inverse=True)
    siz = list(Param_List.shape[1:])
    vsiz = list(velocity.shape[1:])

    datalocsave = sp.column_stack((sp.zeros_like(zlist),sp.zeros_like(zlist),zlist))
    outdata = sp.zeros([len(zlist)]+siz)
    outvel = sp.zeros([len(zlist)]+vsiz)
    #  Do the averaging across space
    for izn,iz in enumerate(zlist):
        arr = sp.argwhere(idx==izn)
        outdata[izn] = sp.mean(Param_List[arr],axis=0)
        outvel[izn] = sp.mean(velocity[arr],axis=0)

    Ionoout = IonoContainer(datalocsave,outdata,times,Iono.Sensor_loc,ver=0,
                            paramnames=Iono.Param_Names, species=Iono.Species,velocity=outvel)
    Ionoout.saveh5(basedir/'startdata.h5')
예제 #29
0
파일: __init__.py 프로젝트: ryanGT/research
 def GetMat(self, s, sym=False):
     """Return the element transfer matrix for the RigidMass
     element.  If sym=True, 's' must be a symbolic string and a
     matrix of strings will be returned.  Otherwise, 's' is a
     numeric value (probably complex) and the matrix returned will
     be complex."""
     if sym:
         myparams=self.symparams
     else:
         myparams=self.params
     if self.maxsize==4 and self.usez:
         rigidmat1=rigidmatz(s,myparams)
     else:
         rigidmat1=rigidmaty(s,myparams)
     if self.maxsize==4:
         return rigidmat1
     elif self.maxsize>4:
         rigidmat2=rigidmatz(s,myparams)
         zmat=scipy.zeros(scipy.shape(rigidmat2))
     if self.maxsize==8:
         bigmat1=c_[rigidmat1,zmat]
         bigmat2=c_[zmat,rigidmat2]
         temp=r_[bigmat1,bigmat2]
         return Transform8by8(temp)
     elif self.maxsize==12:
         rigidmat0=rigidmatx(s,myparams)
         row1=c_[rigidmat0,zmat,zmat]
         t1=c_[rigidmat1,zmat]
         t2=c_[zmat,rigidmat2]
         temp=r_[t1,t2]
         temp=Transform8by8(temp)
         part2=c_[scipy.zeros((8,4)),temp]
         return r_[row1, part2]
예제 #30
0
파일: ACF.py 프로젝트: RuthAngus/K-ACF
def EBTransitPhase(tset, kid_x):
    ebp = atpy.Table('%s/eb_pars.txt' %dir, type = 'ascii')
    
    lc = tset.tables[1]   
    time = lc.TIME
    flux = lc.PDCSAP_FLUX
    nobs = len(time)
    lg = scipy.isfinite(time)
    pylab.figure(52)
    pylab.clf()
    pylab.plot(time[lg], flux[lg])
    npl = 2
    phase = scipy.zeros((npl, nobs))
    inTr = scipy.zeros((npl, nobs), 'int')
    period = ebp.P[ebp.KID == kid_x]
    for ipl in scipy.arange(npl):
        if ipl == 0: t0 = ebp.Ep1[ebp.KID == kid_x]
        if ipl == 1: t0 = ebp.Ep2[ebp.KID == kid_x]
        if ipl == 0: dur = ebp.Dur1[ebp.KID == kid_x]
        if ipl == 1: dur = ebp.Dur2[ebp.KID == kid_x]
        dur /= period
        counter = 0
        while (time[lg] - t0).min() < 0:
            t0 -= period
            counter += 1
            if counter > 1000: break
        ph = ((time - t0) % period) / period
        ph[ph < -0.5] += 1
        ph[ph > 0.5] -= 1
        phase[ipl,:] = ph
        inTr[ipl,:] = (abs(ph) <= dur/1.5)
    return phase, inTr
예제 #31
0
eigenvalue due to noise."""

import sys

import scipy
import Gnuplot

import arnoldiDTM
import Matrix


if __name__ == "__main__":
    M = 2
    A = Matrix.Diagonal(scipy.arange(M,0,-1))
    I = M+1
    q = scipy.zeros(M)
    q[0] = 1

    Chart = Gnuplot.Gnuplot()
    Chart.xlabel('Standard Deviation of Noise')
    Chart.ylabel('Mean Eigenvalues')

    Means = []
    Noises = scipy.arange(1,500,10)
    for N in Noises:
        eValues = []
        for i in xrange(100):
            adtm = arnoldiDTM.arnoldiDTM(A, Noise=N, NoiseShape='normal')
            Values, Vectors = adtm.arnoldi(q, I)
            eValues.append(Values[-1])
예제 #32
0
def main():
    # parse cmd arguments
    parser = getParser()
    parser.parse_args()
    args = getArguments(parser)

    # prepare logger
    logger = Logger.getInstance()
    if args.debug: logger.setLevel(logging.DEBUG)
    elif args.verbose: logger.setLevel(logging.INFO)

    # build output image name
    image_superimposition_name = args.folder + '/' + args.image1.split(
        '/')[-1][:-4] + '_superimp'
    image_superimposition_name += args.image1.split('/')[-1][-4:]

    # check if output image exists
    if not args.force:
        if os.path.exists(image_superimposition_name):
            raise ArgumentError(
                'The output image {} already exists. Please provide the -f/force flag, if you wish to override it.'
                .format(image_superimposition_name))

    # load image1 using nibabel
    logger.info('Loading image {}...'.format(args.image1))
    image1_data, image1_header = load(args.image1)

    # load image2 using nibabel
    logger.info('Loading image {}...'.format(args.image2))
    image2_data, _ = load(args.image2)

    # check input images to be valid
    logger.info('Checking input images for correctness...')
    if image1_data.shape != image2_data.shape:
        raise ArgumentError(
            'The two input images shape do not match with 1:{} and 2:{}'.
            format(image1_data.shape, image2_data.shape))
    int_types = (scipy.uint, scipy.uint0, scipy.uint8, scipy.uint16,
                 scipy.uint32, scipy.uint64, scipy.uintc, scipy.uintp,
                 scipy.int_, scipy.int0, scipy.int8, scipy.int16, scipy.int32,
                 scipy.int64, scipy.intc, scipy.intp)
    if image1_data.dtype not in int_types:
        raise ArgumentError(
            'Input image 1 is of type {}, an int type is required.'.format(
                image1_data.dtype))
    if image2_data.dtype not in int_types:
        raise ArgumentError(
            'Input image 2 is of type {}, an int type is required.'.format(
                image2_data.dtype))
    if 4294967295 < abs(image1_data.min()) + image1_data.max() + abs(
            image2_data.min()) + image2_data.max():
        raise ArgumentError(
            'The input images contain so many (or not consecutive) labels, that they will not fit in a uint32 range.'
        )

    # create superimposition of the two label images
    logger.info('Creating superimposition image...')
    image_superimposition_data = scipy.zeros(image1_data.shape,
                                             dtype=scipy.uint32)
    translation = {}
    label_id_counter = 0
    for x in range(image1_data.shape[0]):
        for y in range(image1_data.shape[1]):
            for z in range(image1_data.shape[2]):
                label1 = image1_data[x, y, z]
                label2 = image2_data[x, y, z]
                if not (label1, label2) in translation:
                    translation[(label1, label2)] = label_id_counter
                    label_id_counter += 1
                image_superimposition_data[x, y,
                                           z] = translation[(label1, label2)]

    # save resulting superimposition image
    logger.info(
        'Saving superimposition image as {} in the same format as input image...'
        .format(image_superimposition_name))
    save(image_superimposition_data, args.output, image1_header, args.force)

    logger.info('Successfully terminated.')
pdf[[ 'sales', 'resale', 'type', 'price', 'engine_s',
       'horsepow', 'wheelbas', 'width', 'length', 'curb_wgt', 'fuel_cap',
       'mpg', 'lnsales']] = pdf[['sales', 'resale', 'type', 'price', 'engine_s',
       'horsepow', 'wheelbas', 'width', 'length', 'curb_wgt', 'fuel_cap',
       'mpg', 'lnsales']].apply(pd.to_numeric, errors='coerce')

pdf = pdf.dropna()
pdf = pdf.reset_index(drop=True)
print ("Shape of dataset after cleaning: ", pdf.size)
pdf.head(5)

featureset = pdf[['engine_s',  'horsepow', 'wheelbas', 'width', 'length', 'curb_wgt', 'fuel_cap', 'mpg']]

from sklearn.preprocessing import MinMaxScaler

x=featureset.values
min_max_scaler=MinMaxScaler()
feature_mtx=min_max_scaler.fit_transform(x)
print(feature_mtx [0:5])

#In this part we use Scipy package to cluster the dataset: First, we calculate the distance matrix.
import scipy
leng = feature_mtx.shape[0]
D = scipy.zeros([leng,leng])
for i in range(leng):
    for j in range(leng):
        D[i,j] = scipy.spatial.distance.euclidean(feature_mtx[i], feature_mtx[j])

        
예제 #34
0
파일: surf.py 프로젝트: shepherdmeng/isofit
 def calc_Ls(self, x_surface, geom):
     '''Emission of surface, as a radiance'''
     return s.zeros((self.nwl, ))
예제 #35
0
파일: LV4.py 프로젝트: ys219/CMEECoursework
def LV4():
    """a discrete-time version of the LV model"""
    import scipy as sc
    import scipy.stats as stats
    import scipy.integrate as integrate
    import sys

    def CR_t1(pops, t=0):
        """a discrete-time version of the LV model
        with iteration"""
        Rt = pops[0]
        Ct = pops[1]
        eps = stats.norm.rvs(0.2, size=1)[0]
        Rt1 = Rt * (1 + (r + eps) * (1 - Rt / k) - a * Ct)
        Ct1 = Ct * (1 - z + e * a * Rt)

        return sc.array([Rt1, Ct1])


### main inputs:

    if len(sys.argv) != 5:
        r = 1.0
        a = 0.1
        z = 1.5
        e = 0.75
        print("using default parameters")
    else:
        r = float(sys.argv[1])
        a = float(sys.argv[2])
        z = float(sys.argv[3])
        e = float(sys.argv[4])

    k = 30  #define constant parameter, without exceeding the carrying capacity
    t = sc.linspace(0, 15, 20)  #define time series(1000 number between 0-15)
    ## generate data
    R0 = 10
    C0 = 5
    RC0 = sc.array([R0, C0])
    pops = sc.zeros((len(t), 2))

    for i in range(0, len(t)):
        pops[i] = RC0
        RC0 = CR_t1(RC0, t=t)

    print("the final population density is\n", str(pops[-1, 0]),
          "for Resourses\n", pops[-1, 1], "for Consumers")

    import matplotlib.pylab as p
    import matplotlib.pyplot as plt
    from matplotlib.backends.backend_pdf import PdfPages

    with PdfPages("../results/LV4_models.pdf") as pdf:

        f1 = p.figure()

        p.plot(t, pops[:, 0], 'g-', label='Resource density')  # Plot
        p.plot(t, pops[:, 1], 'b-', label='Consumer density')
        p.grid()
        p.legend(loc='best')
        p.xlabel('Time')
        p.ylabel('Population density')
        p.title('Consumer-Resource population dynamics\n(Discrete-time)')

        pdf.savefig(f1)  #Save figure

        f2 = p.figure()

        p.plot(pops[:, 0], pops[:, 1], 'r-')
        p.grid()
        p.legend(loc='best')
        p.xlabel('Resource density')
        p.ylabel('Consumer density')
        p.title(
            'Consumer-Resource population dynamics\n(Discrete time)\nr=%s,a=%s,z=%s,e=%s,k=%s'
            % (r, a, z, e, k))

        pdf.savefig(f2)  #Save figure
예제 #36
0
def lognet(x, is_sparse, irs, pcs, y, weights, offset, parm, nobs, nvars, jd,
           vp, cl, ne, nx, nlam, flmin, ulam, thresh, isd, intr, maxit, kopt,
           family):

    # load shared fortran library
    glmlib = loadGlmLib()
    print("WEIGHTS")
    print(weights.shape)
    print("Y")
    print(y.shape)

    #
    noo = y.shape[0]
    if len(y.shape) > 1:
        nc = y.shape[1]
    else:
        nc = 1

    if (noo != nobs):
        raise ValueError(
            'x and y have different number of rows in call to glmnet')

    if nc == 1:
        classes, sy = scipy.unique(y, return_inverse=True)
        nc = len(classes)
        indexes = scipy.eye(nc, nc)
        y = indexes[sy, :]
    else:
        classes = scipy.arange(nc) + 1  # 1:nc
    #
    if family == 'binomial':
        if nc > 2:
            raise ValueError(
                'More than two classes in y. use multinomial family instead')
        else:
            nc = 1
            y = y[:, [1, 0]]
    #
    if (len(weights) != 0):
        t = weights > 0
        if ~scipy.all(t):
            t = scipy.reshape(t, (len(y), ))
            y = y[t, :]
            x = x[t, :]
            weights = weights[t]
            nobs = scipy.sum(t)
        else:
            t = scipy.empty([0], dtype=scipy.integer)
        #
        if len(y.shape) == 1:
            mv = len(y)
            ny = 1
        else:
            mv, ny = y.shape

        print("BEFORE tile")
        print("WEIGHTS")
        print(weights.shape)
        print("Y")
        print(y.shape)

        y = y * scipy.tile(weights, (ny, 1)).T

    #
    if len(offset) == 0:
        offset = y * 0
        is_offset = False
    else:
        if len(t) != 0:
            offset = offset[t, :]
        do = offset.shape
        if do[0] != nobs:
            raise ValueError(
                'offset should have the same number of values as observations in binominal/multinomial call to glmnet'
            )
        if nc == 1:
            if do[1] == 1:
                offset = scipy.column_stack((offset, -offset))
            if do[1] > 2:
                raise ValueError(
                    'offset should have 1 or 2 columns in binomial call to glmnet'
                )
        if (family == 'multinomial') and (do[1] != nc):
            raise ValueError(
                'offset should have same shape as y in multinomial call to glmnet'
            )
        is_offset = True

    # now convert types and allocate memory before calling
    # glmnet fortran library
    ######################################
    # --------- PROCESS INPUTS -----------
    ######################################
    # force inputs into fortran order and scipy float64
    copyFlag = False
    x = x.astype(dtype=scipy.float64, order='F', copy=copyFlag)
    irs = irs.astype(dtype=scipy.int32, order='F', copy=copyFlag)
    pcs = pcs.astype(dtype=scipy.int32, order='F', copy=copyFlag)
    y = y.astype(dtype=scipy.float64, order='F', copy=copyFlag)
    weights = weights.astype(dtype=scipy.float64, order='F', copy=copyFlag)
    offset = offset.astype(dtype=scipy.float64, order='F', copy=copyFlag)
    jd = jd.astype(dtype=scipy.int32, order='F', copy=copyFlag)
    vp = vp.astype(dtype=scipy.float64, order='F', copy=copyFlag)
    cl = cl.astype(dtype=scipy.float64, order='F', copy=copyFlag)
    ulam = ulam.astype(dtype=scipy.float64, order='F', copy=copyFlag)

    ######################################
    # --------- ALLOCATE OUTPUTS ---------
    ######################################
    # lmu
    lmu = -1
    lmu_r = ctypes.c_int(lmu)
    # a0, ca
    if nc == 1:
        a0 = scipy.zeros([nlam], dtype=scipy.float64)
        ca = scipy.zeros([nx, nlam], dtype=scipy.float64)
    else:
        a0 = scipy.zeros([nc, nlam], dtype=scipy.float64)
        ca = scipy.zeros([nx, nc, nlam], dtype=scipy.float64)
    # a0
    a0 = a0.astype(dtype=scipy.float64, order='F', copy=False)
    a0_r = a0.ctypes.data_as(ctypes.POINTER(ctypes.c_double))
    # ca
    ca = ca.astype(dtype=scipy.float64, order='F', copy=False)
    ca_r = ca.ctypes.data_as(ctypes.POINTER(ctypes.c_double))
    # ia
    ia = -1 * scipy.ones([nx], dtype=scipy.int32)
    ia = ia.astype(dtype=scipy.int32, order='F', copy=False)
    ia_r = ia.ctypes.data_as(ctypes.POINTER(ctypes.c_int))
    # nin
    nin = -1 * scipy.ones([nlam], dtype=scipy.int32)
    nin = nin.astype(dtype=scipy.int32, order='F', copy=False)
    nin_r = nin.ctypes.data_as(ctypes.POINTER(ctypes.c_int))
    # dev
    dev = -1 * scipy.ones([nlam], dtype=scipy.float64)
    dev = dev.astype(dtype=scipy.float64, order='F', copy=False)
    dev_r = dev.ctypes.data_as(ctypes.POINTER(ctypes.c_double))
    # alm
    alm = -1 * scipy.ones([nlam], dtype=scipy.float64)
    alm = alm.astype(dtype=scipy.float64, order='F', copy=False)
    alm_r = alm.ctypes.data_as(ctypes.POINTER(ctypes.c_double))
    # nlp
    nlp = -1
    nlp_r = ctypes.c_int(nlp)
    # jerr
    jerr = -1
    jerr_r = ctypes.c_int(jerr)
    # dev0
    dev0 = -1
    dev0_r = ctypes.c_double(dev0)

    #  ###################################
    #   main glmnet fortran caller
    #  ###################################
    if is_sparse:
        # sparse lognet
        glmlib.splognet_(
            ctypes.byref(ctypes.c_double(parm)),
            ctypes.byref(ctypes.c_int(nobs)),
            ctypes.byref(ctypes.c_int(nvars)), ctypes.byref(ctypes.c_int(nc)),
            x.ctypes.data_as(ctypes.POINTER(ctypes.c_double)),
            pcs.ctypes.data_as(ctypes.POINTER(ctypes.c_int)),
            irs.ctypes.data_as(ctypes.POINTER(ctypes.c_int)),
            y.ctypes.data_as(ctypes.POINTER(ctypes.c_double)),
            offset.ctypes.data_as(ctypes.POINTER(ctypes.c_double)),
            jd.ctypes.data_as(ctypes.POINTER(ctypes.c_int)),
            vp.ctypes.data_as(ctypes.POINTER(ctypes.c_double)),
            cl.ctypes.data_as(ctypes.POINTER(ctypes.c_double)),
            ctypes.byref(ctypes.c_int(ne)), ctypes.byref(ctypes.c_int(nx)),
            ctypes.byref(ctypes.c_int(nlam)),
            ctypes.byref(ctypes.c_double(flmin)),
            ulam.ctypes.data_as(ctypes.POINTER(ctypes.c_double)),
            ctypes.byref(ctypes.c_double(thresh)),
            ctypes.byref(ctypes.c_int(isd)), ctypes.byref(ctypes.c_int(intr)),
            ctypes.byref(ctypes.c_int(maxit)),
            ctypes.byref(ctypes.c_int(kopt)), ctypes.byref(lmu_r), a0_r,
            ca_r, ia_r, nin_r, ctypes.byref(dev0_r), dev_r, alm_r,
            ctypes.byref(nlp_r), ctypes.byref(jerr_r))
    else:
        # call fortran lognet routine
        glmlib.lognet_(ctypes.byref(ctypes.c_double(parm)),
                       ctypes.byref(ctypes.c_int(nobs)),
                       ctypes.byref(ctypes.c_int(nvars)),
                       ctypes.byref(ctypes.c_int(nc)),
                       x.ctypes.data_as(ctypes.POINTER(ctypes.c_double)),
                       y.ctypes.data_as(ctypes.POINTER(ctypes.c_double)),
                       offset.ctypes.data_as(ctypes.POINTER(ctypes.c_double)),
                       jd.ctypes.data_as(ctypes.POINTER(ctypes.c_int)),
                       vp.ctypes.data_as(ctypes.POINTER(ctypes.c_double)),
                       cl.ctypes.data_as(ctypes.POINTER(ctypes.c_double)),
                       ctypes.byref(ctypes.c_int(ne)),
                       ctypes.byref(ctypes.c_int(nx)),
                       ctypes.byref(ctypes.c_int(nlam)),
                       ctypes.byref(ctypes.c_double(flmin)),
                       ulam.ctypes.data_as(ctypes.POINTER(ctypes.c_double)),
                       ctypes.byref(ctypes.c_double(thresh)),
                       ctypes.byref(ctypes.c_int(isd)),
                       ctypes.byref(ctypes.c_int(intr)),
                       ctypes.byref(ctypes.c_int(maxit)),
                       ctypes.byref(ctypes.c_int(kopt)),
                       ctypes.byref(lmu_r), a0_r, ca_r, ia_r, nin_r,
                       ctypes.byref(dev0_r), dev_r, alm_r, ctypes.byref(nlp_r),
                       ctypes.byref(jerr_r))

    #  ###################################
    #   post process results
    #  ###################################

    # check for error
    if (jerr_r.value > 0):
        raise ValueError("Fatal glmnet error in library call : error code = ",
                         jerr_r.value)
    elif (jerr_r.value < 0):
        print("Warning: Non-fatal error in glmnet library call: error code = ",
              jerr_r.value)
        print("Check results for accuracy. Partial or no results returned.")

    # clip output to correct sizes
    lmu = lmu_r.value
    if nc == 1:
        a0 = a0[0:lmu]
        ca = ca[0:nx, 0:lmu]
    else:
        a0 = a0[0:nc, 0:lmu]
        ca = ca[0:nx, 0:nc, 0:lmu]
    ia = ia[0:nx]
    nin = nin[0:lmu]
    dev = dev[0:lmu]
    alm = alm[0:lmu]

    # ninmax
    ninmax = max(nin)
    # fix first value of alm (from inf to correct value)
    if ulam[0] == 0.0:
        t1 = scipy.log(alm[1])
        t2 = scipy.log(alm[2])
        alm[0] = scipy.exp(2 * t1 - t2)
    # create return fit dictionary

    if family == 'multinomial':
        a0 = a0 - scipy.tile(scipy.mean(a0), (nc, 1))
        dfmat = a0.copy()
        dd = scipy.array([nvars, lmu], dtype=scipy.integer)
        beta_list = list()
        if ninmax > 0:
            # TODO: is the reshape here done right?
            ca = scipy.reshape(ca, (nx, nc, lmu))
            ca = ca[0:ninmax, :, :]
            ja = ia[0:ninmax] - 1  # ia is 1-indexed in fortran
            oja = scipy.argsort(ja)
            ja1 = ja[oja]
            df = scipy.any(scipy.absolute(ca) > 0, axis=1)
            df = scipy.sum(df)
            df = scipy.reshape(df, (1, df.size))
            for k in range(0, nc):
                ca1 = scipy.reshape(ca[:, k, :], (ninmax, lmu))
                cak = ca1[oja, :]
                dfmat[k, :] = scipy.sum(scipy.absolute(cak) > 0, axis=0)
                beta = scipy.zeros([nvars, lmu], dtype=scipy.float64)
                beta[ja1, :] = cak
                beta_list.append(beta)
        else:
            for k in range(0, nc):
                dfmat[k, :] = scipy.zeros([1, lmu], dtype=scipy.float64)
                beta_list.append(scipy.zeros([nvars, lmu],
                                             dtype=scipy.float64))
            #
            df = scipy.zeros([1, lmu], dtype=scipy.float64)
        #
        if kopt == 2:
            grouped = True
        else:
            grouped = False
        #
        fit = dict()
        fit['a0'] = a0
        fit['label'] = classes
        fit['beta'] = beta_list
        fit['dev'] = dev
        fit['nulldev'] = dev0_r.value
        fit['dfmat'] = dfmat
        fit['df'] = df
        fit['lambdau'] = alm
        fit['npasses'] = nlp_r.value
        fit['jerr'] = jerr_r.value
        fit['dim'] = dd
        fit['grouped'] = grouped
        fit['offset'] = is_offset
        fit['class'] = 'multnet'
    else:
        dd = scipy.array([nvars, lmu], dtype=scipy.integer)
        if ninmax > 0:
            ca = ca[0:ninmax, :]
            df = scipy.sum(scipy.absolute(ca) > 0, axis=0)
            ja = ia[0:ninmax] - 1
            # ia is 1-indexes in fortran
            oja = scipy.argsort(ja)
            ja1 = ja[oja]
            beta = scipy.zeros([nvars, lmu], dtype=scipy.float64)
            beta[ja1, :] = ca[oja, :]
        else:
            beta = scipy.zeros([nvars, lmu], dtype=scipy.float64)
            df = scipy.zeros([1, lmu], dtype=scipy.float64)
        #
        fit = dict()
        fit['a0'] = a0
        fit['label'] = classes
        fit['beta'] = beta
        fit['dev'] = dev
        fit['nulldev'] = dev0_r.value
        fit['df'] = df
        fit['lambdau'] = alm
        fit['npasses'] = nlp_r.value
        fit['jerr'] = jerr_r.value
        fit['dim'] = dd
        fit['offset'] = is_offset
        fit['class'] = 'lognet'

    #  ###################################
    #   return to caller
    #  ###################################

    return fit
예제 #37
0
from Gnuplot import Gnuplot, GridData
from math import sin, cos, tan, asin, acos, atan, exp, pi
from os import popen2
from sys import stdin
import random
from scipy.integrate import quad
from Gnuplot.func_ext import *
from functions import *
from libacepy.frange import frange
import random

Float = float
matrixmultiply = dot
gp = Gnuplot()

c = zeros([101], Float)
t_data = zeros([512, 3], Float)
e_data = zeros([128, 3], Float)
#ions=["he2","o8","n7","c12","mg11","c13","o7","n6","mg10","c5","ne8","mg9","o6","n5","c4"]
ions = [
    "He2", "O8", "N7", "C6", "Mg11", "13C6", "O7", "N6", "Mg10", "C5", "Ne8",
    "Mg9", "O6", "N5", "C4"
]
x = zeros([len(ions)], Float)
G = zeros([len(ions)], Float)
sg = zeros([len(ions)], Float)
sk = zeros([len(ions)], Float)
sl = zeros([len(ions)], Float)
sr = zeros([len(ions)], Float)
kappa = zeros([len(ions)], Float)
breite = zeros([len(ions)], Float)
예제 #38
0
    f[5] = 0.092
    eta[5] = 98.4
    f[6] = 0.109
    eta[6] = 2880
    for i in range(0, np.size(eta)):
        f_times_eta[i] = f[i] * np.exp(-eta[i] * z)
        f_times_eta_div[i] = -eta[i] * f_times_eta[i]
        #print f_times_eta_div[i]
    Q = sum(f_times_eta_div)
    return Q


Rs = 800
Q_swr_0 = 800
z = np.linspace(0.0, 0.25, num=1001)
Q_swr = scipy.zeros(np.size(z))
Q_swr_1 = scipy.zeros(np.size(z))
Q_swr_2 = scipy.zeros(np.size(z))
eta_measuerd = 1.0

for i in range(0, np.size(z)):
    Q_swr_1[i] = -1 * Q_swr_0 * Q_swr_z(z[i], eta_measuerd) / (cp_w * rho_w)
    print z[i], Q_swr_1[i]
plt.plot(Q_swr_1[0:100], z[0:100])

eta_measuerd = 10.0

for i in range(0, np.size(z)):
    Q_swr_2[i] = -1 * Q_swr_0 * Q_swr_z(z[i], eta_measuerd) / (cp_w * rho_w)
    print z[i], Q_swr_2[i]
plt.plot(Q_swr_2[0:100], z[0:100])
예제 #39
0
def coordinate_genot_ss(genotype_file=None,
                        hdf5_file=None,
                        genetic_map_dir=None,
                        check_mafs=False,
                        min_maf=0.01,
                        skip_coordination=False,
                        debug=False):
    """
    Assumes plink BED files.  Imputes missing genotypes.
    """
    from plinkio import plinkfile
    plinkf = plinkfile.PlinkFile(genotype_file)
    plinkf_dict = plinkfiles.get_phenotypes(plinkf)
    num_individs = plinkf_dict['num_individs']
    risk_scores = sp.zeros(num_individs)
    rb_risk_scores = sp.zeros(num_individs)
    num_common_snps = 0
    corr_list = []
    rb_corr_list = []

    if plinkf_dict['has_phenotype']:
        hdf5_file.create_dataset('y', data=plinkf_dict['phenotypes'])

    hdf5_file.create_dataset('fids',
                             data=sp.array(plinkf_dict['fids'],
                                           dtype=util.fids_dtype))
    hdf5_file.create_dataset('iids',
                             data=sp.array(plinkf_dict['iids'],
                                           dtype=util.iids_dtype))
    ssf = hdf5_file['sum_stats']

    cord_data_g = hdf5_file.create_group('cord_data')

    # Figure out chromosomes and positions by looking at SNPs.
    loci = plinkf.get_loci()
    plinkf.close()
    gf_chromosomes = [l.chromosome for l in loci]

    chromosomes = sp.unique(gf_chromosomes)
    chromosomes.sort()
    chr_dict = plinkfiles.get_chrom_dict(loci, chromosomes)

    tot_num_non_matching_nts = 0
    for chrom in chromosomes:
        chr_str = 'chrom_%d' % chrom
        print('Coordinating data for chromosome %s' % chr_str)

        chrom_d = chr_dict[chr_str]
        #print(chrom_d)
        try:
            ssg = ssf['chrom_%d' % chrom]
        except Exception as err_str:
            print(err_str)
            print('Did not find chromosome in SS dataset.')
            print('Continuing.')
            continue

        # for x,y in zip(chrom_d['sids'], chrom_d['nts']):
        #     sys.stderr.write(f'{x} {y[0]} {y[1]}\n')
        #
        # for x,y in zip(ssg['sids'], ssg['nts']):
        #     sys.stderr.write(f'{x} {y[0]} {y[1]}\n')

        g_sids = chrom_d['sids']
        g_sid_set = set(g_sids)
        assert len(g_sid_set) == len(
            g_sids), 'Some SNPs appear to be duplicated?'
        ss_sids = (ssg['sids'][...]).astype(util.sids_u_dtype)
        ss_sid_set = set(ss_sids)
        assert len(ss_sid_set) == len(
            ss_sids), 'Some SNPs appear to be duplicated?'

        # Figure out filters:
        g_filter = sp.in1d(g_sids, ss_sids)
        ss_filter = sp.in1d(ss_sids, g_sids)

        # Order by SNP IDs
        g_order = sp.argsort(g_sids)
        ss_order = sp.argsort(ss_sids)

        g_indices = []
        for g_i in g_order:
            if g_filter[g_i]:
                g_indices.append(g_i)

        ss_indices = []
        for ss_i in ss_order:
            if ss_filter[ss_i]:
                ss_indices.append(ss_i)

        g_nts = chrom_d['nts']
        snp_indices = chrom_d['snp_indices']
        ss_nts = (ssg['nts'][...]).astype(util.nts_u_dtype)
        betas = ssg['betas'][...]
        log_odds = ssg['log_odds'][...]
        assert not sp.any(sp.isnan(
            betas)), 'Some SNP effect estimates are NANs (not a number)'
        assert not sp.any(sp.isinf(
            betas)), 'Some SNP effect estimates are INFs (infinite numbers)'

        # Wallace -start, f**k LDpred
        w_pos = chrom_d['positions']
        # -end

        num_non_matching_nts = 0
        num_ambig_nts = 0
        ok_nts = []
        if debug:
            print('Found %d SNPs present in both datasets' % (len(g_indices)))

        if 'freqs' in ssg:
            ss_freqs = ssg['freqs'][...]

        ok_indices = {'g': [], 'ss': []}
        for g_i, ss_i in zip(g_indices, ss_indices):
            # for g_i, ss_i, pos_i in zip(g_indices, ss_indices, w_pos):

            # Is the nucleotide ambiguous?
            g_nt = [g_nts[g_i][0], g_nts[g_i][1]]

            if not skip_coordination:
                if tuple(g_nt) in util.ambig_nts:
                    num_ambig_nts += 1
                    tot_num_non_matching_nts += 1
                    continue

                if (not g_nt[0] in util.valid_nts) or (not g_nt[1]
                                                       in util.valid_nts):
                    num_non_matching_nts += 1
                    tot_num_non_matching_nts += 1
                    continue

                ss_nt = ss_nts[ss_i]

                # Are the nucleotides the same?
                flip_nts = False
                os_g_nt = sp.array([
                    util.opp_strand_dict[g_nt[0]],
                    util.opp_strand_dict[g_nt[1]]
                ])
                if not (sp.all(g_nt == ss_nt) or sp.all(os_g_nt == ss_nt)):
                    # Opposite strand nucleotides
                    flip_nts = (g_nt[1] == ss_nt[0] and g_nt[0]
                                == ss_nt[1]) or (os_g_nt[1] == ss_nt[0]
                                                 and os_g_nt[0] == ss_nt[1])

                    if flip_nts:
                        betas[ss_i] = -betas[ss_i]
                        log_odds[ss_i] = -log_odds[ss_i]
                        if 'freqs' in ssg:
                            if ss_freqs[ss_i] > 0:
                                ss_freqs[ss_i] = 1 - ss_freqs[ss_i]
                    else:
                        # Wallace debug
                        if debug:
                            sys.stderr.write(
                                f'non match at: {g_sids[g_i]} - ssid:{ss_sids[ss_i]}, g_nt: {g_nt[0]} - {g_nt[1]}, ss_nt: {ss_nt[0]} - {ss_nt[1]}\n'
                            )
                        # End Wallace debug.

                        num_non_matching_nts += 1
                        tot_num_non_matching_nts += 1

                        continue

            # everything seems ok.
            ok_indices['g'].append(g_i)
            ok_indices['ss'].append(ss_i)
            ok_nts.append(g_nt)

        if debug:
            print('%d SNPs were excluded due to ambiguous nucleotides.' %
                  num_ambig_nts)
            print('%d SNPs were excluded due to non-matching nucleotides.' %
                  num_non_matching_nts)

        # Resorting by position
        positions = sp.array(chrom_d['positions'])[ok_indices['g']]
        order = sp.argsort(positions)
        ok_indices['g'] = list(sp.array(ok_indices['g'])[order])
        ok_indices['ss'] = list(sp.array(ok_indices['ss'])[order])
        positions = positions[order]

        # Parse SNPs
        snp_indices = sp.array(chrom_d['snp_indices'])

        # Pinpoint where the SNPs are in the file.
        snp_indices = snp_indices[ok_indices['g']]
        raw_snps, freqs = plinkfiles.parse_plink_snps(genotype_file,
                                                      snp_indices)
        if debug:
            print('Parsed a %dX%d (SNP) genotype matrix' %
                  (raw_snps.shape[0], raw_snps.shape[1]))

        snp_stds = sp.sqrt(2 * freqs * (1 - freqs))
        snp_means = freqs * 2

        betas = betas[ok_indices['ss']]
        log_odds = log_odds[ok_indices['ss']]
        ps = ssg['ps'][...][ok_indices['ss']]
        nts = sp.array(ok_nts)[order]
        sids = (ssg['sids'][...]).astype(util.sids_u_dtype)
        sids = sids[ok_indices['ss']]

        # Check SNP frequencies..
        if check_mafs and 'freqs' in ssg:
            ss_freqs = ss_freqs[ok_indices['ss']]
            # Assuming freq less than 0 is missing data
            freq_discrepancy_snp = sp.absolute(ss_freqs - (1 - freqs)) > 0.15
            # Filter SNPs that doesn't have MAF info from sumstat
            freq_discrepancy_snp = sp.logical_and(freq_discrepancy_snp,
                                                  ss_freqs > 0)
            freq_discrepancy_snp = sp.logical_and(freq_discrepancy_snp,
                                                  ss_freqs < 1)
            if sp.any(freq_discrepancy_snp):
                print(
                    'Warning: %d SNPs appear to have high frequency '
                    'discrepancy between summary statistics and validation sample'
                    % sp.sum(freq_discrepancy_snp))

                # Filter freq_discrepancy_snps
                ok_freq_snps = sp.logical_not(freq_discrepancy_snp)
                raw_snps = raw_snps[ok_freq_snps]
                snp_stds = snp_stds[ok_freq_snps]
                snp_means = snp_means[ok_freq_snps]
                freqs = freqs[ok_freq_snps]
                ps = ps[ok_freq_snps]
                positions = positions[ok_freq_snps]
                nts = nts[ok_freq_snps]
                sids = sids[ok_freq_snps]
                betas = betas[ok_freq_snps]
                log_odds = log_odds[ok_freq_snps]

        # Filter minor allele frequency SNPs.
        maf_filter = (freqs > min_maf) * (freqs < (1 - min_maf))
        maf_filter_sum = sp.sum(maf_filter)
        n_snps = len(maf_filter)
        assert maf_filter_sum <= n_snps, "Problems when filtering SNPs with low minor allele frequencies"
        if sp.sum(maf_filter) < n_snps:
            raw_snps = raw_snps[maf_filter]
            snp_stds = snp_stds[maf_filter]
            snp_means = snp_means[maf_filter]
            freqs = freqs[maf_filter]
            ps = ps[maf_filter]
            positions = positions[maf_filter]
            nts = nts[maf_filter]
            sids = sids[maf_filter]
            betas = betas[maf_filter]
            log_odds = log_odds[maf_filter]

            print('%d SNPs with MAF < %0.3f were filtered' %
                  (n_snps - maf_filter_sum, min_maf))

        print('%d SNPs were retained on chromosome %d.' %
              (maf_filter_sum, chrom))

        rb_prs = sp.dot(sp.transpose(raw_snps), log_odds)
        if debug and plinkf_dict['has_phenotype']:
            print('Normalizing SNPs')
            snp_means.shape = (len(raw_snps), 1)
            snp_stds.shape = (len(raw_snps), 1)
            snps = (raw_snps - snp_means) / snp_stds
            assert snps.shape == raw_snps.shape, 'Problems when normalizing SNPs (set to have variance 1 and 0 mean)'
            snp_stds = snp_stds.flatten()
            snp_means = snp_means.flatten()
            prs = sp.dot(sp.transpose(snps), betas)
            corr = sp.corrcoef(plinkf_dict['phenotypes'], prs)[0, 1]
            corr_list.append(corr)
            print(
                'PRS correlation for chromosome %d was %0.4f when predicting into LD ref data'
                % (chrom, corr))
            rb_corr = sp.corrcoef(plinkf_dict['phenotypes'], rb_prs)[0, 1]
            rb_corr_list.append(rb_corr)
            print(
                'Raw effect sizes PRS correlation for chromosome %d was %0.4f when predicting into LD ref data'
                % (chrom, rb_corr))

        sid_set = set(sids)
        if genetic_map_dir is not None:
            genetic_map = []
            with gzip.open(genetic_map_dir +
                           'chr%d.interpolated_genetic_map.gz' % chrom) as f:
                for line in f:
                    l = line.split()
                    if l[0] in sid_set:
                        genetic_map.append(l[0])
        else:
            genetic_map = None

        coord_data_dict = {
            'chrom': 'chrom_%d' % chrom,
            'raw_snps_ref': raw_snps,
            'snp_stds_ref': snp_stds,
            'snp_means_ref': snp_means,
            'freqs_ref': freqs,
            'ps': ps,
            'positions': positions,
            'nts': nts,
            'sids': sids,
            'genetic_map': genetic_map,
            'betas': betas,
            'log_odds': log_odds,
            'log_odds_prs': rb_prs
        }

        write_coord_data(cord_data_g, coord_data_dict)

        if debug and plinkf_dict['has_phenotype']:
            rb_risk_scores += rb_prs
            risk_scores += prs
        num_common_snps += len(betas)

    if debug and plinkf_dict['has_phenotype']:

        # Now calculate the prediction R^2
        corr = sp.corrcoef(plinkf_dict['phenotypes'], risk_scores)[0, 1]
        rb_corr = sp.corrcoef(plinkf_dict['phenotypes'], rb_risk_scores)[0, 1]
        print(
            'PRS R2 prediction accuracy for the whole genome was %0.4f (corr=%0.4f) when predicting into LD ref data'
            % (corr**2, corr))
        print(
            'Log-odds (effects) PRS R2 prediction accuracy for the whole genome was %0.4f (corr=%0.4f) when predicting into LD ref data'
            % (rb_corr**2, rb_corr))
    print('There were %d SNPs in common' % num_common_snps)
    print('In all, %d SNPs were excluded due to nucleotide issues.' %
          tot_num_non_matching_nts)
    print('Done coordinating genotypes and summary statistics datasets.')
예제 #40
0
train = []
test1 = []
test2 = []
for i in range(n_s):
    if parents[i, 1] in idxf:
        test2 = test2 + [i]
    else:
        if parents[i, 0] in idxm:
            test1 = test1 + [i]
        else:
            train = train + [i]
train2 = train + test1
test = test1 + test2

yhat = SP.zeros((n_s, 1))
yhat[train] = y[train]


def train_and_eval(Xtrain, Xtest, ytrain):
    ns = Xtrain.shape[0]
    idx = list(range(ns))
    SP.random.shuffle(idx)
    train_idx = idx[:int(ns * 0.7)]
    valid_idx = idx[int(ns * 0.7):]
    xg_train = xgb.DMatrix(Xtrain[train_idx, :], label=ytrain[train_idx, :])
    xg_valid = xgb.DMatrix(Xtrain[valid_idx, :], label=ytrain[valid_idx, :])
    param = {'eta': 0.05, 'silent': 1, 'subsample': 0.5, 'lambda': 0.8}
    model = xgb.train(param,
                      xg_train,
                      500, [(xg_valid, 'valid')],
예제 #41
0
 def getGaus(self, alpha, mue, sigma, x):
     dens = zeros(self.numOGaus)
     for g in range(self.numOGaus):
         dens[g] = self.getStND(x, mue[g], sigma[g])
     return sum(self.sigmo(alpha) * dens)
예제 #42
0
EE_sol_test = []
tau_sol_test = []
for Mon in xrange(max_chan_realizaion):
    max_d2d_to_d2d_gains_diff = sp.copy(max_d2d_to_d2d_gains[:, :, Mon])
    sp.fill_diagonal(max_d2d_to_d2d_gains_diff, 0)

    uav_to_d2d_gains = max_uav_to_d2d_gains[:num_d2d_pairs, Mon]
    d2d_to_d2d_gains = max_d2d_to_d2d_gains[:num_d2d_pairs, :num_d2d_pairs,
                                            Mon]
    d2d_to_d2d_gains_diff = max_d2d_to_d2d_gains_diff[:num_d2d_pairs, :
                                                      num_d2d_pairs]
    d2d_to_d2d_gains_diag = sp.subtract(d2d_to_d2d_gains,
                                        d2d_to_d2d_gains_diff)

    # vectorize channel training
    test_chan = sp.zeros(dimen_input)
    test_chan[0:num_d2d_pairs] = uav_to_d2d_gains
    test_chan[num_d2d_pairs:dimen_input] = d2d_to_d2d_gains.ravel()

    vec_chan_test = sp.array([test_chan])
    X_test = vec_chan_test

    test_tau_result = nn_model.predict(X_test, verbose=0)

    test_theta_dnn = 1 / (1 - test_tau_result)

    phi_n_sol = sp.multiply((test_theta_dnn - 1) * eta * power_UAV,
                            uav_to_d2d_gains)
    x_rate = sp.matmul(d2d_to_d2d_gains_diag, sp.transpose(phi_n_sol))
    term_rate = sp.matmul(sp.transpose(d2d_to_d2d_gains_diff),
                          sp.transpose(phi_n_sol)) + 1
ref = '100307'
print(ref + '.reduce' + str(r_factor) + '.LR_mask.mat')
fn1 = ref + '.reduce' + str(r_factor) + '.LR_mask.mat'
fname1 = os.path.join(ref_dir, fn1)
msk = scipy.io.loadmat(fname1)  # h5py.File(fname1);
dfs_left = readdfs(os.path.join(p_dir_ref, 'reference', ref + '.aparc.\
a2009s.32k_fs.reduce3.left.dfs'))
dfs_left_sm = readdfs(os.path.join(p_dir_ref, 'reference', ref + '.aparc.\
a2009s.32k_fs.reduce3.very_smooth.left.dfs'))

# view_patch_vtk(dfs_left_sm)
rho_rho = []
rho_all = []
#lst=lst[:1]
labs_all = sp.zeros((len(dfs_left.labels), len(lst)))
sub = lst[0]
data = scipy.io.loadmat(os.path.join(p_dir, sub, sub + '.rfMRI_REST1_LR.\
reduce3.ftdata.NLM_11N_hvar_25.mat'))
LR_flag = msk['LR_flag']
LR_flag = np.squeeze(LR_flag) != 0
data = data['ftdata_NLM']
temp = data[LR_flag, :]
#temp = temp[:,0:30]
#temp[5000:6000, 500:700] = sp.randn(1000, 200) # temp[1000, :]
m = np.mean(temp, 1)
temp = temp - m[:, None]
s = np.std(temp, 1)+1e-16
temp = temp/s[:, None]
d1 = temp
예제 #44
0
def coordinate_genotypes_ss_w_ld_ref(genotype_file=None,
                                     reference_genotype_file=None,
                                     hdf5_file=None,
                                     genetic_map_dir=None,
                                     check_mafs=False,
                                     min_maf=0.01,
                                     skip_coordination=False,
                                     debug=False):
    print('Coordinating things w genotype file: %s \nref. genot. file: %s' %
          (genotype_file, reference_genotype_file))

    from plinkio import plinkfile
    plinkf = plinkfile.PlinkFile(genotype_file)

    # Loads only the individuals...
    plinkf_dict = plinkfiles.get_phenotypes(plinkf)

    # Figure out chromosomes and positions.
    if debug:
        print('Parsing validation bim file')
    loci = plinkf.get_loci()
    plinkf.close()
    gf_chromosomes = [l.chromosome for l in loci]

    chromosomes = sp.unique(gf_chromosomes)
    chromosomes.sort()

    chr_dict = plinkfiles.get_chrom_dict(loci, chromosomes)

    if debug:
        print('Parsing LD reference bim file')
    plinkf_ref = plinkfile.PlinkFile(reference_genotype_file)
    loci_ref = plinkf_ref.get_loci()
    plinkf_ref.close()

    chr_dict_ref = plinkfiles.get_chrom_dict(loci_ref, chromosomes)

    # Open HDF5 file and prepare out data
    assert not 'iids' in hdf5_file, 'Something is wrong with the HDF5 file, no individuals IDs were found.'
    if plinkf_dict['has_phenotype']:
        hdf5_file.create_dataset('y', data=plinkf_dict['phenotypes'])

    hdf5_file.create_dataset('fids',
                             data=sp.array(plinkf_dict['fids'],
                                           dtype=util.fids_dtype))
    hdf5_file.create_dataset('iids',
                             data=sp.array(plinkf_dict['iids'],
                                           dtype=util.iids_dtype))
    ssf = hdf5_file['sum_stats']
    cord_data_g = hdf5_file.create_group('cord_data')

    maf_adj_risk_scores = sp.zeros(plinkf_dict['num_individs'])
    num_common_snps = 0
    # corr_list = []

    tot_g_ss_nt_concord_count = 0
    tot_rg_ss_nt_concord_count = 0
    tot_g_rg_nt_concord_count = 0
    tot_num_non_matching_nts = 0

    # Now iterate over chromosomes
    for chrom in chromosomes:
        ok_indices = {'g': [], 'rg': [], 'ss': []}

        chr_str = 'chrom_%d' % chrom
        print('Coordinating data for chromosome %s' % chr_str)

        chrom_d = chr_dict[chr_str]
        chrom_d_ref = chr_dict_ref[chr_str]
        try:
            ssg = ssf['chrom_%d' % chrom]
        except Exception as err_str:
            print(err_str)
            print('Did not find chromosome in SS dataset.')
            print('Continuing.')
            continue

        ssg = ssf['chrom_%d' % chrom]
        g_sids = chrom_d['sids']
        rg_sids = chrom_d_ref['sids']
        ss_sids = (ssg['sids'][...]).astype(util.sids_u_dtype)
        if debug:
            print(
                'Found %d SNPs in validation data, %d SNPs in LD reference data, and %d SNPs in summary statistics.'
                % (len(g_sids), len(rg_sids), len(ss_sids)))
        common_sids = sp.intersect1d(ss_sids, g_sids)
        common_sids = sp.intersect1d(common_sids, rg_sids)
        if debug:
            print(
                'Found %d SNPs on chrom %d that were common across all datasets'
                % (len(common_sids), chrom))

        ss_snp_map = []
        g_snp_map = []
        rg_snp_map = []

        ss_sid_dict = {}
        for i, sid in enumerate(ss_sids):
            ss_sid_dict[sid] = i

        g_sid_dict = {}
        for i, sid in enumerate(g_sids):
            g_sid_dict[sid] = i

        rg_sid_dict = {}
        for i, sid in enumerate(rg_sids):
            rg_sid_dict[sid] = i

        for sid in common_sids:
            g_snp_map.append(g_sid_dict[sid])

        # order by positions
        g_positions = sp.array(chrom_d['positions'])[g_snp_map]
        order = sp.argsort(g_positions)
        # order = order.tolist()
        g_snp_map = sp.array(g_snp_map)[order]
        g_snp_map = g_snp_map.tolist()
        common_sids = sp.array(common_sids)[order]

        # Get the other two maps
        for sid in common_sids:
            rg_snp_map.append(rg_sid_dict[sid])

        for sid in common_sids:
            ss_snp_map.append(ss_sid_dict[sid])

        g_nts = sp.array(chrom_d['nts'])
        rg_nts = sp.array(chrom_d_ref['nts'])
        rg_nts_ok = sp.array(rg_nts)[rg_snp_map]
        ss_nts = (ssg['nts'][...]).astype(util.nts_u_dtype)
        betas = ssg['betas'][...]
        log_odds = ssg['log_odds'][...]

        if 'freqs' in ssg:
            ss_freqs = ssg['freqs'][...]

        g_ss_nt_concord_count = sp.sum(
            g_nts[g_snp_map] == ss_nts[ss_snp_map]) / 2.0
        rg_ss_nt_concord_count = sp.sum(rg_nts_ok == ss_nts[ss_snp_map]) / 2.0
        g_rg_nt_concord_count = sp.sum(g_nts[g_snp_map] == rg_nts_ok) / 2.0
        if debug:
            print(
                'Nucleotide concordance counts out of %d genotypes: vg-g: %d, vg-ss: %d, g-ss: %d'
                % (len(g_snp_map), g_rg_nt_concord_count,
                   g_ss_nt_concord_count, rg_ss_nt_concord_count))
        tot_g_ss_nt_concord_count += g_ss_nt_concord_count
        tot_rg_ss_nt_concord_count += rg_ss_nt_concord_count
        tot_g_rg_nt_concord_count += g_rg_nt_concord_count

        num_non_matching_nts = 0
        num_ambig_nts = 0

        # Identifying which SNPs have nucleotides that are ok..
        ok_nts = []
        for g_i, rg_i, ss_i in zip(g_snp_map, rg_snp_map, ss_snp_map):

            # To make sure, is the SNP id the same?
            assert g_sids[g_i] == rg_sids[rg_i] == ss_sids[
                ss_i], 'Some issues with coordinating the genotypes.'

            g_nt = g_nts[g_i]
            if not skip_coordination:

                rg_nt = rg_nts[rg_i]
                ss_nt = ss_nts[ss_i]

                # Is the nucleotide ambiguous.
                g_nt = [g_nts[g_i][0], g_nts[g_i][1]]
                if tuple(g_nt) in util.ambig_nts:
                    num_ambig_nts += 1
                    tot_num_non_matching_nts += 1
                    continue

                # First check if nucleotide is sane?
                if (not g_nt[0] in util.valid_nts) or (not g_nt[1]
                                                       in util.valid_nts):
                    num_non_matching_nts += 1
                    tot_num_non_matching_nts += 1
                    continue

                os_g_nt = sp.array([
                    util.opp_strand_dict[g_nt[0]],
                    util.opp_strand_dict[g_nt[1]]
                ])

                flip_nts = False
                if not ((sp.all(g_nt == ss_nt) or sp.all(os_g_nt == ss_nt)) and
                        (sp.all(g_nt == rg_nt) or sp.all(os_g_nt == rg_nt))):
                    if sp.all(g_nt == rg_nt) or sp.all(os_g_nt == rg_nt):
                        flip_nts = (g_nt[1] == ss_nt[0] and g_nt[0]
                                    == ss_nt[1]) or (os_g_nt[1] == ss_nt[0] and
                                                     os_g_nt[0] == ss_nt[1])
                        # Try flipping the SS nt
                        if flip_nts:
                            betas[ss_i] = -betas[ss_i]
                            log_odds[ss_i] = -log_odds[ss_i]
                            if 'freqs' in ssg:
                                ss_freqs[ss_i] = 1 - ss_freqs[ss_i]
                        else:
                            if debug:
                                print("Nucleotides don't match after all?: g_sid=%s, ss_sid=%s, g_i=%d, ss_i=%d, g_nt=%s, ss_nt=%s" % \
                                      (g_sids[g_i], ss_sids[ss_i], g_i,
                                       ss_i, str(g_nt), str(ss_nt)))
                            num_non_matching_nts += 1
                            tot_num_non_matching_nts += 1
                            continue

                    else:
                        num_non_matching_nts += 1
                        tot_num_non_matching_nts += 1
                        continue
                        # Opposite strand nucleotides

            # everything seems ok.
            ok_indices['g'].append(g_i)
            ok_indices['rg'].append(rg_i)
            ok_indices['ss'].append(ss_i)

            ok_nts.append(g_nt)

        if debug:
            print('%d SNPs had ambiguous nucleotides.' % num_ambig_nts)
            print('%d SNPs were excluded due to nucleotide issues.' %
                  num_non_matching_nts)
            print('%d SNPs were retained on chromosome %d.' %
                  (len(ok_indices['g']), chrom))

        # Resorting by position
        positions = sp.array(chrom_d['positions'])[ok_indices['g']]

        # Now parse SNPs ..
        snp_indices = sp.array(chrom_d['snp_indices'])
        # Pinpoint where the SNPs are in the file.
        snp_indices = snp_indices[ok_indices['g']]
        raw_snps, freqs = plinkfiles.parse_plink_snps(genotype_file,
                                                      snp_indices)

        snp_indices_ref = sp.array(chrom_d_ref['snp_indices'])
        # Pinpoint where the SNPs are in the file.
        snp_indices_ref = snp_indices_ref[ok_indices['rg']]
        raw_ref_snps, freqs_ref = plinkfiles.parse_plink_snps(
            reference_genotype_file, snp_indices_ref)

        snp_stds_ref = sp.sqrt(2 * freqs_ref * (1 - freqs_ref))
        snp_means_ref = freqs_ref * 2

        snp_stds = sp.sqrt(2 * freqs * (1 - freqs))
        snp_means = freqs * 2

        betas = betas[ok_indices['ss']]
        log_odds = log_odds[ok_indices['ss']]

        ps = ssg['ps'][...][ok_indices['ss']]
        nts = sp.array(ok_nts)
        sids = (ssg['sids'][...]).astype(util.sids_u_dtype)
        sids = sids[ok_indices['ss']]

        # Check SNP frequencies..
        if check_mafs and 'freqs' in ssg:
            ss_freqs = ss_freqs[ok_indices['ss']]
            freq_discrepancy_snp = sp.absolute(
                ss_freqs - (1 - freqs)) > 0.15  #Array of np.bool values
            if sp.any(freq_discrepancy_snp):
                print(
                    'Warning: %d SNPs were filtered due to high allele frequency discrepancy between summary statistics and validation sample'
                    % sp.sum(freq_discrepancy_snp))

                # Filter freq_discrepancy_snps
                ok_freq_snps = sp.logical_not(freq_discrepancy_snp)
                raw_snps = raw_snps[ok_freq_snps]
                snp_stds = snp_stds[ok_freq_snps]
                snp_means = snp_means[ok_freq_snps]
                raw_ref_snps = raw_ref_snps[ok_freq_snps]
                snp_stds_ref = snp_stds_ref[ok_freq_snps]
                snp_means_ref = snp_means_ref[ok_freq_snps]
                freqs = freqs[ok_freq_snps]
                freqs_ref = freqs_ref[ok_freq_snps]
                ps = ps[ok_freq_snps]
                positions = positions[ok_freq_snps]
                nts = nts[ok_freq_snps]
                sids = sids[ok_freq_snps]
                betas = betas[ok_freq_snps]
                log_odds = log_odds[ok_freq_snps]

        # Filter minor allele frequency SNPs.
        maf_filter = (freqs > min_maf) * (freqs < (1 - min_maf))
        maf_filter_sum = sp.sum(maf_filter)
        n_snps = len(maf_filter)
        assert maf_filter_sum <= n_snps, "Problems when filtering SNPs with low minor allele frequencies"
        if sp.sum(maf_filter) < n_snps:
            raw_snps = raw_snps[maf_filter]
            snp_stds = snp_stds[maf_filter]
            snp_means = snp_means[maf_filter]
            raw_ref_snps = raw_ref_snps[maf_filter]
            snp_stds_ref = snp_stds_ref[maf_filter]
            snp_means_ref = snp_means_ref[maf_filter]
            freqs = freqs[maf_filter]
            freqs_ref = freqs_ref[maf_filter]
            ps = ps[maf_filter]
            positions = positions[maf_filter]
            nts = nts[maf_filter]
            sids = sids[maf_filter]
            betas = betas[maf_filter]
            log_odds = log_odds[maf_filter]

        maf_adj_prs = sp.dot(log_odds, raw_snps)
        if debug and plinkf_dict['has_phenotype']:
            maf_adj_corr = sp.corrcoef(plinkf_dict['phenotypes'],
                                       maf_adj_prs)[0, 1]
            print(
                'Log odds, per genotype PRS correlation w phenotypes for chromosome %d was %0.4f'
                % (chrom, maf_adj_corr))

        genetic_map = []
        if genetic_map_dir is not None:
            with gzip.open(genetic_map_dir +
                           'chr%d.interpolated_genetic_map.gz' % chrom) as f:
                for line in f:
                    l = line.split()


#                     if l[0] in sid_set:
#                         genetic_map.append(l[0])
        else:
            genetic_map = None

        coord_data_dict = {
            'chrom': 'chrom_%d' % chrom,
            'raw_snps_ref': raw_ref_snps,
            'snp_stds_ref': snp_stds_ref,
            'snp_means_ref': snp_means_ref,
            'freqs_ref': freqs_ref,
            'ps': ps,
            'positions': positions,
            'nts': nts,
            'sids': sids,
            'genetic_map': genetic_map,
            'betas': betas,
            'log_odds': log_odds,
            'log_odds_prs': maf_adj_prs,
            'raw_snps_val': raw_snps,
            'snp_stds_val': snp_stds,
            'snp_means_val': snp_means,
            'freqs_val': freqs
        }

        write_coord_data(cord_data_g, coord_data_dict)
        maf_adj_risk_scores += maf_adj_prs
        num_common_snps += len(betas)

    # Now calculate the prediction r^2
    if debug and plinkf_dict['has_phenotype']:
        maf_adj_corr = sp.corrcoef(plinkf_dict['phenotypes'],
                                   maf_adj_risk_scores)[0, 1]
        print(
            'Log odds, per PRS correlation for the whole genome was %0.4f (r^2=%0.4f)'
            % (maf_adj_corr, maf_adj_corr**2))
    print(
        'Overall nucleotide concordance counts: g_rg: %d, g_ss: %d, rg_ss: %d'
        % (tot_g_rg_nt_concord_count, tot_g_ss_nt_concord_count,
           tot_rg_ss_nt_concord_count))
    print('There were %d SNPs in common' % num_common_snps)
    print('In all, %d SNPs were excluded due to nucleotide issues.' %
          tot_num_non_matching_nts)
    print('Done!')
예제 #45
0
import scipy as sp
from scipy import constants
import matplotlib.pyplot as plt
import math

pi = constants.pi
points = 5000
x = sp.zeros(points)
y = sp.zeros(points)
plt.grid(True, which="both")


def parametric_xy(theta):
    x = 2 * math.cos(theta) + math.cos(2 * theta)
    y = 2 * math.sin(theta) - math.sin(2 * theta)
    return x, y


theta = sp.linspace(0, 2 * pi, points)

for i in range(points):
    x[i], y[i] = parametric_xy(theta[i])
plt.plot(x, y)
plt.title('(a)')
plt.savefig('a.png')
plt.show()


def polar_xy(r, theta):
    x = r * math.cos(theta)
    y = r * math.sin(theta)
예제 #46
0
__author__ = 'Frank Sehnke, [email protected]'

from scipy import random, zeros, ones, exp, sqrt, cos, log

stND = zeros(1000)
for i in range(1000):
    x = -4.0 + float(i) * 8.0 / 1000.0
    stND[i] = 1.0 / 2.51 * exp(-0.5 * (x)**2)


# FIXME: different class name?
class MixtureOfGaussians:
    def __init__(self, numOGaus=10, alphaA=0.02, alphaM=0.02, alphaS=0.02):
        self.alphaA = alphaA
        self.alphaM = alphaM
        self.alphaS = alphaS
        self.minSig = 0.000001
        self.numOGaus = numOGaus  #Number of Gaussians
        self.rangeMin = -20.0
        self.rangeMax = 20.0
        self.epsilon = (self.rangeMax - self.rangeMin) / (
            sqrt(2.0) * float(self.numOGaus - 1))  #Initial value of sigmas

        self.propFakt = 1.0 / float(self.numOGaus)
        self.distFakt = 1.0 / float(self.numOGaus - 1)
        self.distRange = self.rangeMax - self.rangeMin

        self.sigma = ones(self.numOGaus)
        self.mue = zeros(self.numOGaus)
        self.alpha = ones(self.numOGaus)
        self.sigma *= self.epsilon
예제 #47
0
def ldpred_genomewide(data_file=None,
                      ld_radius=None,
                      ld_dict=None,
                      out_file_prefix=None,
                      ps=None,
                      n=None,
                      h2=None,
                      num_iter=None,
                      verbose=False,
                      zero_jump_prob=0.05,
                      burn_in=5):
    """
    Calculate LDpred for a genome
    """

    df = h5py.File(data_file, 'r')
    has_phenotypes = False
    if 'y' in df.keys():
        'Validation phenotypes found.'
        y = df['y'][...]  # Phenotype
        num_individs = len(y)
        risk_scores_pval_derived = sp.zeros(num_individs)
        has_phenotypes = True

    ld_scores_dict = ld_dict['ld_scores_dict']
    chrom_ld_dict = ld_dict['chrom_ld_dict']
    chrom_ref_ld_mats = ld_dict['chrom_ref_ld_mats']

    print 'Applying LDpred with LD radius: %d' % ld_radius
    results_dict = {}
    num_snps = 0
    sum_beta2s = 0
    cord_data_g = df['cord_data']

    for chrom_str in chromosomes_list:
        if chrom_str in cord_data_g.keys():
            g = cord_data_g[chrom_str]
            betas = g['betas'][...]
            n_snps = len(betas)
            num_snps += n_snps
            sum_beta2s += sp.sum(betas**2)

    L = ld_scores_dict['avg_gw_ld_score']
    chi_square_lambda = sp.mean(n * sum_beta2s / float(num_snps))
    print 'Genome-wide lambda inflation:', chi_square_lambda,
    print 'Genome-wide mean LD score:', L
    gw_h2_ld_score_est = max(0.0001, (max(1, chi_square_lambda) - 1) /
                             (n * (L / num_snps)))
    print 'Estimated genome-wide heritability:', gw_h2_ld_score_est

    assert chi_square_lambda > 1, 'Something is wrong with the GWAS summary statistics.  Perhaps there were issues parsing of them, or the given GWAS sample size (N) was too small. Either way, lambda (the mean Chi-square statistic) is too small.  '

    LDpred_inf_chrom_dict = {}
    print 'Calculating LDpred-inf weights'
    for chrom_str in chromosomes_list:
        if chrom_str in cord_data_g.keys():
            print 'Calculating scores for Chromosome %s' % (
                (chrom_str.split('_'))[1])
            g = cord_data_g[chrom_str]

            # Filter monomorphic SNPs
            snp_stds = g['snp_stds_ref'][...]
            snp_stds = snp_stds.flatten()
            ok_snps_filter = snp_stds > 0
            pval_derived_betas = g['betas'][...]
            n_snps = len(pval_derived_betas)
            pval_derived_betas = pval_derived_betas[ok_snps_filter]
            if h2 is not None:
                h2_chrom = h2 * (n_snps / float(num_snps))
            else:
                h2_chrom = gw_h2_ld_score_est * (n_snps / float(num_snps))
            start_betas = LDpred_inf.ldpred_inf(
                pval_derived_betas,
                genotypes=None,
                reference_ld_mats=chrom_ref_ld_mats[chrom_str],
                h2=h2_chrom,
                n=n,
                ld_window_size=2 * ld_radius,
                verbose=False)
            LDpred_inf_chrom_dict[chrom_str] = start_betas

    for p in ps:
        print 'Starting LDpred with p=%0.4f' % p
        p_str = '%0.4f' % p
        results_dict[p_str] = {}

        if out_file_prefix:
            # Preparing output files
            raw_effect_sizes = []
            ldpred_effect_sizes = []
            ldpred_inf_effect_sizes = []
            out_sids = []
            chromosomes = []
            out_positions = []
            out_nts = []

        for chrom_str in chromosomes_list:
            if chrom_str in cord_data_g.keys():
                g = cord_data_g[chrom_str]
                if has_phenotypes:
                    if 'raw_snps_val' in g.keys():
                        raw_snps = g['raw_snps_val'][...]
                    else:
                        raw_snps = g['raw_snps_ref'][...]

                # Filter monomorphic SNPs
                snp_stds = g['snp_stds_ref'][...]
                snp_stds = snp_stds.flatten()
                ok_snps_filter = snp_stds > 0
                snp_stds = snp_stds[ok_snps_filter]
                pval_derived_betas = g['betas'][...]
                pval_derived_betas = pval_derived_betas[ok_snps_filter]
                positions = g['positions'][...]
                positions = positions[ok_snps_filter]
                sids = g['sids'][...]
                sids = sids[ok_snps_filter]
                log_odds = g['log_odds'][...]
                log_odds = log_odds[ok_snps_filter]
                nts = g['nts'][...]
                nts = nts[ok_snps_filter]

                if out_file_prefix:
                    chromosomes.extend([chrom_str] * len(pval_derived_betas))
                    out_positions.extend(positions)
                    out_sids.extend(sids)
                    raw_effect_sizes.extend(log_odds)
                    out_nts.extend(nts)

                n_snps = len(pval_derived_betas)

                if h2 is not None:
                    h2_chrom = h2 * (n_snps / float(num_snps))
                else:
                    h2_chrom = gw_h2_ld_score_est * (n_snps / float(num_snps))
                if 'chrom_ld_boundaries' in ld_dict.keys():
                    ld_boundaries = ld_dict['chrom_ld_boundaries'][chrom_str]
                    res_dict = ldpred_gibbs(
                        pval_derived_betas,
                        h2=h2_chrom,
                        n=n,
                        p=p,
                        ld_radius=ld_radius,
                        verbose=verbose,
                        num_iter=num_iter,
                        burn_in=burn_in,
                        ld_dict=chrom_ld_dict[chrom_str],
                        start_betas=LDpred_inf_chrom_dict[chrom_str],
                        ld_boundaries=ld_boundaries,
                        zero_jump_prob=zero_jump_prob)
                else:
                    res_dict = ldpred_gibbs(
                        pval_derived_betas,
                        h2=h2_chrom,
                        n=n,
                        p=p,
                        ld_radius=ld_radius,
                        verbose=verbose,
                        num_iter=num_iter,
                        burn_in=burn_in,
                        ld_dict=chrom_ld_dict[chrom_str],
                        start_betas=LDpred_inf_chrom_dict[chrom_str],
                        zero_jump_prob=zero_jump_prob)

                updated_betas = res_dict['betas']
                updated_inf_betas = res_dict['inf_betas']
                sum_sqr_effects = sp.sum(updated_betas**2)
                if sum_sqr_effects > gw_h2_ld_score_est:
                    print 'Sum of squared updated effects estimates seems too large:', sum_sqr_effects
                    print 'This suggests that the Gibbs sampler did not convergence.'

                print 'Calculating scores for Chromosome %s' % (
                    (chrom_str.split('_'))[1])
                updated_betas = updated_betas / (snp_stds.flatten())
                updated_inf_betas = updated_inf_betas / (snp_stds.flatten())
                ldpred_effect_sizes.extend(updated_betas)
                ldpred_inf_effect_sizes.extend(updated_inf_betas)
                if has_phenotypes:
                    prs = sp.dot(updated_betas, raw_snps)
                    risk_scores_pval_derived += prs
                    corr = sp.corrcoef(y, prs)[0, 1]
                    r2 = corr**2
                    print 'The R2 prediction accuracy of PRS using %s was: %0.4f' % (
                        chrom_str, r2)

        print 'There were %d (SNP) effects' % num_snps
        if has_phenotypes:
            num_indivs = len(y)
            results_dict[p_str]['y'] = y
            results_dict[p_str]['risk_scores_pd'] = risk_scores_pval_derived
            print 'Prediction accuracy was assessed using %d individuals.' % (
                num_indivs)

            corr = sp.corrcoef(y, risk_scores_pval_derived)[0, 1]
            r2 = corr**2
            results_dict[p_str]['r2_pd'] = r2
            print 'The  R2 prediction accuracy (observed scale) for the whole genome was: %0.4f (%0.6f)' % (
                r2, ((1 - r2)**2) / num_indivs)

            if corr < 0:
                risk_scores_pval_derived = -1 * risk_scores_pval_derived
            auc = util.calc_auc(y, risk_scores_pval_derived)
            print 'AUC for the whole genome was: %0.4f' % auc

            # Now calibration
            denominator = sp.dot(risk_scores_pval_derived.T,
                                 risk_scores_pval_derived)
            y_norm = (y - sp.mean(y)) / sp.std(y)
            numerator = sp.dot(risk_scores_pval_derived.T, y_norm)
            regression_slope = (numerator / denominator)  # [0][0]
            print 'The slope for predictions with P-value derived  effects is:', regression_slope
            results_dict[p_str]['slope_pd'] = regression_slope

        weights_out_file = '%s_LDpred_p%0.4e.txt' % (out_file_prefix, p)
        with open(weights_out_file, 'w') as f:
            f.write(
                'chrom    pos    sid    nt1    nt2    raw_beta     ldpred_beta\n'
            )
            for chrom, pos, sid, nt, raw_beta, ldpred_beta in it.izip(
                    chromosomes, out_positions, out_sids, out_nts,
                    raw_effect_sizes, ldpred_effect_sizes):
                nt1, nt2 = nt[0], nt[1]
                f.write('%s    %d    %s    %s    %s    %0.4e    %0.4e\n' %
                        (chrom, pos, sid, nt1, nt2, raw_beta, ldpred_beta))

    weights_out_file = '%s_LDpred-inf.txt' % (out_file_prefix)
    with open(weights_out_file, 'w') as f:
        f.write(
            'chrom    pos    sid    nt1    nt2    raw_beta    ldpred_inf_beta \n'
        )
        for chrom, pos, sid, nt, raw_beta, ldpred_inf_beta in it.izip(
                chromosomes, out_positions, out_sids, out_nts,
                raw_effect_sizes, ldpred_inf_effect_sizes):
            nt1, nt2 = nt[0], nt[1]
            f.write('%s    %d    %s    %s    %s    %0.4e    %0.4e\n' %
                    (chrom, pos, sid, nt1, nt2, raw_beta, ldpred_inf_beta))
예제 #48
0
    def define_init(self, initTheta=1.):
        """ Define Initialisations of the model

        PARAMETERS
        ----------
        initTheta flaot
          initialisation for theta. Default is 1. (no sparsity)
    """

        N = self.dimensionalities["N"]
        K = self.dimensionalities["K"]
        M = self.dimensionalities["M"]
        D = self.dimensionalities["D"]

        # Latent variables
        self.model_opts["initZ"] = {
            'mean': "random",
            'var': s.ones((K, )),
            'E': None,
            'E2': None
        }

        # Tau
        self.model_opts["initTau"] = {
            'a': [s.nan] * M,
            'b': [s.nan] * M,
            'E': [s.ones(D[m]) * 100 for m in range(M)]
        }

        # ARD of weights
        self.model_opts["initAlpha"] = {
            'a': [s.nan] * M,
            'b': [s.nan] * M,
            'E': [s.ones(K) * 1. for m in range(M)]
        }

        # Theta
        self.model_opts["initTheta"] = {
            'a': [s.ones(K, ) for m in range(M)],
            'b': [s.ones(K, ) for m in range(M)],
            'E': [s.nan * s.zeros(K, ) for m in range(M)]
        }
        if type(initTheta) is float:
            self.model_opts['initTheta']['E'] = [
                s.ones(K, ) * initTheta for m in range(M)
            ]
        else:
            print("Error: 'initTheta' must be a float")
            exit()

        for m in range(M):
            for k in range(K):
                if self.model_opts['sparsity'][m][k] == 0.:
                    self.model_opts["initTheta"]["a"][m][k] = s.nan
                    self.model_opts["initTheta"]["b"][m][k] = s.nan

        # Weights
        self.model_opts["initSW"] = {
            'Theta': [
                s.repeat(self.model_opts['initTheta']['E'][m][None, :],
                         self.dimensionalities["D"][m], 0) for m in range(M)
            ],
            'mean_S0': [s.zeros((D[m], K)) for m in range(M)],
            'var_S0': [s.nan * s.ones((D[m], K)) for m in range(M)],
            'mean_S1': [s.zeros((D[m], K)) for m in range(M)],
            # 'mean_S1':[stats.norm.rvs(loc=0, scale=1, size=(D[m],K)) for m in range(M)],
            'var_S1': [s.ones((D[m], K)) for m in range(M)],
            'ES': [None] * M,
            'EW_S0': [None] * M,
            'EW_S1': [None] * M  # It will be calculated from the parameters
        }
예제 #49
0
def randpair_groupdiff_ftest(sub_grp1_files,
                             sub_grp2_files,
                             num_pairs,
                             len_time=255):

    print('Grp diff using f-test and brainsync')

    num_vert = spio.loadmat(sub_grp1_files[0])['dtseries'].shape[0]

    print('Generating random pairs from group 1')
    pairs_grp1, num_pairs1 = gen_rand_pairs(num_sub=len(sub_grp1_files),
                                            num_pairs=num_pairs)

    fmri_diff1 = sp.zeros((num_vert, num_pairs1))

    # Preload data This only slighly faster, better is to load on the fly and multiprocess
    print('Reading data for group 1')
    sub_data1 = np.zeros((len_time, num_vert, len(sub_grp1_files)))
    for i, fname in enumerate(tqdm(sub_grp1_files)):
        sub1_data = spio.loadmat(fname)['dtseries'][:, :len_time].T
        sub_data1[:, :, i], _, _ = normalizeData(sub1_data)

    print('Compute differences in fMRI of random pairs from group 1')
    for i, rand_pair in enumerate(tqdm(pairs_grp1)):
        fmri_diff1[:, i] = pair_dist(rand_pair=rand_pair,
                                     sub_files=sub_grp1_files,
                                     sub_data=sub_data1,
                                     len_time=len_time)

    S1 = 0.5 * np.mean(fmri_diff1, axis=1)

    print('Generating random pairs from group 2')
    pairs_grp2, num_pairs2 = gen_rand_pairs(num_sub=len(sub_grp2_files),
                                            num_pairs=num_pairs)

    fmri_diff2 = sp.zeros((num_vert, num_pairs2))

    # Preload data for group 2
    print('Reading data for group 2')
    sub_data2 = np.zeros((len_time, num_vert, len(sub_grp2_files)))
    for i, fname in enumerate(tqdm(sub_grp2_files)):
        sub2_data = spio.loadmat(fname)['dtseries'][:, :len_time].T
        sub_data2[:, :, i], _, _ = normalizeData(sub2_data)

    print('Compute differences in fMRI of random pairs from group 2')
    for i, rand_pair in enumerate(tqdm(pairs_grp2)):
        fmri_diff2[:, i] = pair_dist(rand_pair=rand_pair,
                                     sub_files=sub_grp2_files,
                                     sub_data=sub_data2,
                                     len_time=len_time)

    S2 = 0.5 * np.mean(fmri_diff2, axis=1)

    # We will perform f-test test (modified in a pairwise stats)
    #

    n1 = sub_data1.shape[2] * len_time
    n2 = sub_data2.shape[2] * len_time

    F = S1 / (S2 + 1e-16)

    pval = 1 - ss.f.cdf(F, n1 - 1, n2 - 1)

    return F, pval
예제 #50
0
def ldpred_gibbs(beta_hats,
                 genotypes=None,
                 start_betas=None,
                 h2=None,
                 n=1000,
                 ld_radius=100,
                 num_iter=60,
                 burn_in=10,
                 p=None,
                 zero_jump_prob=0.05,
                 ld_dict=None,
                 reference_ld_mats=None,
                 ld_boundaries=None,
                 verbose=False):
    """
    LDpred (Gibbs Sampler) 
    """
    t0 = time.time()
    m = len(beta_hats)

    # If no starting values for effects were given, then use the infinitesimal model starting values.
    if start_betas is None:
        print 'Initializing LDpred effects with posterior mean LDpred-inf effects.'
        print 'Calculating LDpred-inf effects.'
        start_betas = LDpred_inf.ldpred_inf(
            beta_hats,
            genotypes=genotypes,
            reference_ld_mats=reference_ld_mats,
            h2=h2,
            n=n,
            ld_window_size=2 * ld_radius,
            verbose=False)
    curr_betas = sp.copy(start_betas)
    curr_post_means = sp.zeros(m)
    avg_betas = sp.zeros(m)

    # Iterating over effect estimates in sequential order
    iter_order = sp.arange(m)

    # Setting up the marginal Bayes shrink
    Mp = m * p
    hdmp = (h2 / Mp)
    hdmpn = hdmp + 1.0 / n
    hdmp_hdmpn = (hdmp / hdmpn)
    c_const = (p / sp.sqrt(hdmpn))
    d_const = (1 - p) / (sp.sqrt(1.0 / n))

    for k in range(num_iter):  # Big iteration

        # Force an alpha shrink if estimates are way off compared to heritability estimates.  (Improves MCMC convergence.)
        h2_est = max(0.00001, sp.sum(curr_betas**2))
        alpha = min(1 - zero_jump_prob, 1.0 / h2_est,
                    (h2 + 1 / sp.sqrt(n)) / h2_est)

        rand_ps = sp.random.random(m)
        rand_norms = stats.norm.rvs(0, (hdmp_hdmpn) * (1 / n), size=m)

        if ld_boundaries is None:
            for i, snp_i in enumerate(iter_order):
                start_i = max(0, snp_i - ld_radius)
                focal_i = min(ld_radius, snp_i)
                stop_i = min(m, snp_i + ld_radius + 1)

                # Local LD matrix
                D_i = ld_dict[snp_i]

                # Local (most recently updated) effect estimates
                local_betas = curr_betas[start_i:stop_i]

                # Calculate the local posterior mean, used when sampling.
                local_betas[focal_i] = 0
                res_beta_hat_i = beta_hats[snp_i] - sp.dot(D_i, local_betas)
                b2 = res_beta_hat_i**2

                d_const_b2_exp = d_const * sp.exp(-b2 * n / 2.0)
                if sp.isreal(d_const_b2_exp):
                    numerator = c_const * sp.exp(-b2 / (2.0 * hdmpn))
                    if sp.isreal(numerator):
                        if numerator == 0:
                            postp = 0
                        else:
                            postp = numerator / (numerator + d_const_b2_exp)
                            assert sp.isreal(
                                postp
                            ), 'The posterior mean is not a real number?  Possibly due to problems with summary stats, LD estimates, or parameter settings.'
                    else:
                        postp = 0
                else:
                    postp = 1
                curr_post_means[snp_i] = hdmp_hdmpn * postp * res_beta_hat_i

                if rand_ps[i] < postp * alpha:
                    # Sample from the posterior Gaussian dist.
                    proposed_beta = rand_norms[i] + hdmp_hdmpn * res_beta_hat_i

                else:
                    # Sample 0
                    proposed_beta = 0

                curr_betas[snp_i] = proposed_beta  # UPDATE BETA
        else:
            for i, snp_i in enumerate(iter_order):
                start_i = ld_boundaries[snp_i][0]
                stop_i = ld_boundaries[snp_i][1]
                focal_i = snp_i - start_i

                # Local LD matrix
                D_i = ld_dict[snp_i]

                # Local (most recently updated) effect estimates
                local_betas = curr_betas[start_i:stop_i]

                # Calculate the local posterior mean, used when sampling.
                local_betas[focal_i] = 0
                res_beta_hat_i = beta_hats[snp_i] - sp.dot(D_i, local_betas)
                b2 = res_beta_hat_i**2

                d_const_b2_exp = d_const * sp.exp(-b2 * n / 2.0)
                if sp.isreal(d_const_b2_exp):
                    numerator = c_const * sp.exp(-b2 / (2.0 * hdmpn))
                    if sp.isreal(numerator):
                        if numerator == 0:
                            postp = 0
                        else:
                            postp = numerator / (numerator + d_const_b2_exp)
                            assert sp.isreal(
                                postp
                            ), 'Posterior mean is not a real number? Possibly due to problems with summary stats, LD estimates, or parameter settings.'
                    else:
                        postp = 0
                else:
                    postp = 1
                curr_post_means[snp_i] = hdmp_hdmpn * postp * res_beta_hat_i

                if rand_ps[i] < postp * alpha:
                    # Sample from the posterior Gaussian dist.
                    proposed_beta = rand_norms[i] + hdmp_hdmpn * res_beta_hat_i

                else:
                    # Sample 0
                    proposed_beta = 0

                curr_betas[snp_i] = proposed_beta  # UPDATE BETA
        if verbose:
            sys.stdout.write('\b\b\b\b\b\b\b%0.2f%%' %
                             (100.0 * (min(1,
                                           float(k + 1) / num_iter))))
            sys.stdout.flush()

        if k >= burn_in:
            avg_betas += curr_post_means  # Averaging over the posterior means instead of samples.

    avg_betas = avg_betas / float(num_iter - burn_in)
    t1 = time.time()
    t = (t1 - t0)
    if verbose:
        print '\nTook %d minutes and %0.2f seconds' % (t / 60, t % 60)
    return {'betas': avg_betas, 'inf_betas': start_betas}
예제 #51
0
from planeta import Planeta

'''
PARTE2
En este script se graficara la energia y trayectoria usando verlet version 2.
caso verlet avanzado con alpha 0 con dt muy pequeno queda muy preciso y perfecto, energia constante
'''

''' Condiciones iniciales, se define objeto de clase Planeta, el paso de tiempo y los arreglos de ceros de las distintas variables'''
vy0=0.3
condicion_inicial = sp.array([10, 0, 0, vy0])
p = Planeta(condicion_inicial)
t_final =  6000
pasos = 50000
dt= t_final / (float)(pasos)
x = sp.zeros(pasos)
y = sp.zeros(pasos)
vx = sp.zeros(pasos)
vy = sp.zeros(pasos)
energia=sp.zeros(pasos)
[x[0],y[0],vx[0],vy[0]] = condicion_inicial
energia[0]=p.energia_total()

''' Se define el segundo valor del vector yactual mediante rk4 (en este caso) puesto que verlet2 lo necesita para la iteracion'''
p.avanza_rk4(dt)
resultados = p.y_actual
x[1] = resultados[0]
y[1] = resultados[1]
vx[1] = resultados[2]
vy[1] = resultados[3]
예제 #52
0
def randpairs_regression_simulation(bfp_path,
                                    sub_files,
                                    reg_var,
                                    num_pairs=2000,
                                    nperm=1000,
                                    len_time=235,
                                    num_proc=4,
                                    pearson_fdr_test=False):
    """ Perform regression stats based on square distance between random pairs """

    # Get the number of vertices from a file
    num_vert = spio.loadmat(sub_files[0])['dtseries'].shape[0]

    labs = spio.loadmat(
        '/ImagePTE1/ajoshi/code_farm/bfp/supp_data/USCLobes_grayordinate_labels.mat'
    )['labels']

    roi = (labs == 200)  # R. Parietal Lobe

    pairs, num_pairs = gen_rand_pairs(num_sub=len(sub_files),
                                      num_pairs=num_pairs)

    fmri_diff = sp.zeros((num_vert, num_pairs))
    regvar_diff = sp.zeros(num_pairs)

    if num_proc > 1:
        pool = Pool(num_proc)

        results = pool.imap(
            partial(pair_dist_simulation,
                    sub_files=sub_files,
                    reg_var=reg_var,
                    len_time=len_time,
                    roi=roi), pairs)

        ind = 0
        for res in results:
            fmri_diff[:, ind] = res[0]
            regvar_diff[ind] = res[1]
            ind += 1

    else:
        for ind in tqdm(range(len(pairs))):

            fmri_diff[:, ind], regvar_diff[ind] = pair_dist_simulation(
                sub_files=sub_files,
                reg_var=reg_var,
                len_time=len_time,
                rand_pair=pairs[ind],
                roi=roi)

    corr_pval2 = 0
    if not pearson_fdr_test:
        print('Performing Permutation test with MAX statistic')
        corr_pval, corr_pval2, _ = corr_perm_test(X_pairs=fmri_diff.T,
                                                  Y_pairs=regvar_diff,
                                                  reg_var=reg_var,
                                                  num_sub=len(sub_files),
                                                  nperm=nperm)
    else:
        print('Performing Pearson correlation with FDR testing')
        corr_pval, corr_pval2 = corr_pearson_fdr(X_pairs=fmri_diff.T,
                                                 Y_pairs=regvar_diff,
                                                 reg_var=reg_var,
                                                 num_sub=len(sub_files),
                                                 nperm=nperm)

    corr_pval[sp.isnan(corr_pval)] = .5

    labs = spio.loadmat(
        bfp_path +
        '/supp_data/USCBrain_grayordinate_labels.mat')['labels'].squeeze()
    labs[sp.isnan(labs)] = 0

    if len(corr_pval) == len(labs):
        corr_pval[labs == 0] = 0.5

    return corr_pval, corr_pval2
예제 #53
0
 def fft_to_rfft(self, input):
     assert input.shape[0] == self.N/2+1
     output = scipy.zeros((self.N,))
     output[0::2] = input[:-1]
     output[1::2] = input[1:]
     return output
예제 #54
0
def randpair_groupdiff(sub_grp1_files,
                       sub_grp2_files,
                       num_pairs,
                       len_time=255):

    print('Grp diff')

    num_vert = spio.loadmat(sub_grp1_files[0])['dtseries'].shape[0]

    print('Generating random pairs from group 1')
    pairs_grp1, num_pairs1 = gen_rand_pairs(num_sub=len(sub_grp1_files),
                                            num_pairs=num_pairs)

    fmri_diff1 = sp.zeros((num_vert, num_pairs1))

    # Preload data This only slighly faster, better is to load on the fly and multiprocess
    print('Reading data for group 1')
    sub_data1 = np.zeros((len_time, num_vert, len(sub_grp1_files)))
    for i, fname in enumerate(tqdm(sub_grp1_files)):
        sub1_data = spio.loadmat(fname)['dtseries'][:, :len_time].T
        sub_data1[:, :, i], _, _ = normalizeData(sub1_data)

    print('Compute differences in fMRI of random pairs from group 1')
    for i, rand_pair in enumerate(tqdm(pairs_grp1)):
        fmri_diff1[:, i] = pair_dist(rand_pair=rand_pair,
                                     sub_files=sub_grp1_files,
                                     sub_data=sub_data1,
                                     len_time=len_time)

    S1 = 0.5 * np.mean(fmri_diff1, axis=1)

    print('Generating random pairs from group 2')
    pairs_grp2, num_pairs2 = gen_rand_pairs(num_sub=len(sub_grp2_files),
                                            num_pairs=num_pairs)

    fmri_diff2 = sp.zeros((num_vert, num_pairs2))

    # Preload data for group 2
    print('Reading data for group 2')
    sub_data2 = np.zeros((len_time, num_vert, len(sub_grp2_files)))
    for i, fname in enumerate(tqdm(sub_grp2_files)):
        sub2_data = spio.loadmat(fname)['dtseries'][:, :len_time].T
        sub_data2[:, :, i], _, _ = normalizeData(sub2_data)

    print('Compute differences in fMRI of random pairs from group 2')
    for i, rand_pair in enumerate(tqdm(pairs_grp2)):
        fmri_diff2[:, i] = pair_dist(rand_pair=rand_pair,
                                     sub_files=sub_grp2_files,
                                     sub_data=sub_data2,
                                     len_time=len_time)

    S2 = 0.5 * np.mean(fmri_diff2, axis=1)

    print('Generating random pairs from all subjects (grp1 + grp2)')

    # Generating random pairs. For large group this may allocate huge amount of memory,
    # use the following solution in that case
    # https://stackoverflow.com/questions/36779729/shuffling-combinations-without-converting-iterable-itertools-combinations-to-l

    all_pairs = np.array(
        list(product(range(len(sub_grp1_files)), range(len(sub_grp2_files)))))
    sp.random.shuffle(all_pairs)
    all_pairs = all_pairs[:num_pairs, :]
    fmri_diff = sp.zeros((num_vert, all_pairs.shape[0]))

    print('Compute differences in fMRI of random pairs from group1 to group 2')
    for i, rand_pair in enumerate(tqdm(all_pairs)):
        fmri_diff[:, i] = pair_dist_two_groups(rand_pair=rand_pair,
                                               sub_grp1_files=sub_grp1_files,
                                               sub_grp2_files=sub_grp2_files,
                                               sub_data1=sub_data1,
                                               sub_data2=sub_data2,
                                               len_time=len_time)

    # We will perform Welch's t test (modified in a pairwise stats)
    # https://en.wikipedia.org/wiki/Welch%27s_t-test

    n1 = sub_data1.shape[2]
    n2 = sub_data2.shape[2]

    tscore = np.sqrt((0.5 * np.mean(fmri_diff, axis=1) - (S1 * n1 + S2 * n2) /
                      (n1 + n2))) / np.sqrt(S1 / n1 + S1 / n2 + 1e-6)

    tscore[np.isnan(tscore)] = 0

    dof = (S1 / n1 + S2 / n2 + 1e-6)**2 / (S1**2 / ((n1**2) *
                                                    (n1 - 1)) + S2**2 /
                                           ((n2**2) * (n2 - 1)) + 1e-6)
    pval = sp.stats.t.sf(tscore, dof) * 2  # two-sided pvalue = Prob(abs(t)>tt)

    return tscore, pval
count1 = 0

# Get number of subjects
nsub = len(lst)
lst2 = list([])

for fname in lst:
    if not os.path.isfile(fname):
        continue
    df = spio.loadmat(fname)  #, 'r')
    d = df['dtseries']
    #   dataR = df['dataR']
    #   d = sp.concatenate((dataL, dataR), axis=1)
    d, _, _ = normalizeData(d)
    if count1 == 0:
        sub_data = sp.zeros((d.shape[0], d.shape[1], nsub))

    sub_data[:, :, count1] = d
    lst2.append(fname)
    count1 += 1
    print(count1, )

#%% Compute pairwise distance
nSub = count1
sub_data = sub_data[:, :, :nSub]

print(nSub)
dist_all_orig = sp.zeros([nSub, nSub])
dist_all_rot = dist_all_orig.copy()
#sub_data_orig = sub_data.copy()
예제 #56
0
def gash79(Pg=scipy.array([]), ER=float, S=float, St=float, p=float, pt=float):
    '''
    Function to calculate precipitation interception loss from daily 
    precipitation values and and vegetation parameters.
    
    Parameters:
        - Pg: daily rainfall data [mm].
        - ER: evaporation percentage of total rainfall [mm h-1].
        - S: storage capacity canopy [mm].
        - St: stem storage capacity [mm].
        - p: direct throughfall [mm].
        - pt: stem precipitation [mm].
    
    Returns:
        - Pg: Daily rainfall [mm].
        - Ei: Interception [mm].
        - TF: through fall [mm].
        - SF: stemflow [mm].

    References
    ----------
    
    J.H.C. Gash, An analytical model of rainfall interception by forests,
    Quarterly Journal of the Royal Meteorological Society, 1979, 105,
    pp. 43-55.
        
    Examples
    --------
    
        >>> gash79(12.4,0.15,1.3,0.2,0.2,0.02)
        (12.4, 8.4778854123725971, 0, 3.9221145876274024)
        >>> gash79(60.0,0.15,1.3,0.2,0.2,0.02)
        (60.0, 47.033885412372598, 0, 12.966114587627404)
        
    '''
    # Test input array/value
    Pg = meteolib._arraytest(Pg)

    # Determine length of array Pg
    l = scipy.size(Pg)
    # Check if we have a single precipitation value or an array
    if l < 2:  # Dealing with single value...

        #PGsat calculation (for the saturation of the canopy)
        PGsat = -(1 / ER * S) * scipy.log((1 - (ER / (1 - p - pt))))

        #Set initial values to zero
        Ecan = 0.
        Etrunk = 0.

        # Calculate interception for different storm sizes
        if (Pg < PGsat and Pg > 0):
            Ecan = (1 - p - pt) * Pg
            if (Pg > St / pt):
                Etrunk = St + pt * Pg
            Ei = Ecan + Etrunk
        if (Pg > PGsat and Pg < St / pt):
            Ecan = ((((1 - p - pt) * PGsat) - S) + (ER * (Pg - PGsat)) + S)
            Etrunk = 0.
            Ei = Ecan + Etrunk
        if (Pg > PGsat and Pg > (St / pt)):
            Ecan = ((((1 - p - pt) * PGsat) - S) + (ER * (Pg - PGsat)) + S +
                    (St + pt * Pg))
            Etrunk = St + pt * Pg
        Ei = Ecan + Etrunk
        TF = Pg - Ei
        SF = 0

    else:
        #Define variables and constants
        n = scipy.size(Pg)
        TF = scipy.zeros(n)
        SF = scipy.zeros(n)
        Ei = scipy.zeros(n)
        Etrunk = scipy.zeros(n)

        #Set results to zero if rainfall Pg is zero
        TF[Pg == 0] = 0.
        SF[Pg == 0] = 0.
        Ei[Pg == 0] = 0.
        Etrunk[Pg == 0] = 0.

        #PGsat calc (for the saturation of the canopy)
        PGsat = -(1 / ER * S) * scipy.log((1 - (ER / (1 - p - pt))))

        #Process rainfall series
        for i in range(0, n):
            Ecan = 0.
            Etrunk = 0.
            if (Pg[i] < PGsat and Pg[i] > 0):
                Ecan = (1 - p - pt) * Pg[i]
                if (Pg[i] > St / pt):
                    Etrunk = St + pt * Pg[i]
                Ei[i] = Ecan + Etrunk
            if (Pg[i] > PGsat and Pg[i] < St / pt):
                Ecan = ((((1 - p - pt) * PGsat) - S) + (ER * (Pg[i] - PGsat)) +
                        S)
                Etrunk = 0.
                Ei[i]
            if (Pg[i] > PGsat and Pg[i] > (St / pt)):
                Ecan = ((((1 - p - pt) * PGsat) - S) + (ER * (Pg[i] - PGsat)) +
                        S + (St + pt * Pg[i]))
                Etrunk = St + pt * Pg[i]
            Ei[i] = Ecan + Etrunk
            TF[i] = Pg[i] - Ei[i]
    return Pg, TF, SF, Ei
예제 #57
0
def scan(bfile,
         Y,
         cov,
         null,
         sets,
         i0,
         i1,
         perm_i,
         resfile,
         F,
         colCovarType_r='lowrank',
         rank_r=1,
         factr=1e7,
         unique_variants=False,
         standardize=False):

    if perm_i is not None:
        print(('Generating permutation (permutation %d)' % perm_i))
        np.random.seed(perm_i)
        perm = np.random.permutation(Y.shape[0])

    mtSet = limix.MTSet(Y=Y,
                        S_R=cov['eval'],
                        U_R=cov['evec'],
                        F=F,
                        rank=rank_r)
    mtSet.setNull(null)

    reader = BedReader(bfile)

    wnd_ids = sp.arange(i0, i1)
    LLR = sp.zeros(sets.shape[0])
    for wnd_i in wnd_ids:

        _set = sets.ix[wnd_i]
        print('.. set %d: %s' % (wnd_i, _set['setid']))

        Xr = reader.getGenotypes(pos_start=_set['start'],
                                 pos_end=_set['end'],
                                 chrom=_set['chrom'],
                                 impute=True)

        if unique_variants:
            Xr = f_uni_variants(Xr)

        if standardize:
            Xr -= Xr.mean(0)
            Xr /= Xr.std(0)
        else:
            # encoding minor as 0
            p = 0.5 * Xr.mean(0)
            Xr[:, p > 0.5] = 2 - Xr[:, p > 0.5]

        if perm_i is not None:
            Xr = Xr[perm, :]

        # multi trait set test fit
        RV = mtSet.optimize(Xr, factr=factr)
        LLR[wnd_i] = RV['LLR'][0]

    # export results
    sets['LLR'] = LLR
    sets.to_csv(resfile, sep='\t', index=False)
예제 #58
0
with open("./D_mel_wt__atlas_r2.vpc") as infile:
    results = read_vpc(infile)

# In[6]:

print results[0]["column"]

# In[ ]:
import scipy as S

data = results[1]
x = data[:, 0]
y = data[:, 1]
z = data[:, 2]

colnum = results[0]["column"].index("eve__3") - 1

colors = S.vstack(
    [data[:, colnum],
     S.zeros(data.shape[0]),
     S.zeros(data.shape[0])]).T
colors -= colors.min()
colors *= S.power(colors.max(), -1.0)

import matplotlib.pyplot as plt
fig = plt.figure()
ax = fig.add_subplot(1, 1, 1)
ax.scatter(x, z, s=15.0, c=colors)

plt.show()
예제 #59
0
 def __init__(self, module):
     Wrapper.__init__(self, module)
     self.stateArray = zeros( module.numRows, dtype=int )
예제 #60
0
def main():
    # parse cmd arguments
    parser = getParser()
    parser.parse_args()
    args = getArguments(parser)

    # prepare logger
    logger = Logger.getInstance()
    if args.debug: logger.setLevel(logging.DEBUG)
    elif args.verbose: logger.setLevel(logging.INFO)

    # check if output image exists
    if not args.force:
        if os.path.exists(args.output):
            logger.warning(
                'The output image {} already exists. Exiting.'.format(
                    args.output))
            exit(-1)

    # load input images
    region_image_data, reference_header = load(args.region)
    markers_image_data, _ = load(args.markers)
    gradient_image_data, _ = load(args.gradient)

    # split marker image into fg and bg images
    logger.info('Extracting foreground and background markers...')
    bgmarkers_image_data = scipy.zeros(markers_image_data.shape, scipy.bool_)
    bgmarkers_image_data[markers_image_data == 2] = True
    markers_image_data[markers_image_data != 1] = 0
    fgmarkers_image_data = markers_image_data.astype(scipy.bool_)

    # check if all images dimensions are the same shape
    if not (gradient_image_data.shape == region_image_data.shape ==
            fgmarkers_image_data.shape == bgmarkers_image_data.shape):
        logger.critical(
            'Not all of the supplied images are of the same shape.')
        raise ArgumentError(
            'Not all of the supplied images are of the same shape.')

    # collect cut objects
    cut_xy = __get_bg_bounding_pipe(bgmarkers_image_data)
    cut_z = __parse_contour_list(args.contourlist, args.zoom, args.ctype)

    # cut volumes
    old_size = region_image_data.shape
    gradient_image_data = gradient_image_data[cut_xy][cut_z]
    region_image_data = region_image_data[cut_xy][cut_z]
    fgmarkers_image_data = fgmarkers_image_data[cut_xy][cut_z]
    bgmarkers_image_data = bgmarkers_image_data[cut_xy][cut_z]

    # split the image if required, else relabel
    if args.split:
        logger.info('Split and relabel input image...')
        if 't' == args.split:
            region_image_data = __split_along_time(region_image_data)
        elif 'z' == args.split:
            region_image_data = __split_along_space(region_image_data)
        else:
            region_image_data = __split_along_space(region_image_data)
            region_image_data = __split_along_time(region_image_data)
    else:
        # recompute the label ids to start from id = 1
        logger.info('Relabel input image...')
        region_image_data = filter.relabel(region_image_data)

    # generate graph
    logger.info('Preparing graph...')
    gcgraph = graphcut.graph_from_labels(
        region_image_data,
        fgmarkers_image_data,
        bgmarkers_image_data,
        boundary_term=graphcut.energy_label.boundary_stawiaski,
        boundary_term_args=(
            gradient_image_data))  # second is directedness of graph , 0)

    logger.info('Removing images that are not longer required from memory...')
    del fgmarkers_image_data
    del bgmarkers_image_data
    del gradient_image_data

    # execute min-cut
    logger.info('Executing min-cut...')
    maxflow = gcgraph.maxflow()
    logger.debug('Maxflow is {}'.format(maxflow))

    # apply results to the region image
    logger.info('Applying results...')
    mapping = [
        0
    ]  # no regions with id 1 exists in mapping, entry used as padding
    mapping.extend(
        map(
            lambda x: 0 if gcgraph.termtype.SINK == gcgraph.what_segment(
                int(x) - 1) else 1, scipy.unique(region_image_data)))
    region_image_data = filter.relabel_map(region_image_data, mapping)

    # generating final image by increasing the size again
    output_image_data = scipy.zeros(old_size, dtype=scipy.bool_)
    output_image_data[cut_xy][cut_z] = region_image_data

    # save resulting mask
    save(output_image_data, args.output, reference_header, args.force)

    logger.info('Successfully terminated.')