def runSimulation(start, solution):
    """
    Returns minumum number of time steps needed to get to solution
    """
    stringsol = copy.copy(solution)
    str(stringsol)
    nextGeneration = []
    solutionNodes = []
    queue = []
    g = 0
    result = 5000
    solution_found = False

    pare_node = Node(start)
    m = (0, pare_node)
    heappush(queue, m)

    while ((queue != []) and (g <= maxGenerations) and (solution_found == False)):
        print "--- Computing generation", g, "---"
        print "Queue length ", len(queue)
        g += 1
        if (g < generationsBeam):
            for b in range(beam1):
                if (queue != []):
                    pare_node = heappop(queue)
                    children = generateAllChildren(pare_node[1].cargo)
                    for i in range(len(children)):
                        nextGeneration.append(children[i])
        else:
            for b in range(beam2):
                if (queue != []):
                    pare_node = heappop(queue)
                    children = generateAllChildren(pare_node[1].cargo)
                    for i in range(len(children)):
                        nextGeneration.append(children[i])

        c = selectChildren(nextGeneration, g)
        queue = []
        for i in range(len(c)):
            # create nodes
            node = Node(c[i], pare_node[1])
            if (c[i] == solution):
                solutionNodes.append(node)
                solution_found = True
                inversions = 0
                while((node.prev != None)):
                    node = node.prev
                    inversions += 1
                print "No. of inversions:", inversions
                result = inversions
            else:
                score = generationScore(c[i], g)
                l = (score, node)
                if (len(queue) <= maxQueue):
                    heappush(queue, l)
                else:
                    heappushpop(queue, l)

    queue[:] = []
    return result
예제 #2
0
def runSimulation(start, solution):
    """
    Returns minumum number of time steps needed to get to solution
    """
    solutionNodes = []
    queue = []
    g = 0
    solution_found = False

    pare_node = Node(start)
    m = (0, pare_node)
    heappush(queue, m)

    while ((queue != []) and (g <= maxGenerations) and (solution_found == False)):
        print "--- Computing generation", g, "---"
        nextGeneration = []
        g += 1
        if (g < generationsBeam):
            for b in range(beam1):
                if (queue != []):
                    pare_node = heappop(queue)
                    children = generateAllChildren(pare_node[1].cargo)
                    for i in range(len(children)):
                        node = Node(children[i], pare_node[1])
                        nextGeneration.append(node)
        else:
            for b in range(beam2):
                if (queue != []):
                    pare_node = heappop(queue)
                    children = generateAllChildren(pare_node[1].cargo)
                    for i in range(len(children)):
                        node = Node(children[i], pare_node[1])
                        nextGeneration.append(node)

        c = selectChildren(nextGeneration, g)
        queue = []
        for i in range(len(c)):
            # print c[i].cargo
            if (c[i].cargo == solution):
                solutionNodes.append(c[i])
                solution_found = True
                inversions = 0
                while((node.prev != None)):
                    node = node.prev
                    print "step:", node.cargo
                    inversions += 1
                print "No. of inversions:", inversions
                break
            else:
                score = generationScore(c[i].cargo, g)
                l = (score, c[i])
                if (len(queue) <= maxQueue):
                    heappush(queue, l)
                else:
                    heappushpop(queue, l)
def selectChildren(children, g):

    scores = []
    # calculate "fitness" scores
    for i in range(len(children)):
        s = generationScore(children[i], g)
        scores.append(s)

    # check which 3 genomes have the best scores
    dictionary = heapq.nsmallest(beam, zip(scores, children))

    # put the best genomes in a list before returning
    best_children = []
    for j in range(len(dictionary)):
        best_children.append(dictionary[j][1])

    children = []
    scores = []
    return best_children