def test_fetch_ensembl_transcripts(mocker): """Test fetch resource""" # GIVEN a mock mocker.patch.object(scout_requests, "EnsemblBiomartClient") # WHEN fetching the resource client = scout_requests.fetch_ensembl_transcripts() # THEN assert that a result is returned assert client
def generate_ensembl_transcripts(ensembl_genes, build=None): """Generate a file with reduced ensembl gene information Args: genes(dict): A dictionary with ensembl_id as key and hgnc_id as value build(str): What build to use. Defaults to 37 Yields: print_line(str): Lines from the reduced file """ build = build or "37" ensembl_transcripts = fetch_ensembl_transcripts(build=build) ensembl_header = [ "Chromosome/scaffold name", "Gene stable ID", "Transcript stable ID", "Transcript start (bp)", "Transcript end (bp)", "RefSeq mRNA ID", "RefSeq mRNA predicted ID", "RefSeq ncRNA ID", ] yield "\t".join(ensembl_header) for tx_info in parse_ensembl_transcripts(ensembl_transcripts): ens_gene_id = tx_info["ensembl_gene_id"] if ens_gene_id in ensembl_genes: print_line = [ tx_info["chrom"], tx_info["ensembl_gene_id"], tx_info["ensembl_transcript_id"], str(tx_info["transcript_start"]), str(tx_info["transcript_end"]), tx_info["refseq_mrna"] or "", tx_info["refseq_mrna_predicted"] or "", tx_info["refseq_ncrna"] or "", ] yield "\t".join(print_line)
def setup_scout( adapter, institute_id="cust000", user_name="Clark Kent", user_mail="*****@*****.**", api_key=None, demo=False, resource_files=None, ): """Function to setup a working scout instance. WARNING: If the instance is populated all collections will be deleted Build insert a institute and an admin user. There are multiple sources of information that is used by scout and that needs to exist for scout to work proper. Genes: Scout uses HGNC as the source for gene identifiers en ensembl as source for coordinates. Additional information of disease connections for genes if fetched from OMIM. Link between hpo terms and genes is fetched from HPO For more details check the documentation. """ LOG.info("Check if there was a database, delete if existing") existing_database = False for collection_name in adapter.db.list_collection_names(): if collection_name.startswith("system"): continue LOG.info("Deleting collection %s", collection_name) adapter.db.drop_collection(collection_name) existing_database = True if existing_database: LOG.info("Database deleted") institute_obj = build_institute( internal_id=institute_id, display_name=institute_id, sanger_recipients=[user_mail], ) adapter.add_institute(institute_obj) user_obj = dict( _id=user_mail, email=user_mail, name=user_name, roles=["admin"], institutes=[institute_id], ) adapter.add_user(user_obj) resource_files = resource_files or {} if demo: resource_files = demo_files mim2gene_lines = None genemap_lines = None mim2gene_path = resource_files.get("mim2gene_path") genemap_path = resource_files.get("genemap_path") if genemap_path and mim2gene_path: mim2gene_lines = [line for line in get_file_handle(mim2gene_path)] genemap_lines = [line for line in get_file_handle(genemap_path)] if (genemap_lines is None) and api_key: try: mim_files = fetch_mim_files(api_key, mim2genes=True, genemap2=True) except Exception as err: LOG.warning(err) raise err mim2gene_lines = mim_files["mim2genes"] genemap_lines = mim_files["genemap2"] if resource_files.get("hpogenes_path"): hpo_gene_lines = [ line for line in get_file_handle(resource_files.get("hpogenes_path")) ] else: hpo_gene_lines = fetch_genes_to_hpo_to_disease() if resource_files.get("hgnc_path"): hgnc_lines = [ line for line in get_file_handle(resource_files.get("hgnc_path")) ] else: hgnc_lines = fetch_hgnc() if resource_files.get("exac_path"): exac_lines = [ line for line in get_file_handle(resource_files.get("exac_path")) ] else: exac_lines = fetch_exac_constraint() # Load cytobands into cytoband collection for genome_build, cytobands_path in cytoband_files.items(): load_cytobands(cytobands_path, genome_build, adapter) builds = ["37", "38"] for build in builds: genes_path = "genes{}_path".format(build) if resource_files.get(genes_path): ensembl_genes = get_file_handle(resource_files[genes_path]) else: ensembl_genes = fetch_ensembl_genes(build=build) hgnc_genes = load_hgnc_genes( adapter=adapter, ensembl_lines=ensembl_genes, hgnc_lines=hgnc_lines, exac_lines=exac_lines, mim2gene_lines=mim2gene_lines, genemap_lines=genemap_lines, hpo_lines=hpo_gene_lines, build=build, ) # Create a map from ensembl ids to gene objects ensembl_genes = {} for gene_obj in hgnc_genes: ensembl_id = gene_obj["ensembl_id"] ensembl_genes[ensembl_id] = gene_obj tx_path = "transcripts{}_path".format(build) if resource_files.get(tx_path): ensembl_transcripts = get_file_handle(resource_files[tx_path]) else: ensembl_transcripts = fetch_ensembl_transcripts(build=build) # Load the transcripts for a certain build transcripts = load_transcripts(adapter, ensembl_transcripts, build, ensembl_genes) hpo_terms_handle = None if resource_files.get("hpoterms_path"): hpo_terms_handle = get_file_handle(resource_files["hpoterms_path"]) hpo_to_genes_handle = None if resource_files.get("hpo_to_genes_path"): hpo_to_genes_handle = get_file_handle( resource_files["hpo_to_genes_path"]) hpo_disease_handle = None if resource_files.get("hpo_disease_path"): hpo_disease_handle = get_file_handle( resource_files["hpo_disease_path"]) load_hpo( adapter=adapter, disease_lines=genemap_lines, hpo_lines=hpo_terms_handle, hpo_gene_lines=hpo_to_genes_handle, ) # If demo we load a gene panel and some case information if demo: parsed_panel = parse_gene_panel( path=panel_path, institute="cust000", panel_id="panel1", version=1.0, display_name="Test panel", ) adapter.load_panel(parsed_panel) case_handle = get_file_handle(load_path) case_data = yaml.load(case_handle, Loader=yaml.FullLoader) config_data = parse_case_data(config=case_data) adapter.load_case(config_data) LOG.info("Creating indexes") adapter.load_indexes() LOG.info("Scout instance setup successful")
def genes(build, api_key): """ Load the hgnc aliases to the mongo database. """ LOG.info("Running scout update genes") adapter = store # Fetch the omim information api_key = api_key or current_app.config.get("OMIM_API_KEY") mim_files = {} if not api_key: LOG.warning("No omim api key provided, Please not that some information will be missing") else: try: mim_files = fetch_mim_files(api_key, mim2genes=True, morbidmap=True, genemap2=True) except Exception as err: LOG.warning(err) raise click.Abort() LOG.warning("Dropping all gene information") adapter.drop_genes(build) LOG.info("Genes dropped") LOG.warning("Dropping all transcript information") adapter.drop_transcripts(build) LOG.info("transcripts dropped") hpo_genes = fetch_genes_to_hpo_to_disease() if build: builds = [build] else: builds = ["37", "38"] hgnc_lines = fetch_hgnc() exac_lines = fetch_exac_constraint() for build in builds: ensembl_genes = fetch_ensembl_genes(build=build) # load the genes hgnc_genes = load_hgnc_genes( adapter=adapter, ensembl_lines=ensembl_genes, hgnc_lines=hgnc_lines, exac_lines=exac_lines, mim2gene_lines=mim_files.get("mim2genes"), genemap_lines=mim_files.get("genemap2"), hpo_lines=hpo_genes, build=build, ) ensembl_genes = {} for gene_obj in hgnc_genes: ensembl_id = gene_obj["ensembl_id"] ensembl_genes[ensembl_id] = gene_obj # Fetch the transcripts from ensembl ensembl_transcripts = fetch_ensembl_transcripts(build=build) transcripts = load_transcripts(adapter, ensembl_transcripts, build, ensembl_genes) adapter.update_indexes() LOG.info("Genes, transcripts and Exons loaded")
def load_transcripts(adapter, transcripts_lines=None, build="37", ensembl_genes=None): """Load all the transcripts Transcript information is from ensembl. Args: adapter(MongoAdapter) transcripts_lines(iterable): iterable with ensembl transcript lines build(str) ensembl_genes(dict): Map from ensembl_id -> HgncGene Returns: transcript_objs(list): A list with all transcript objects """ # Fetch all genes with ensemblid as keys ensembl_genes = ensembl_genes or adapter.ensembl_genes(build) if transcripts_lines is None: transcripts_lines = fetch_ensembl_transcripts(build=build) # Map with all transcripts enstid -> parsed transcript transcripts_dict = parse_transcripts(transcripts_lines) for ens_tx_id in list(transcripts_dict): parsed_tx = transcripts_dict[ens_tx_id] # Get the ens gene id ens_gene_id = parsed_tx["ensembl_gene_id"] # Fetch the internal gene object to find out the correct hgnc id gene_obj = ensembl_genes.get(ens_gene_id) # If the gene is non existing in scout we skip the transcript if not gene_obj: transcripts_dict.pop(ens_tx_id) LOG.debug("Gene %s does not exist in build %s", ens_gene_id, build) continue # Add the correct hgnc id parsed_tx["hgnc_id"] = gene_obj["hgnc_id"] # Primary transcript information is collected from HGNC parsed_tx["primary_transcripts"] = set( gene_obj.get("primary_transcripts", [])) ref_seq_transcripts = 0 nr_primary_transcripts = 0 nr_transcripts = len(transcripts_dict) transcript_objs = [] with progressbar(transcripts_dict.values(), label="Building transcripts", length=nr_transcripts) as bar: for tx_data in bar: #################### Get the correct refseq identifier #################### # We need to decide one refseq identifier for each transcript, if there are any to # choose from. The algorithm is as follows: # If there is ONE mrna this is choosen # If there are several mrna the one that is in 'primary_transcripts' is choosen # Else one is choosen at random # The same follows for the other categories where nc_rna has precedense over mrna_predicted # We will store all refseq identifiers in a "refseq_identifiers" list as well tx_data["is_primary"] = False primary_transcripts = tx_data["primary_transcripts"] refseq_identifier = None refseq_identifiers = [] for category in TRANSCRIPT_CATEGORIES: identifiers = tx_data[category] if not identifiers: continue for refseq_id in identifiers: # Add all refseq identifiers to refseq_identifiers refseq_identifiers.append(refseq_id) ref_seq_transcripts += 1 if refseq_id in primary_transcripts: refseq_identifier = refseq_id tx_data["is_primary"] = True nr_primary_transcripts += 1 if not refseq_identifier: refseq_identifier = refseq_id if refseq_identifier: tx_data["refseq_id"] = refseq_identifier if refseq_identifiers: tx_data["refseq_identifiers"] = refseq_identifiers #################### #################### #################### # Build the transcript object tx_obj = build_transcript(tx_data, build) transcript_objs.append(tx_obj) # Load all transcripts LOG.info("Loading transcripts...") if len(transcript_objs) > 0: adapter.load_transcript_bulk(transcript_objs) LOG.info("Number of transcripts in build %s: %s", build, nr_transcripts) LOG.info("Number of transcripts with refseq identifier: %s", ref_seq_transcripts) LOG.info("Number of primary transcripts: %s", nr_primary_transcripts) return transcript_objs