#from scripts.draw_map import map_tab from scripts.routes import route_tab # Using included state data from Bokeh for map from bokeh.sampledata.us_states import data as states # Read data into dataframes flights = pd.read_csv(join(dirname(__file__), 'data', 'flights.csv'), index_col=0).dropna() # Formatted Flight Delay Data for map map_data = pd.read_csv(join(dirname(__file__), 'data', 'flights_map.csv'), header=[0, 1], index_col=0) # Create each of the tabs #tab1 = histogram_tab(flights) tab2 = density_tab(flights) #tab3 = table_tab(flights) #tab4 = map_tab(map_data, states) tab5 = route_tab(flights) # Put all the tabs into one application tabs = Tabs(tabs=[tab2, tab5]) # Put the tabs in the current document for display curdoc().add_root(tabs) if '__name__' == '__main__': pass
from bokeh.io import curdoc from bokeh.models.widgets import Tabs from bokeh.plotting import output_file, show # Each tab is drawn by one script from scripts.histogram import histogram_tab from scripts.density import density_tab from scripts.table import table_tab from scripts.plot import plot_tab # Read data into dataframes df_avgs_w_l = pd.read_pickle('df_avgs_w_l') df_avgs_w_l['rpi'] = pd.to_numeric(df_avgs_w_l['rpi'], errors='coerce') # Create each of the tabs tab1 = histogram_tab(df_avgs_w_l) tab2 = density_tab(df_avgs_w_l) tab3 = table_tab(df_avgs_w_l) tab4 = plot_tab(df_avgs_w_l) # tab5 = route_tb(flights) # Put all the tabs into one application tabs = Tabs(tabs=[tab1, tab2, tab3, tab4]) # Put the tabs in the current document for display curdoc().add_root(tabs) output_file('plots.html') show(tabs)
from scripts.density import density_tab from scripts.table import table_tab from scripts.draw_map import map_tab from scripts.routes import route_tab # Using included state data from Bokeh for map from bokeh.sampledata.us_states import data as states # Read data into dataframes flights = pd.read_csv(join(dirname(__file__), 'data', 'flights.csv'), index_col=0).dropna() # Formatted Flight Delay Data for map map_data = pd.read_csv(join(dirname(__file__), 'data', 'flights_map.csv'), header=[0,1], index_col=0) # Create each of the tabs tab1 = histogram_tab(flights) tab2 = density_tab(flights) tab3 = table_tab(flights) tab4 = map_tab(map_data, states) tab5 = route_tab(flights) # Put all the tabs into one application tabs = Tabs(tabs = [tab1, tab2, tab3, tab4, tab5]) # Put the tabs in the current document for display curdoc().add_root(tabs)
from bokeh.io import curdoc from bokeh.models.widgets import Tabs # Each tab is drawn by one script from scripts.histogram import histogram_tab from scripts.density import density_tab from scripts.table import table_tab from scripts.draw_map import map_tab from scripts.routes import route_tab # Using included state data from Bokeh for map from bokeh.sampledata.us_states import data as states # Read data into dataframes flights = pd.read_csv(join(dirname(__file__), 'data', 'flights.csv'), index_col=0).dropna() # Formatted Flight Delay Data for map map_data = pd.read_csv(join(dirname(__file__), 'data', 'flights_map.csv'), header=[0, 1], index_col=0) # Create each of the tabs tab2 = density_tab() # Put all the tabs into one application tabs = Tabs(tabs=[tab2]) # Put the tabs in the current document for display curdoc().add_root(tabs)