def getimage(): try: data = (request.data.decode()).split(",")[1] body = base64.decodebytes(data.encode("utf-8")) img = Image.open(BytesIO(body)) img = np.array(img) RGB_img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) # cv2.imshow("name", RGB_img) # cv2.waitKey(0) # cv2.destroyAllWindows() scene_class = label_img_scene.classify(RGB_img) # make_response = jsonify({"scene": scene_class}) # make_response.headers.add( # "Access-Control-Allow-Origin", "http://localhost:8001/" # ) # make_response.headers.add( # "Access-Control-Allow-Headers", "Content-Type,Authorization" # ) # make_response.headers.add("Access-Control-Allow-Methods", "GET,PUT,POST,DELETE") # make_response.headers.add("Access-Control-Allow-Credentials", "true") # print(make_response) return scene_class except Exception as e: print(e) return "error"
logger.debug('+image processing+') logger.debug('+postprocessing+') start_time = time.time() humans = e.inference(image, upsample_size=4.0) img = TfPoseEstimator.draw_humans(image, humans, imgcopy=False) logger.debug('+classification+') # Getting only the skeletal structure (with white background) of the actual image image = np.zeros(image.shape, dtype=np.uint8) image.fill(255) image = TfPoseEstimator.draw_humans(image, humans, imgcopy=False) # Classification pose_class = label_img.classify(image) scene_class = label_img_scene.classify(args.image) end_time = time.time() logger.debug('+displaying+') cv2.putText(img, "Predicted Pose: %s" % (pose_class), (10, 10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 255), 2) cv2.putText(img, "Predicted Scene: %s" % (scene_class), (10, 30), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 255), 2) print('\n Overall Evaluation time (1-image): {:.3f}s\n'.format(end_time - start_time)) cv2.imwrite('show1.png', img) cv2.imshow('tf-human-action-classification result', img) cv2.waitKey(0) logger.debug('+finished+') cv2.destroyAllWindows() # =============================================================================
logger.debug('+image processing+') logger.debug('+postprocessing+') start_time = time.time() humans = e.inference(image, upsample_size=4.0) img = TfPoseEstimator.draw_humans(image, humans, imgcopy=False) logger.debug('+classification+') # Getting only the skeletal structure (with white background) of the actual image image = np.zeros(image.shape, dtype=np.uint8) image.fill(255) image = TfPoseEstimator.draw_humans(image, humans, imgcopy=False) # Classification pose_class = label_img.classify(image) scene_class = label_img_scene.classify(address + args.image) end_time = time.time() logger.debug('+displaying+') cv2.putText(img, "Predicted Pose: %s" % (pose_class), (10, 10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 255), 2) cv2.putText(img, "Predicted Scene: %s" % (scene_class), (10, 30), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 255), 2) print('\n Overall Evaluation time (1-image): {:.3f}s\n'.format(end_time - start_time)) cv2.imwrite('show1.png', img) cv2.imshow('tf-human-action-classification result', img) cv2.waitKey(0) logger.debug('+finished+') cv2.destroyAllWindows() # =============================================================================
logger.debug("+image processing+") logger.debug("+postprocessing+") start_time = time.time() humans = e.inference(image, upsample_size=4.0) img = TfPoseEstimator.draw_humans(image, humans, imgcopy=False) logger.debug("+classification+") # Getting only the skeletal structure (with white background) of the actual image image = np.zeros(image.shape, dtype=np.uint8) image.fill(255) image = TfPoseEstimator.draw_humans(image, humans, imgcopy=False) # Classification pose_class = label_img.classify(image) scene_class = label_img_scene.classify(address + file) end_time = time.time() img_count += 1 total_time = total_time + (end_time - start_time) logger.debug("+Completed image: {}+".format(img_count)) true_label_pose.append(pose_class) true_label_scene.append(scene_class) img_name.append(file) outF = open("pose.txt", "w") for line in true_label_pose: outF.write(line) outF.write("\n") outF.close() outF = open("scene.txt", "w")