"avg_steps": total_steps_ran / steps, } sum_loss = 0.0 steps = 0.0 lol.eval() # Save epoch snapshot using some validation image model_path = os.path.join(args.output, args.name, 'last.pt') screenshot_path = os.path.join(args.output, args.name, "screenshots", str(epoch) + ".png") create_folders(screenshot_path) torch.save(lol.state_dict(), model_path) time.sleep(1) paint_model_run(model_path, validation_loader, destination=screenshot_path) for index, x in enumerate(test_dataloader): x = x[0] img = Variable(x['img'].type(dtype), requires_grad=False)[None, ...] ground_truth = x["steps"] # Iterates over the line until the end sol = ground_truth[0].cuda() predicted_steps, length, _ = lol(img, sol, ground_truth, max_steps=len(ground_truth), disturb_sol=False)
parser.add_argument("--output", default="scripts/original/snapshots/training") parser.add_argument("--model", default="scripts/new/snapshots/training2/lol-last.pt") args = parser.parse_args() data_folder = os.getenv("DATA_FOLDER") if os.getenv("DATA_FOLDER") else "data" target_folder = os.path.join(data_folder, "sfrs", args.dataset) pages_folder = os.path.join(target_folder, "pages") char_set_path = os.path.join(pages_folder, "character_set.json") test_set_list_path = os.path.join(pages_folder, "validation.json") test_set_list = load_file_list_direct(test_set_list_path) test_dataset = LolDataset(test_set_list[0:1]) test_dataloader = DataLoader(test_dataset, batch_size=1, shuffle=False, num_workers=0, collate_fn=lol_dataset.collate) count = 0 while True: for t in ["training", "training2"]: model_path = "scripts/new/snapshots/" + t + "/last.pt" paint_model_run(model_path, test_dataloader, destination=os.path.join("screenshots", t, str(count) + ".png")) time.sleep(30) count += 1