def main(**kwargs): exclude=kwargs.get('exclude',[]) models=['GP_GP', 'GA_GA', 'GI_GA', 'GI_GI'] models=[m for m in models if not ( m in exclude)] nets=['Net_0', 'Net_1'] attrs=['mean_coherence', 'phases_diff_with_cohere'] from_disk=kwargs.get('from_diks',0) path=('/home/mikael/results/papers/inhibition/network/' +'supermicro/simulate_slow_wave_ZZZ_dop_effect_perturb/') path=kwargs.get('data_path', path) script_name=kwargs.get('script_name', (__file__.split('/')[-1][0:-3] +'/data')) file_name = get_file_name(script_name) sd = get_storage(file_name, '') d={} if not from_disk: # d['raw']=gather(path, nets, models, attrs) d['raw']=gather2(path, nets, models, attrs) d['data']=extract_data(d['raw'], nets, models, attrs) d['performance']=compute_performance(d['data'], nets, models, attrs) d['bar_obj'], d['labels']=generate_plot_data(d['performance'], models, attrs) save(sd, d) else: filt=['bar_obj']+models+['labels'] d = sd.load_dic(*filt) figs=[] figs.append(plot_coher(d, d['labels'], title_name=kwargs.get('title'))) save_figures(figs, script_name) pylab.show()
def main(**kwargs): exclude = kwargs.get('exclude', []) models = ['GP_GP', 'GA_GA', 'GI_GA', 'GI_GI'] models = [m for m in models if not (m in exclude)] nets = ['Net_0', 'Net_1'] attrs = ['mean_coherence', 'phases_diff_with_cohere'] from_disk = kwargs.get('from_diks', 0) path = ('/home/mikael/results/papers/inhibition/network/' + 'supermicro/simulate_slow_wave_ZZZ_dop_effect_perturb/') path = kwargs.get('data_path', path) script_name = kwargs.get('script_name', (__file__.split('/')[-1][0:-3] + '/data')) file_name = get_file_name(script_name) sd = get_storage(file_name, '') d = {} if not from_disk: # d['raw']=gather(path, nets, models, attrs) d['raw'] = gather2(path, nets, models, attrs) d['data'] = extract_data(d['raw'], nets, models, attrs) d['performance'] = compute_performance(d['data'], nets, models, attrs) d['bar_obj'], d['labels'] = generate_plot_data(d['performance'], models, attrs) save(sd, d) else: filt = ['bar_obj'] + models + ['labels'] d = sd.load_dic(*filt) figs = [] figs.append(plot_coher(d, d['labels'], title_name=kwargs.get('title'))) save_figures(figs, script_name) pylab.show()
sm = pylab.cm.ScalarMappable(cmap='copper', norm=pylab.normalize(vmin=2.5, vmax=20)) sm._A = [] box = ax.get_position() pos=[box.x0+1.03*box.width, box.y0+box.height*0.1, 0.01, box.height*0.8] axColor=pylab.axes(pos) cbar=pylab.colorbar(sm, cax=axColor) tick_locator = ticker.MaxNLocator(nbins=7) cbar.locator = tick_locator cbar.update_ticks() cbar.ax.tick_params( length=1, ) cbar.ax.set_yticklabels(ln, fontsize=5*scale) ax.text(1.3, 0.5, r'$g^{TA\to FS}$, $g_{TI\to FS}$', transform=ax.transAxes, va='center', rotation=270) ax.set_xlabel(r'Angle (rad)') ax.set_ylabel('Frequency (Hz)') ax.my_set_no_ticks(xticks=4) ax.my_set_no_ticks(yticks=4) l2=l2[organize['TATIFS']] save_figures([fig], script_name, dpi=400) pylab.show()
ax.set_ylabel('') # a=ax.get_xticklabels() ax.tick_params(axis='both', which='major', labelsize=7*scale) # ax.set_xticklabels(ax.get_xticklabels(), fontsize=20) # ax.set_yticklabels(fontsize=20) ax.my_remove_axis(xaxis=True, yaxis=True,keep_ticks=True) # axs[0].my_remove_axis(xaxis=True, yaxis=False,keep_ticks=True) # axs[1].my_remove_axis(xaxis=True, yaxis=True,keep_ticks=True) # axs[2].my_remove_axis(xaxis=True, yaxis=False,keep_ticks=True) # axs[3].my_remove_axis(xaxis=True, yaxis=True,keep_ticks=True) # axs[4].my_remove_axis(xaxis=False, yaxis=False,keep_ticks=True) # axs[5].my_remove_axis(xaxis=False, yaxis=True,keep_ticks=True) # # if i==4: # ax.text(1.05, -.3, # 'Cortical input action 1', # horizontalalignment='center', # transform=axs[i].transAxes) # ax.set_xticks([1,1.5, 2, 2.5]) # ax.set_xticklabels(['1.0','1.5','2.0','2.5']) # # if i==2: # ax.set_ylabel('Cortical input action 2') save_figures([fig], __file__.split('/')[-1][0:-3]+'/data', dpi=200) pylab.show()
pos=[box.x0+1.03*box.width, box.y0+box.height*0.1, 0.01, box.height*0.8] axColor=pylab.axes(pos) cbar=pylab.colorbar(sm, cax=axColor, ticks=range(len(ln))) cbar.ax.tick_params( length=1, ) cbar.ax.set_yticklabels(ln, fontsize=5*scale) ax.text(1.3, 0.5, r'$Fan_{in}^{[TA,TI]\to TA}$ (#)', transform=ax.transAxes, va='center', rotation=270) ax.set_xlabel(r'Angle (rad)') ax.set_ylabel('Norm. count TI-TA') ax.my_set_no_ticks(xticks=4) ax.my_set_no_ticks(yticks=4) ax.set_ylim([0,0.31]) for ax in axs: ax.tick_params(direction='out', length=2, width=0.5, pad=0.01, top=False, right=False ) save_figures([fig], script_name, dpi=400) pylab.show()