def dmri_moco(param):

    file_data = 'dmri'
    ext_data = '.nii'
    file_b0 = 'b0'
    file_dwi = 'dwi'
    mat_final = 'mat_final/'
    file_dwi_group = 'dwi_averaged_groups'  # no extension
    fsloutput = 'export FSLOUTPUTTYPE=NIFTI; '  # for faster processing, all outputs are in NIFTI
    ext_mat = 'Warp.nii.gz'  # warping field

    # Get dimensions of data
    sct.printv('\nGet dimensions of data...', param.verbose)
    nx, ny, nz, nt, px, py, pz, pt = Image(file_data+'.nii').dim
    sct.printv('  ' + str(nx) + ' x ' + str(ny) + ' x ' + str(nz), param.verbose)

    # Identify b=0 and DWI images
    sct.printv('\nIdentify b=0 and DWI images...', param.verbose)
    index_b0, index_dwi, nb_b0, nb_dwi = identify_b0('bvecs.txt', param.fname_bvals, param.bval_min, param.verbose)

    # check if dmri and bvecs are the same size
    if not nb_b0 + nb_dwi == nt:
        sct.printv('\nERROR in '+os.path.basename(__file__)+': Size of data ('+str(nt)+') and size of bvecs ('+str(nb_b0+nb_dwi)+') are not the same. Check your bvecs file.\n', 1, 'error')
        sys.exit(2)

    # Prepare NIFTI (mean/groups...)
    #===================================================================================================================
    # Split into T dimension
    sct.printv('\nSplit along T dimension...', param.verbose)
    status, output = sct.run('sct_split_data -i ' + file_data + ext_data + ' -dim t -suffix _T', param.verbose)

    # Merge b=0 images
    sct.printv('\nMerge b=0...', param.verbose)
    # cmd = fsloutput + 'fslmerge -t ' + file_b0
    # for it in range(nb_b0):
    #     cmd = cmd + ' ' + file_data + '_T' + str(index_b0[it]).zfill(4)
    cmd = 'sct_concat_data -dim t -o ' + file_b0 + ext_data + ' -i '
    for it in range(nb_b0):
        cmd = cmd + file_data + '_T' + str(index_b0[it]).zfill(4) + ext_data + ','
    cmd = cmd[:-1]  # remove ',' at the end of the string
    status, output = sct.run(cmd, param.verbose)
    sct.printv(('  File created: ' + file_b0), param.verbose)

    # Average b=0 images
    sct.printv('\nAverage b=0...', param.verbose)
    file_b0_mean = file_b0+'_mean'
    sct.run('sct_maths -i '+file_b0+'.nii'+' -o '+file_b0_mean+'.nii'+' -mean t', param.verbose)
    # if not average_data_across_dimension(file_b0+'.nii', file_b0_mean+'.nii', 3):
    #     sct.printv('ERROR in average_data_across_dimension', 1, 'error')
    # cmd = fsloutput + 'fslmaths ' + file_b0 + ' -Tmean ' + file_b0_mean
    # status, output = sct.run(cmd, param.verbose)

    # Number of DWI groups
    nb_groups = int(math.floor(nb_dwi/param.group_size))
    
    # Generate groups indexes
    group_indexes = []
    for iGroup in range(nb_groups):
        group_indexes.append(index_dwi[(iGroup*param.group_size):((iGroup+1)*param.group_size)])
    
    # add the remaining images to the last DWI group
    nb_remaining = nb_dwi%param.group_size  # number of remaining images
    if nb_remaining > 0:
        nb_groups += 1
        group_indexes.append(index_dwi[len(index_dwi)-nb_remaining:len(index_dwi)])

    # DWI groups
    for iGroup in range(nb_groups):
        sct.printv('\nDWI group: ' +str((iGroup+1))+'/'+str(nb_groups), param.verbose)

        # get index
        index_dwi_i = group_indexes[iGroup]
        nb_dwi_i = len(index_dwi_i)

        # Merge DW Images
        sct.printv('Merge DW images...', param.verbose)
        file_dwi_merge_i = file_dwi + '_' + str(iGroup)
        cmd = 'sct_concat_data -dim t -o ' + file_dwi_merge_i + ext_data + ' -i '
        for it in range(nb_dwi_i):
            cmd = cmd + file_data + '_T' + str(index_dwi_i[it]).zfill(4) + ext_data + ','
        cmd = cmd[:-1]  # remove ',' at the end of the string
        sct.run(cmd, param.verbose)
        # cmd = fsloutput + 'fslmerge -t ' + file_dwi_merge_i
        # for it in range(nb_dwi_i):
        #     cmd = cmd +' ' + file_data + '_T' + str(index_dwi_i[it]).zfill(4)

        # Average DW Images
        sct.printv('Average DW images...', param.verbose)
        file_dwi_mean = file_dwi + '_mean_' + str(iGroup)
        sct.run('sct_maths -i '+file_dwi_merge_i+'.nii'+' -o '+file_dwi_mean+'.nii'+' -mean t', param.verbose)
        # if not average_data_across_dimension(file_dwi_merge_i+'.nii', file_dwi_mean+'.nii', 3):
        #     sct.printv('ERROR in average_data_across_dimension', 1, 'error')
        # cmd = fsloutput + 'fslmaths ' + file_dwi_merge_i + ' -Tmean ' + file_dwi_mean
        # sct.run(cmd, param.verbose)

    # Merge DWI groups means
    sct.printv('\nMerging DW files...', param.verbose)
    # file_dwi_groups_means_merge = 'dwi_averaged_groups'
    cmd = 'sct_concat_data -dim t -o ' + file_dwi_group + ext_data + ' -i '
    for iGroup in range(nb_groups):
        cmd = cmd + file_dwi + '_mean_' + str(iGroup) + ext_data + ','
    cmd = cmd[:-1]  # remove ',' at the end of the string
    sct.run(cmd, param.verbose)
    # cmd = fsloutput + 'fslmerge -t ' + file_dwi_group
    # for iGroup in range(nb_groups):
    #     cmd = cmd + ' ' + file_dwi + '_mean_' + str(iGroup)

    # Average DW Images
    # TODO: USEFULL ???
    sct.printv('\nAveraging all DW images...', param.verbose)
    fname_dwi_mean = 'dwi_mean'
    sct.run('sct_maths -i '+file_dwi_group+'.nii'+' -o '+file_dwi_group+'_mean.nii'+' -mean t', param.verbose)
    # if not average_data_across_dimension(file_dwi_group+'.nii', file_dwi_group+'_mean.nii', 3):
    #     sct.printv('ERROR in average_data_across_dimension', 1, 'error')
    # sct.run(fsloutput + 'fslmaths ' + file_dwi_group + ' -Tmean ' + file_dwi_group+'_mean', param.verbose)

    # segment dwi images using otsu algorithm
    if param.otsu:
        sct.printv('\nSegment group DWI using OTSU algorithm...', param.verbose)
        # import module
        otsu = importlib.import_module('sct_otsu')
        # get class from module
        param_otsu = otsu.param()  #getattr(otsu, param)
        param_otsu.fname_data = file_dwi_group+'.nii'
        param_otsu.threshold = param.otsu
        param_otsu.file_suffix = '_seg'
        # run otsu
        otsu.otsu(param_otsu)
        file_dwi_group = file_dwi_group+'_seg'

    # extract first DWI volume as target for registration
    nii = Image(file_dwi_group+'.nii')
    data_crop = nii.data[:, :, :, index_dwi[0]:index_dwi[0]+1]
    nii.data = data_crop
    nii.setFileName('target_dwi.nii')
    nii.save()


    # START MOCO
    #===================================================================================================================

    # Estimate moco on b0 groups
    sct.printv('\n-------------------------------------------------------------------------------', param.verbose)
    sct.printv('  Estimating motion on b=0 images...', param.verbose)
    sct.printv('-------------------------------------------------------------------------------', param.verbose)
    param_moco = param
    param_moco.file_data = 'b0'
    if index_dwi[0] != 0:
        # If first DWI is not the first volume (most common), then there is a least one b=0 image before. In that case
        # select it as the target image for registration of all b=0
        param_moco.file_target = file_data + '_T' + str(index_b0[index_dwi[0]-1]).zfill(4)
    else:
        # If first DWI is the first volume, then the target b=0 is the first b=0 from the index_b0.
        param_moco.file_target = file_data + '_T' + str(index_b0[0]).zfill(4)
    param_moco.path_out = ''
    param_moco.todo = 'estimate'
    param_moco.mat_moco = 'mat_b0groups'
    moco.moco(param_moco)

    # Estimate moco on dwi groups
    sct.printv('\n-------------------------------------------------------------------------------', param.verbose)
    sct.printv('  Estimating motion on DW images...', param.verbose)
    sct.printv('-------------------------------------------------------------------------------', param.verbose)
    param_moco.file_data = file_dwi_group
    param_moco.file_target = 'target_dwi'  # target is the first DW image (closest to the first b=0)
    param_moco.path_out = ''
    #param_moco.todo = 'estimate'
    param_moco.todo = 'estimate_and_apply'
    param_moco.mat_moco = 'mat_dwigroups'
    moco.moco(param_moco)

    # create final mat folder
    sct.create_folder(mat_final)

    # Copy b=0 registration matrices
    sct.printv('\nCopy b=0 registration matrices...', param.verbose)

    for it in range(nb_b0):
        sct.run('cp '+'mat_b0groups/'+'mat.T'+str(it)+ext_mat+' '+mat_final+'mat.T'+str(index_b0[it])+ext_mat, param.verbose)

    # Copy DWI registration matrices
    sct.printv('\nCopy DWI registration matrices...', param.verbose)
    for iGroup in range(nb_groups):
        for dwi in range(len(group_indexes[iGroup])):
            sct.run('cp '+'mat_dwigroups/'+'mat.T'+str(iGroup)+ext_mat+' '+mat_final+'mat.T'+str(group_indexes[iGroup][dwi])+ext_mat, param.verbose)

    # Spline Regularization along T
    if param.spline_fitting:
        moco.spline(mat_final, nt, nz, param.verbose, np.array(index_b0), param.plot_graph)

    # combine Eddy Matrices
    if param.run_eddy:
        param.mat_2_combine = 'mat_eddy'
        param.mat_final = mat_final
        moco.combine_matrix(param)

    # Apply moco on all dmri data
    sct.printv('\n-------------------------------------------------------------------------------', param.verbose)
    sct.printv('  Apply moco', param.verbose)
    sct.printv('-------------------------------------------------------------------------------', param.verbose)
    param_moco.file_data = 'dmri'
    param_moco.file_target = file_dwi+'_mean_'+str(0)  # reference for reslicing into proper coordinate system
    param_moco.path_out = ''
    param_moco.mat_moco = mat_final
    param_moco.todo = 'apply'
    moco.moco(param_moco)

    # copy geometric information from header
    # NB: this is required because WarpImageMultiTransform in 2D mode wrongly sets pixdim(3) to "1".
    copy_header('dmri.nii', 'dmri_moco.nii')

    # generate b0_moco_mean and dwi_moco_mean
    cmd = 'sct_dmri_separate_b0_and_dwi -i dmri'+param.suffix+'.nii -b bvecs.txt -a 1'
    if not param.fname_bvals == '':
        cmd = cmd+' -m '+param.fname_bvals
    sct.run(cmd, param.verbose)
def create_mask():

    fsloutput = "export FSLOUTPUTTYPE=NIFTI; "  # for faster processing, all outputs are in NIFTI

    # display usage if a mandatory argument is not provided
    if param.fname_data == "" or param.method == "":
        sct.printv("\nERROR: All mandatory arguments are not provided. See usage (add -h).\n", 1, "error")

    # parse argument for method
    method_list = param.method.replace(" ", "").split(",")  # remove spaces and parse with comma
    # method_list = param.method.split(',')  # parse with comma
    method_type = method_list[0]

    # check existence of method type
    if not method_type in param.method_list:
        sct.printv(
            "\nERROR in "
            + os.path.basename(__file__)
            + ': Method "'
            + method_type
            + '" is not recognized. See usage (add -h).\n',
            1,
            "error",
        )

    # check method val
    if not method_type == "center":
        method_val = method_list[1]
    del method_list

    # check existence of shape
    if not param.shape in param.shape_list:
        sct.printv(
            "\nERROR in "
            + os.path.basename(__file__)
            + ': Shape "'
            + param.shape
            + '" is not recognized. See usage (add -h).\n',
            1,
            "error",
        )

    # check existence of input files
    sct.printv("\ncheck existence of input files...", param.verbose)
    sct.check_file_exist(param.fname_data, param.verbose)
    if method_type == "centerline":
        sct.check_file_exist(method_val, param.verbose)

    # check if orientation is RPI
    sct.printv("\nCheck if orientation is RPI...", param.verbose)
    status, output = sct.run("sct_orientation -i " + param.fname_data)
    if not output == "RPI":
        sct.printv(
            "\nERROR in "
            + os.path.basename(__file__)
            + ": Orientation of input image should be RPI. Use sct_orientation to put your image in RPI.\n",
            1,
            "error",
        )

    # display input parameters
    sct.printv("\nInput parameters:", param.verbose)
    sct.printv("  data .................." + param.fname_data, param.verbose)
    sct.printv("  method ................" + method_type, param.verbose)

    # Extract path/file/extension
    path_data, file_data, ext_data = sct.extract_fname(param.fname_data)

    # Get output folder and file name
    if param.fname_out == "":
        param.fname_out = param.file_prefix + file_data + ext_data
    # fname_out = os.path.abspath(path_out+file_out+ext_out)

    # create temporary folder
    sct.printv("\nCreate temporary folder...", param.verbose)
    path_tmp = sct.slash_at_the_end("tmp." + time.strftime("%y%m%d%H%M%S"), 1)
    sct.run("mkdir " + path_tmp, param.verbose)

    # Copying input data to tmp folder and convert to nii
    # NB: cannot use c3d here because c3d cannot convert 4D data.
    sct.printv("\nCopying input data to tmp folder and convert to nii...", param.verbose)
    convert(param.fname_data, path_tmp + "data.nii")
    # sct.run('cp '+param.fname_data+' '+path_tmp+'data'+ext_data, param.verbose)
    if method_type == "centerline":
        convert(method_val, path_tmp + "centerline.nii.gz")
        # sct.run('isct_c3d '+method_val+' -o '+path_tmp+'/centerline.nii.gz')

    # go to tmp folder
    os.chdir(path_tmp)

    # Get dimensions of data
    sct.printv("\nGet dimensions of data...", param.verbose)
    nx, ny, nz, nt, px, py, pz, pt = Image("data.nii").dim
    sct.printv("  " + str(nx) + " x " + str(ny) + " x " + str(nz) + " x " + str(nt), param.verbose)
    # in case user input 4d data
    if nt != 1:
        sct.printv(
            "WARNING in " + os.path.basename(__file__) + ": Input image is 4d but output mask will 3D.",
            param.verbose,
            "warning",
        )
        # extract first volume to have 3d reference
        nii = Image("data.nii")
        data3d = nii.data[:, :, :, 0]
        nii.data = data3d
        nii.save()

    if method_type == "coord":
        # parse to get coordinate
        coord = map(int, method_val.split("x"))

    if method_type == "point":
        # get file name
        fname_point = method_val
        # extract coordinate of point
        sct.printv("\nExtract coordinate of point...", param.verbose)
        status, output = sct.run("sct_label_utils -i " + fname_point + " -t display-voxel", param.verbose)
        # parse to get coordinate
        coord = output[output.find("Position=") + 10 : -17].split(",")

    if method_type == "center":
        # set coordinate at center of FOV
        coord = round(float(nx) / 2), round(float(ny) / 2)

    if method_type == "centerline":
        # get name of centerline from user argument
        fname_centerline = "centerline.nii.gz"
    else:
        # generate volume with line along Z at coordinates 'coord'
        sct.printv("\nCreate line...", param.verbose)
        fname_centerline = create_line("data.nii", coord, nz)

    # create mask
    sct.printv("\nCreate mask...", param.verbose)
    centerline = nibabel.load(fname_centerline)  # open centerline
    hdr = centerline.get_header()  # get header
    hdr.set_data_dtype("uint8")  # set imagetype to uint8
    data_centerline = centerline.get_data()  # get centerline
    z_centerline = [iz for iz in range(0, nz, 1) if data_centerline[:, :, iz].any()]
    nz = len(z_centerline)
    # get center of mass of the centerline
    cx = [0] * nz
    cy = [0] * nz
    for iz in range(0, nz, 1):
        cx[iz], cy[iz] = ndimage.measurements.center_of_mass(numpy.array(data_centerline[:, :, z_centerline[iz]]))
    # create 2d masks
    file_mask = "data_mask"
    for iz in range(nz):
        center = numpy.array([cx[iz], cy[iz]])
        mask2d = create_mask2d(center, param.shape, param.size, nx, ny)
        # Write NIFTI volumes
        img = nibabel.Nifti1Image(mask2d, None, hdr)
        nibabel.save(img, (file_mask + str(iz) + ".nii"))
    # merge along Z
    # cmd = 'fslmerge -z mask '
    cmd = "sct_concat_data -dim z -o mask.nii.gz -i "
    for iz in range(nz):
        cmd = cmd + file_mask + str(iz) + ".nii,"
    # remove ',' at the end of the string
    cmd = cmd[:-1]
    status, output = sct.run(cmd, param.verbose)

    # copy geometry
    copy_header("data.nii", "mask.nii.gz")

    # come back to parent folder
    os.chdir("..")

    # Generate output files
    sct.printv("\nGenerate output files...", param.verbose)
    sct.generate_output_file(path_tmp + "mask.nii.gz", param.fname_out)

    # Remove temporary files
    if param.remove_tmp_files == 1:
        sct.printv("\nRemove temporary files...", param.verbose)
        sct.run("rm -rf " + path_tmp, param.verbose)

    # to view results
    sct.printv("\nDone! To view results, type:", param.verbose)
    sct.printv("fslview " + param.fname_data + " " + param.fname_out + " -l Red -t 0.5 &", param.verbose, "info")
    print
def register_images(fname_source, fname_dest, mask='', paramreg=Paramreg(step='0', type='im', algo='Translation', metric='MI', iter='5', shrink='1', smooth='0', gradStep='0.5'),
                    ants_registration_params={'rigid': '', 'affine': '', 'compositeaffine': '', 'similarity': '', 'translation': '','bspline': ',10', 'gaussiandisplacementfield': ',3,0',
                                              'bsplinedisplacementfield': ',5,10', 'syn': ',3,0', 'bsplinesyn': ',1,3'}, remove_tmp_folder = 1):
    """Slice-by-slice registration of two images.

    We first split the 3D images into 2D images (and the mask if inputted). Then we register slices of the two images
    that physically correspond to one another looking at the physical origin of each image. The images can be of
    different sizes but the destination image must be smaller thant the input image. We do that using antsRegistration
    in 2D. Once this has been done for each slices, we gather the results and return them.
    Algorithms implemented: translation, rigid, affine, syn and BsplineSyn.
    N.B.: If the mask is inputted, it must also be 3D and it must be in the same space as the destination image.

    input:
        fname_source: name of moving image (type: string)
        fname_dest: name of fixed image (type: string)
        mask[optional]: name of mask file (type: string) (parameter -x of antsRegistration)
        paramreg[optional]: parameters of antsRegistration (type: Paramreg class from sct_register_multimodal)
        ants_registration_params[optional]: specific algorithm's parameters for antsRegistration (type: dictionary)

    output:
        if algo==translation:
            x_displacement: list of translation along x axis for each slice (type: list)
            y_displacement: list of translation along y axis for each slice (type: list)
        if algo==rigid:
            x_displacement: list of translation along x axis for each slice (type: list)
            y_displacement: list of translation along y axis for each slice (type: list)
            theta_rotation: list of rotation angle in radian (and in ITK's coordinate system) for each slice (type: list)
        if algo==affine or algo==syn or algo==bsplinesyn:
            creation of two 3D warping fields (forward and inverse) that are the concatenations of the slice-by-slice
            warps.
    """
    # Extracting names
    path_i, root_i, ext_i = sct.extract_fname(fname_source)
    path_d, root_d, ext_d = sct.extract_fname(fname_dest)

    # set metricSize
    if paramreg.metric == 'MI':
        metricSize = '32'  # corresponds to number of bins
    else:
        metricSize = '4'  # corresponds to radius (for CC, MeanSquares...)


    # Get image dimensions and retrieve nz
    print '\nGet image dimensions of destination image...'
    nx, ny, nz, nt, px, py, pz, pt = Image(fname_dest).dim
    print '.. matrix size: '+str(nx)+' x '+str(ny)+' x '+str(nz)
    print '.. voxel size:  '+str(px)+'mm x '+str(py)+'mm x '+str(pz)+'mm'

    # Define x and y displacement as list
    x_displacement = [0 for i in range(nz)]
    y_displacement = [0 for i in range(nz)]
    theta_rotation = [0 for i in range(nz)]

    # create temporary folder
    print('\nCreate temporary folder...')
    path_tmp = 'tmp.'+time.strftime("%y%m%d%H%M%S")
    sct.create_folder(path_tmp)
    print '\nCopy input data...'
    sct.run('cp '+fname_source+ ' ' + path_tmp +'/'+ root_i+ext_i)
    sct.run('cp '+fname_dest+ ' ' + path_tmp +'/'+ root_d+ext_d)
    if mask:
        sct.run('cp '+mask+ ' '+path_tmp +'/mask.nii.gz')

    # go to temporary folder
    os.chdir(path_tmp)

    # Split input volume along z
    print '\nSplit input volume...'
    from sct_split_data import split_data
    split_data(fname_source, 2, '_z')

    # Split destination volume along z
    print '\nSplit destination volume...'
    split_data(fname_dest, 2, '_z')

    # Split mask volume along z
    if mask:
        print '\nSplit mask volume...'
        split_data('mask.nii.gz', 2, '_z')

    im_dest_img = Image(fname_dest)
    im_input_img = Image(fname_source)
    coord_origin_dest = im_dest_img.transfo_pix2phys([[0,0,0]])
    coord_origin_input = im_input_img.transfo_pix2phys([[0,0,0]])
    coord_diff_origin = (asarray(coord_origin_dest[0]) - asarray(coord_origin_input[0])).tolist()
    [x_o, y_o, z_o] = [coord_diff_origin[0] * 1.0/px, coord_diff_origin[1] * 1.0/py, coord_diff_origin[2] * 1.0/pz]

    if paramreg.algo == 'BSplineSyN' or paramreg.algo == 'SyN' or paramreg.algo == 'Affine':
        list_warp_x = []
        list_warp_x_inv = []
        list_warp_y = []
        list_warp_y_inv = []
        name_warp_final = 'Warp_total' #if modified, name should also be modified in msct_register (algo slicereg2d_bsplinesyn and slicereg2d_syn)

    # loop across slices
    for i in range(nz):
        # set masking
        num = numerotation(i)
        num_2 = numerotation(int(num) + int(z_o))
        if mask:
            masking = '-x mask_z' +num+ '.nii'
        else:
            masking = ''

        cmd = ('isct_antsRegistration '
               '--dimensionality 2 '
               '--transform '+paramreg.algo+'['+str(paramreg.gradStep) +
               ants_registration_params[paramreg.algo.lower()]+'] '
               '--metric '+paramreg.metric+'['+root_d+'_z'+ num +'.nii' +','+root_i+'_z'+ num_2 +'.nii' +',1,'+metricSize+'] '  #[fixedImage,movingImage,metricWeight +nb_of_bins (MI) or radius (other)
               '--convergence '+str(paramreg.iter)+' '
               '--shrink-factors '+str(paramreg.shrink)+' '
               '--smoothing-sigmas '+str(paramreg.smooth)+'mm '
               #'--restrict-deformation 1x1x0 '    # how to restrict? should not restrict here, if transform is precised...?
               '--output [transform_' + num + ','+root_i+'_z'+ num_2 +'reg.nii] '    #--> file.mat (contains Tx,Ty, theta)
               '--interpolation BSpline[3] '
               +masking)

        try:
            sct.run(cmd)

            if paramreg.algo == 'Rigid' or paramreg.algo == 'Translation':
                f = 'transform_' +num+ '0GenericAffine.mat'
                matfile = loadmat(f, struct_as_record=True)
                array_transfo = matfile['AffineTransform_double_2_2']
                x_displacement[i] = array_transfo[4][0]  # Tx in ITK'S coordinate system
                y_displacement[i] = array_transfo[5][0]  # Ty  in ITK'S and fslview's coordinate systems
                theta_rotation[i] = asin(array_transfo[2]) # angle of rotation theta in ITK'S coordinate system (minus theta for fslview)

            if paramreg.algo == 'Affine':
                # New process added for generating total nifti warping field from mat warp
                name_dest = root_d+'_z'+ num +'.nii'
                name_reg = root_i+'_z'+ num +'reg.nii'
                name_output_warp = 'warp_from_mat_' + num_2 + '.nii.gz'
                name_output_warp_inverse = 'warp_from_mat_' + num + '_inverse.nii.gz'
                name_warp_null = 'warp_null_' + num + '.nii.gz'
                name_warp_null_dest = 'warp_null_dest' + num + '.nii.gz'
                name_warp_mat = 'transform_' + num + '0GenericAffine.mat'
                # Generating null nifti warping fields
                nx, ny, nz, nt, px, py, pz, pt = Image(name_reg).dim
                nx_d, ny_d, nz_d, nt_d, px_d, py_d, pz_d, pt_d = Image(name_dest).dim
                x_trans = [0 for i in range(nz)]
                x_trans_d = [0 for i in range(nz_d)]
                y_trans= [0 for i in range(nz)]
                y_trans_d = [0 for i in range(nz_d)]
                generate_warping_field(name_reg, x_trans=x_trans, y_trans=y_trans, fname=name_warp_null, verbose=0)
                generate_warping_field(name_dest, x_trans=x_trans_d, y_trans=y_trans_d, fname=name_warp_null_dest, verbose=0)
                # Concatenating mat wrp and null nifti warp to obtain equivalent nifti warp to mat warp
                sct.run('isct_ComposeMultiTransform 2 ' + name_output_warp + ' -R ' + name_reg + ' ' + name_warp_null + ' ' + name_warp_mat)
                sct.run('isct_ComposeMultiTransform 2 ' + name_output_warp_inverse + ' -R ' + name_dest + ' ' + name_warp_null_dest + ' -i ' + name_warp_mat)
                # Split the warping fields into two for displacement along x and y before merge
                sct.run('isct_c3d -mcs ' + name_output_warp + ' -oo transform_'+num+'0Warp_x.nii.gz transform_'+num+'0Warp_y.nii.gz')
                sct.run('isct_c3d -mcs ' + name_output_warp_inverse + ' -oo transform_'+num+'0InverseWarp_x.nii.gz transform_'+num+'0InverseWarp_y.nii.gz')
                # List names of warping fields for futur merge
                list_warp_x.append('transform_'+num+'0Warp_x.nii.gz')
                list_warp_x_inv.append('transform_'+num+'0InverseWarp_x.nii.gz')
                list_warp_y.append('transform_'+num+'0Warp_y.nii.gz')
                list_warp_y_inv.append('transform_'+num+'0InverseWarp_y.nii.gz')

            if paramreg.algo == 'BSplineSyN' or paramreg.algo == 'SyN':
                # Split the warping fields into two for displacement along x and y before merge
                # Need to separate the merge for x and y displacement as merge of 3d warping fields does not work properly
                sct.run('isct_c3d -mcs transform_'+num+'0Warp.nii.gz -oo transform_'+num+'0Warp_x.nii.gz transform_'+num+'0Warp_y.nii.gz')
                sct.run('isct_c3d -mcs transform_'+num+'0InverseWarp.nii.gz -oo transform_'+num+'0InverseWarp_x.nii.gz transform_'+num+'0InverseWarp_y.nii.gz')
                # List names of warping fields for futur merge
                list_warp_x.append('transform_'+num+'0Warp_x.nii.gz')
                list_warp_x_inv.append('transform_'+num+'0InverseWarp_x.nii.gz')
                list_warp_y.append('transform_'+num+'0Warp_y.nii.gz')
                list_warp_y_inv.append('transform_'+num+'0InverseWarp_y.nii.gz')
        # if an exception occurs with ants, take the last value for the transformation
        except:
                if paramreg.algo == 'Rigid' or paramreg.algo == 'Translation':
                    x_displacement[i] = x_displacement[i-1]
                    y_displacement[i] = y_displacement[i-1]
                    theta_rotation[i] = theta_rotation[i-1]


                if paramreg.algo == 'BSplineSyN' or paramreg.algo == 'SyN' or paramreg.algo == 'Affine':
                    print'Problem with ants for slice '+str(i)+'. Copy of the last warping field.'
                    sct.run('cp transform_' + numerotation(i-1) + '0Warp.nii.gz transform_' + num + '0Warp.nii.gz')
                    sct.run('cp transform_' + numerotation(i-1) + '0InverseWarp.nii.gz transform_' + num + '0InverseWarp.nii.gz')
                    # Split the warping fields into two for displacement along x and y before merge
                    sct.run('isct_c3d -mcs transform_'+num+'0Warp.nii.gz -oo transform_'+num+'0Warp_x.nii.gz transform_'+num+'0Warp_y.nii.gz')
                    sct.run('isct_c3d -mcs transform_'+num+'0InverseWarp.nii.gz -oo transform_'+num+'0InverseWarp_x.nii.gz transform_'+num+'0InverseWarp_y.nii.gz')
                    # List names of warping fields for futur merge
                    list_warp_x.append('transform_'+num+'0Warp_x.nii.gz')
                    list_warp_x_inv.append('transform_'+num+'0InverseWarp_x.nii.gz')
                    list_warp_y.append('transform_'+num+'0Warp_y.nii.gz')
                    list_warp_y_inv.append('transform_'+num+'0InverseWarp_y.nii.gz')

    if paramreg.algo == 'BSplineSyN' or paramreg.algo == 'SyN' or paramreg.algo == 'Affine':
        print'\nMerge along z of the warping fields...'
        # from sct_concat_data import concat_data
        sct.run('sct_concat_data -i '+','.join(list_warp_x)+' -o '+name_warp_final+'_x.nii.gz -dim z')
        sct.run('sct_concat_data -i '+','.join(list_warp_x_inv)+' -o '+name_warp_final+'_x_inverse.nii.gz -dim z')
        sct.run('sct_concat_data -i '+','.join(list_warp_y)+' -o '+name_warp_final+'_y.nii.gz -dim z')
        sct.run('sct_concat_data -i '+','.join(list_warp_y_inv)+' -o '+name_warp_final+'_y_inverse.nii.gz -dim z')
        # concat_data(','.join(list_warp_x), name_warp_final+'_x.nii.gz', 2)
        # concat_data(','.join(list_warp_x_inv), name_warp_final+'_x_inverse.nii.gz', 2)
        # concat_data(','.join(list_warp_y), name_warp_final+'_y.nii.gz', 2)
        # concat_data(','.join(list_warp_y_inv), name_warp_final+'_y_inverse.nii.gz', 2)
        # sct.run('fslmerge -z ' + name_warp_final + '_x ' + " ".join(list_warp_x))
        # sct.run('fslmerge -z ' + name_warp_final + '_x_inverse ' + " ".join(list_warp_x_inv))
        # sct.run('fslmerge -z ' + name_warp_final + '_y ' + " ".join(list_warp_y))
        # sct.run('fslmerge -z ' + name_warp_final + '_y_inverse ' + " ".join(list_warp_y_inv))
        print'\nChange resolution of warping fields to match the resolution of the destination image...'
        from sct_copy_header import copy_header
        copy_header(fname_dest, name_warp_final + '_x.nii.gz')
        copy_header(fname_source, name_warp_final + '_x_inverse.nii.gz')
        copy_header(fname_dest, name_warp_final + '_y.nii.gz')
        copy_header(fname_source, name_warp_final + '_y_inverse.nii.gz')
        print'\nMerge translation fields along x and y into one global warping field '
        sct.run('isct_c3d ' + name_warp_final + '_x.nii.gz ' + name_warp_final + '_y.nii.gz -omc 2 ' + name_warp_final + '.nii.gz')
        sct.run('isct_c3d ' + name_warp_final + '_x_inverse.nii.gz ' + name_warp_final + '_y_inverse.nii.gz -omc 2 ' + name_warp_final + '_inverse.nii.gz')
        print'\nCopy to parent folder...'
        sct.run('cp ' + name_warp_final + '.nii.gz ../')
        sct.run('cp ' + name_warp_final + '_inverse.nii.gz ../')

    #Delete tmp folder
    os.chdir('../')
    if remove_tmp_folder:
        print('\nRemove temporary files...')
        sct.run('rm -rf '+path_tmp)
    if paramreg.algo == 'Rigid':
        return x_displacement, y_displacement, theta_rotation
    if paramreg.algo == 'Translation':
        return x_displacement, y_displacement
예제 #4
0
def dmri_moco(param):

    file_data = 'dmri'
    ext_data = '.nii'
    file_b0 = 'b0'
    file_dwi = 'dwi'
    mat_final = 'mat_final/'
    file_dwi_group = 'dwi_averaged_groups'  # no extension
    fsloutput = 'export FSLOUTPUTTYPE=NIFTI; '  # for faster processing, all outputs are in NIFTI
    ext_mat = 'Warp.nii.gz'  # warping field

    # Get dimensions of data
    sct.printv('\nGet dimensions of data...', param.verbose)
    nx, ny, nz, nt, px, py, pz, pt = Image(file_data + '.nii').dim
    sct.printv('  ' + str(nx) + ' x ' + str(ny) + ' x ' + str(nz),
               param.verbose)

    # Identify b=0 and DWI images
    sct.printv('\nIdentify b=0 and DWI images...', param.verbose)
    index_b0, index_dwi, nb_b0, nb_dwi = identify_b0('bvecs.txt',
                                                     param.fname_bvals,
                                                     param.bval_min,
                                                     param.verbose)

    # check if dmri and bvecs are the same size
    if not nb_b0 + nb_dwi == nt:
        sct.printv(
            '\nERROR in ' + os.path.basename(__file__) + ': Size of data (' +
            str(nt) + ') and size of bvecs (' + str(nb_b0 + nb_dwi) +
            ') are not the same. Check your bvecs file.\n', 1, 'error')
        sys.exit(2)

    # Prepare NIFTI (mean/groups...)
    #===================================================================================================================
    # Split into T dimension
    sct.printv('\nSplit along T dimension...', param.verbose)
    status, output = sct.run(
        'sct_split_data -i ' + file_data + ext_data + ' -dim t -suffix _T',
        param.verbose)

    # Merge b=0 images
    sct.printv('\nMerge b=0...', param.verbose)
    # cmd = fsloutput + 'fslmerge -t ' + file_b0
    # for it in range(nb_b0):
    #     cmd = cmd + ' ' + file_data + '_T' + str(index_b0[it]).zfill(4)
    cmd = 'sct_concat_data -dim t -o ' + file_b0 + ext_data + ' -i '
    for it in range(nb_b0):
        cmd = cmd + file_data + '_T' + str(
            index_b0[it]).zfill(4) + ext_data + ','
    cmd = cmd[:-1]  # remove ',' at the end of the string
    status, output = sct.run(cmd, param.verbose)
    sct.printv(('  File created: ' + file_b0), param.verbose)

    # Average b=0 images
    sct.printv('\nAverage b=0...', param.verbose)
    file_b0_mean = file_b0 + '_mean'
    sct.run(
        'sct_maths -i ' + file_b0 + '.nii' + ' -o ' + file_b0_mean + '.nii' +
        ' -mean t', param.verbose)
    # if not average_data_across_dimension(file_b0+'.nii', file_b0_mean+'.nii', 3):
    #     sct.printv('ERROR in average_data_across_dimension', 1, 'error')
    # cmd = fsloutput + 'fslmaths ' + file_b0 + ' -Tmean ' + file_b0_mean
    # status, output = sct.run(cmd, param.verbose)

    # Number of DWI groups
    nb_groups = int(math.floor(nb_dwi / param.group_size))

    # Generate groups indexes
    group_indexes = []
    for iGroup in range(nb_groups):
        group_indexes.append(index_dwi[(iGroup *
                                        param.group_size):((iGroup + 1) *
                                                           param.group_size)])

    # add the remaining images to the last DWI group
    nb_remaining = nb_dwi % param.group_size  # number of remaining images
    if nb_remaining > 0:
        nb_groups += 1
        group_indexes.append(index_dwi[len(index_dwi) -
                                       nb_remaining:len(index_dwi)])

    # DWI groups
    for iGroup in range(nb_groups):
        sct.printv('\nDWI group: ' + str((iGroup + 1)) + '/' + str(nb_groups),
                   param.verbose)

        # get index
        index_dwi_i = group_indexes[iGroup]
        nb_dwi_i = len(index_dwi_i)

        # Merge DW Images
        sct.printv('Merge DW images...', param.verbose)
        file_dwi_merge_i = file_dwi + '_' + str(iGroup)
        cmd = 'sct_concat_data -dim t -o ' + file_dwi_merge_i + ext_data + ' -i '
        for it in range(nb_dwi_i):
            cmd = cmd + file_data + '_T' + str(
                index_dwi_i[it]).zfill(4) + ext_data + ','
        cmd = cmd[:-1]  # remove ',' at the end of the string
        sct.run(cmd, param.verbose)
        # cmd = fsloutput + 'fslmerge -t ' + file_dwi_merge_i
        # for it in range(nb_dwi_i):
        #     cmd = cmd +' ' + file_data + '_T' + str(index_dwi_i[it]).zfill(4)

        # Average DW Images
        sct.printv('Average DW images...', param.verbose)
        file_dwi_mean = file_dwi + '_mean_' + str(iGroup)
        sct.run(
            'sct_maths -i ' + file_dwi_merge_i + '.nii' + ' -o ' +
            file_dwi_mean + '.nii' + ' -mean t', param.verbose)
        # if not average_data_across_dimension(file_dwi_merge_i+'.nii', file_dwi_mean+'.nii', 3):
        #     sct.printv('ERROR in average_data_across_dimension', 1, 'error')
        # cmd = fsloutput + 'fslmaths ' + file_dwi_merge_i + ' -Tmean ' + file_dwi_mean
        # sct.run(cmd, param.verbose)

    # Merge DWI groups means
    sct.printv('\nMerging DW files...', param.verbose)
    # file_dwi_groups_means_merge = 'dwi_averaged_groups'
    cmd = 'sct_concat_data -dim t -o ' + file_dwi_group + ext_data + ' -i '
    for iGroup in range(nb_groups):
        cmd = cmd + file_dwi + '_mean_' + str(iGroup) + ext_data + ','
    cmd = cmd[:-1]  # remove ',' at the end of the string
    sct.run(cmd, param.verbose)
    # cmd = fsloutput + 'fslmerge -t ' + file_dwi_group
    # for iGroup in range(nb_groups):
    #     cmd = cmd + ' ' + file_dwi + '_mean_' + str(iGroup)

    # Average DW Images
    # TODO: USEFULL ???
    sct.printv('\nAveraging all DW images...', param.verbose)
    fname_dwi_mean = 'dwi_mean'
    sct.run(
        'sct_maths -i ' + file_dwi_group + '.nii' + ' -o ' + file_dwi_group +
        '_mean.nii' + ' -mean t', param.verbose)
    # if not average_data_across_dimension(file_dwi_group+'.nii', file_dwi_group+'_mean.nii', 3):
    #     sct.printv('ERROR in average_data_across_dimension', 1, 'error')
    # sct.run(fsloutput + 'fslmaths ' + file_dwi_group + ' -Tmean ' + file_dwi_group+'_mean', param.verbose)

    # segment dwi images using otsu algorithm
    if param.otsu:
        sct.printv('\nSegment group DWI using OTSU algorithm...',
                   param.verbose)
        # import module
        otsu = importlib.import_module('sct_otsu')
        # get class from module
        param_otsu = otsu.param()  #getattr(otsu, param)
        param_otsu.fname_data = file_dwi_group + '.nii'
        param_otsu.threshold = param.otsu
        param_otsu.file_suffix = '_seg'
        # run otsu
        otsu.otsu(param_otsu)
        file_dwi_group = file_dwi_group + '_seg'

    # extract first DWI volume as target for registration
    nii = Image(file_dwi_group + '.nii')
    data_crop = nii.data[:, :, :, index_dwi[0]:index_dwi[0] + 1]
    nii.data = data_crop
    nii.setFileName('target_dwi.nii')
    nii.save()

    # START MOCO
    #===================================================================================================================

    # Estimate moco on b0 groups
    sct.printv(
        '\n-------------------------------------------------------------------------------',
        param.verbose)
    sct.printv('  Estimating motion on b=0 images...', param.verbose)
    sct.printv(
        '-------------------------------------------------------------------------------',
        param.verbose)
    param_moco = param
    param_moco.file_data = 'b0'
    if index_dwi[0] != 0:
        # If first DWI is not the first volume (most common), then there is a least one b=0 image before. In that case
        # select it as the target image for registration of all b=0
        param_moco.file_target = file_data + '_T' + str(
            index_b0[index_dwi[0] - 1]).zfill(4)
    else:
        # If first DWI is the first volume, then the target b=0 is the first b=0 from the index_b0.
        param_moco.file_target = file_data + '_T' + str(index_b0[0]).zfill(4)
    param_moco.path_out = ''
    param_moco.todo = 'estimate'
    param_moco.mat_moco = 'mat_b0groups'
    moco.moco(param_moco)

    # Estimate moco on dwi groups
    sct.printv(
        '\n-------------------------------------------------------------------------------',
        param.verbose)
    sct.printv('  Estimating motion on DW images...', param.verbose)
    sct.printv(
        '-------------------------------------------------------------------------------',
        param.verbose)
    param_moco.file_data = file_dwi_group
    param_moco.file_target = 'target_dwi'  # target is the first DW image (closest to the first b=0)
    param_moco.path_out = ''
    #param_moco.todo = 'estimate'
    param_moco.todo = 'estimate_and_apply'
    param_moco.mat_moco = 'mat_dwigroups'
    moco.moco(param_moco)

    # create final mat folder
    sct.create_folder(mat_final)

    # Copy b=0 registration matrices
    sct.printv('\nCopy b=0 registration matrices...', param.verbose)

    for it in range(nb_b0):
        sct.run(
            'cp ' + 'mat_b0groups/' + 'mat.T' + str(it) + ext_mat + ' ' +
            mat_final + 'mat.T' + str(index_b0[it]) + ext_mat, param.verbose)

    # Copy DWI registration matrices
    sct.printv('\nCopy DWI registration matrices...', param.verbose)
    for iGroup in range(nb_groups):
        for dwi in range(len(group_indexes[iGroup])):
            sct.run(
                'cp ' + 'mat_dwigroups/' + 'mat.T' + str(iGroup) + ext_mat +
                ' ' + mat_final + 'mat.T' + str(group_indexes[iGroup][dwi]) +
                ext_mat, param.verbose)

    # Spline Regularization along T
    if param.spline_fitting:
        moco.spline(mat_final, nt, nz, param.verbose, np.array(index_b0),
                    param.plot_graph)

    # combine Eddy Matrices
    if param.run_eddy:
        param.mat_2_combine = 'mat_eddy'
        param.mat_final = mat_final
        moco.combine_matrix(param)

    # Apply moco on all dmri data
    sct.printv(
        '\n-------------------------------------------------------------------------------',
        param.verbose)
    sct.printv('  Apply moco', param.verbose)
    sct.printv(
        '-------------------------------------------------------------------------------',
        param.verbose)
    param_moco.file_data = 'dmri'
    param_moco.file_target = file_dwi + '_mean_' + str(
        0)  # reference for reslicing into proper coordinate system
    param_moco.path_out = ''
    param_moco.mat_moco = mat_final
    param_moco.todo = 'apply'
    moco.moco(param_moco)

    # copy geometric information from header
    # NB: this is required because WarpImageMultiTransform in 2D mode wrongly sets pixdim(3) to "1".
    copy_header('dmri.nii', 'dmri_moco.nii')

    # generate b0_moco_mean and dwi_moco_mean
    cmd = 'sct_dmri_separate_b0_and_dwi -i dmri' + param.suffix + '.nii -b bvecs.txt -a 1'
    if not param.fname_bvals == '':
        cmd = cmd + ' -m ' + param.fname_bvals
    sct.run(cmd, param.verbose)
예제 #5
0
def create_mask():

    fsloutput = 'export FSLOUTPUTTYPE=NIFTI; '  # for faster processing, all outputs are in NIFTI

    # display usage if a mandatory argument is not provided
    if param.fname_data == '' or param.method == '':
        sct.printv('\nERROR: All mandatory arguments are not provided. See usage (add -h).\n', 1, 'error')

    # parse argument for method
    method_list = param.method.replace(' ', '').split(',')  # remove spaces and parse with comma
    # method_list = param.method.split(',')  # parse with comma
    method_type = method_list[0]

    # check existence of method type
    if not method_type in param.method_list:
        sct.printv('\nERROR in '+os.path.basename(__file__)+': Method "'+method_type+'" is not recognized. See usage (add -h).\n', 1, 'error')

    # check method val
    if not method_type == 'center':
        method_val = method_list[1]
    del method_list

    # check existence of shape
    if not param.shape in param.shape_list:
        sct.printv('\nERROR in '+os.path.basename(__file__)+': Shape "'+param.shape+'" is not recognized. See usage (add -h).\n', 1, 'error')

    # check existence of input files
    sct.printv('\ncheck existence of input files...', param.verbose)
    sct.check_file_exist(param.fname_data, param.verbose)
    if method_type == 'centerline':
        sct.check_file_exist(method_val, param.verbose)

    # check if orientation is RPI
    sct.printv('\nCheck if orientation is RPI...', param.verbose)
    status, output = sct.run('sct_orientation -i '+param.fname_data)
    if not output == 'RPI':
        sct.printv('\nERROR in '+os.path.basename(__file__)+': Orientation of input image should be RPI. Use sct_orientation to put your image in RPI.\n', 1, 'error')

    # display input parameters
    sct.printv('\nInput parameters:', param.verbose)
    sct.printv('  data ..................'+param.fname_data, param.verbose)
    sct.printv('  method ................'+method_type, param.verbose)

    # Extract path/file/extension
    path_data, file_data, ext_data = sct.extract_fname(param.fname_data)

    # Get output folder and file name
    if param.fname_out == '':
        param.fname_out = param.file_prefix+file_data+ext_data
    #fname_out = os.path.abspath(path_out+file_out+ext_out)

    # create temporary folder
    sct.printv('\nCreate temporary folder...', param.verbose)
    path_tmp = sct.slash_at_the_end('tmp.'+time.strftime("%y%m%d%H%M%S"), 1)
    sct.run('mkdir '+path_tmp, param.verbose)

    # Copying input data to tmp folder and convert to nii
    # NB: cannot use c3d here because c3d cannot convert 4D data.
    sct.printv('\nCopying input data to tmp folder and convert to nii...', param.verbose)
    convert(param.fname_data, path_tmp+'data.nii')
    # sct.run('cp '+param.fname_data+' '+path_tmp+'data'+ext_data, param.verbose)
    if method_type == 'centerline':
        convert(method_val, path_tmp+'centerline.nii.gz')
        # sct.run('isct_c3d '+method_val+' -o '+path_tmp+'/centerline.nii.gz')

    # go to tmp folder
    os.chdir(path_tmp)

    # Get dimensions of data
    sct.printv('\nGet dimensions of data...', param.verbose)
    nx, ny, nz, nt, px, py, pz, pt = Image('data.nii').dim
    sct.printv('  ' + str(nx) + ' x ' + str(ny) + ' x ' + str(nz)+ ' x ' + str(nt), param.verbose)
    # in case user input 4d data
    if nt != 1:
        sct.printv('WARNING in '+os.path.basename(__file__)+': Input image is 4d but output mask will 3D.', param.verbose, 'warning')
        # extract first volume to have 3d reference
        nii = Image('data.nii')
        data3d = nii.data[:,:,:,0]
        nii.data = data3d
        nii.save()

    if method_type == 'coord':
        # parse to get coordinate
        coord = map(int, method_val.split('x'))

    if method_type == 'point':
        # get file name
        fname_point = method_val
        # extract coordinate of point
        sct.printv('\nExtract coordinate of point...', param.verbose)
        status, output = sct.run('sct_label_utils -i '+fname_point+' -t display-voxel', param.verbose)
        # parse to get coordinate
        coord = output[output.find('Position=')+10:-17].split(',')

    if method_type == 'center':
        # set coordinate at center of FOV
        coord = round(float(nx)/2), round(float(ny)/2)

    if method_type == 'centerline':
        # get name of centerline from user argument
        fname_centerline = 'centerline.nii.gz'
    else:
        # generate volume with line along Z at coordinates 'coord'
        sct.printv('\nCreate line...', param.verbose)
        fname_centerline = create_line('data.nii', coord, nz)

    # create mask
    sct.printv('\nCreate mask...', param.verbose)
    centerline = nibabel.load(fname_centerline)  # open centerline
    hdr = centerline.get_header()  # get header
    hdr.set_data_dtype('uint8')  # set imagetype to uint8
    data_centerline = centerline.get_data()  # get centerline
    z_centerline = [iz for iz in range(0, nz, 1) if data_centerline[:, :, iz].any()]
    nz = len(z_centerline)
    # get center of mass of the centerline
    cx = [0] * nz
    cy = [0] * nz
    for iz in range(0, nz, 1):
        cx[iz], cy[iz] = ndimage.measurements.center_of_mass(numpy.array(data_centerline[:, :, z_centerline[iz]]))
    # create 2d masks
    file_mask = 'data_mask'
    for iz in range(nz):
        center = numpy.array([cx[iz], cy[iz]])
        mask2d = create_mask2d(center, param.shape, param.size, nx, ny)
        # Write NIFTI volumes
        img = nibabel.Nifti1Image(mask2d, None, hdr)
        nibabel.save(img, (file_mask+str(iz)+'.nii'))
    # merge along Z
    # cmd = 'fslmerge -z mask '
    cmd = 'sct_concat_data -dim z -o mask.nii.gz -i '
    for iz in range(nz):
        cmd = cmd + file_mask+str(iz)+'.nii,'
    # remove ',' at the end of the string
    cmd = cmd[:-1]
    status, output = sct.run(cmd, param.verbose)

    # copy geometry
    copy_header('data.nii', 'mask.nii.gz')

    # come back to parent folder
    os.chdir('..')

    # Generate output files
    sct.printv('\nGenerate output files...', param.verbose)
    sct.generate_output_file(path_tmp+'mask.nii.gz', param.fname_out)

    # Remove temporary files
    if param.remove_tmp_files == 1:
        sct.printv('\nRemove temporary files...', param.verbose)
        sct.run('rm -rf '+path_tmp, param.verbose)

    # to view results
    sct.printv('\nDone! To view results, type:', param.verbose)
    sct.printv('fslview '+param.fname_data+' '+param.fname_out+' -l Red -t 0.5 &', param.verbose, 'info')
    print
예제 #6
0
def fmri_moco(param):

    file_data = 'fmri'
    ext_data = '.nii'
    mat_final = 'mat_final/'
    fsloutput = 'export FSLOUTPUTTYPE=NIFTI; '  # for faster processing, all outputs are in NIFTI
    ext_mat = 'Warp.nii.gz'  # warping field

    # Get dimensions of data
    sct.printv('\nGet dimensions of data...', param.verbose)
    nx, ny, nz, nt, px, py, pz, pt = Image(file_data+'.nii').dim
    sct.printv('  ' + str(nx) + ' x ' + str(ny) + ' x ' + str(nz) + ' x ' + str(nt), param.verbose)

    # Split into T dimension
    sct.printv('\nSplit along T dimension...', param.verbose)
    status, output = sct.run('sct_split_data -i ' + file_data + ext_data + ' -dim t -suffix _T', param.verbose)

    # assign an index to each volume
    index_fmri = range(0, nt)

    # Number of groups
    nb_groups = int(math.floor(nt/param.group_size))

    # Generate groups indexes
    group_indexes = []
    for iGroup in range(nb_groups):
        group_indexes.append(index_fmri[(iGroup*param.group_size):((iGroup+1)*param.group_size)])

    # add the remaining images to the last DWI group
    nb_remaining = nt%param.group_size  # number of remaining images
    if nb_remaining > 0:
        nb_groups += 1
        group_indexes.append(index_fmri[len(index_fmri)-nb_remaining:len(index_fmri)])

    # groups
    for iGroup in range(nb_groups):
        sct.printv('\nGroup: ' +str((iGroup+1))+'/'+str(nb_groups), param.verbose)

        # get index
        index_fmri_i = group_indexes[iGroup]
        nt_i = len(index_fmri_i)

        # Merge Images
        sct.printv('Merge consecutive volumes...', param.verbose)
        file_data_merge_i = file_data + '_' + str(iGroup)
        # cmd = fsloutput + 'fslmerge -t ' + file_data_merge_i
        # for it in range(nt_i):
        #     cmd = cmd + ' ' + file_data + '_T' + str(index_fmri_i[it]).zfill(4)
        cmd = 'sct_concat_data -dim t -o ' + file_data_merge_i + ext_data + ' -i '
        for it in range(nt_i):
            cmd = cmd + file_data + '_T' + str(index_fmri_i[it]).zfill(4) + ext_data + ','
        cmd = cmd[:-1]  # remove ',' at the end of the string
        sct.run(cmd, param.verbose)

        # Average Images
        sct.printv('Average volumes...', param.verbose)
        file_data_mean = file_data + '_mean_' + str(iGroup)
        sct.run('sct_maths -i '+file_data_merge_i+'.nii -o '+file_data_mean+'.nii -mean t')
        # if not average_data_across_dimension(file_data_merge_i+'.nii', file_data_mean+'.nii', 3):
        #     sct.printv('ERROR in average_data_across_dimension', 1, 'error')
        # cmd = fsloutput + 'fslmaths ' + file_data_merge_i + ' -Tmean ' + file_data_mean
        # sct.run(cmd, param.verbose)

    # Merge groups means
    sct.printv('\nMerging volumes...', param.verbose)
    file_data_groups_means_merge = 'fmri_averaged_groups'
    # cmd = fsloutput + 'fslmerge -t ' + file_data_groups_means_merge
    # for iGroup in range(nb_groups):
    #     cmd = cmd + ' ' + file_data + '_mean_' + str(iGroup)
    cmd = 'sct_concat_data -dim t -o ' + file_data_groups_means_merge + ext_data + ' -i '
    for iGroup in range(nb_groups):
        cmd = cmd + file_data + '_mean_' + str(iGroup) + ext_data + ','
    cmd = cmd[:-1]  # remove ',' at the end of the string
    sct.run(cmd, param.verbose)

    # Estimate moco on dwi groups
    sct.printv('\n-------------------------------------------------------------------------------', param.verbose)
    sct.printv('  Estimating motion...', param.verbose)
    sct.printv('-------------------------------------------------------------------------------', param.verbose)
    param_moco = param
    param_moco.file_data = 'fmri_averaged_groups'
    param_moco.file_target = file_data + '_mean_' + str(param.num_target)
    param_moco.path_out = ''
    param_moco.todo = 'estimate_and_apply'
    param_moco.mat_moco = 'mat_groups'
    moco.moco(param_moco)

    # create final mat folder
    sct.create_folder(mat_final)

    # Copy registration matrices
    sct.printv('\nCopy transformations...', param.verbose)
    for iGroup in range(nb_groups):
        for data in range(len(group_indexes[iGroup])):
            # if param.slicewise:
            #     for iz in range(nz):
            #         sct.run('cp '+'mat_dwigroups/'+'mat.T'+str(iGroup)+'_Z'+str(iz)+ext_mat+' '+mat_final+'mat.T'+str(group_indexes[iGroup][dwi])+'_Z'+str(iz)+ext_mat, param.verbose)
            # else:
            sct.run('cp '+'mat_groups/'+'mat.T'+str(iGroup)+ext_mat+' '+mat_final+'mat.T'+str(group_indexes[iGroup][data])+ext_mat, param.verbose)

    # Apply moco on all fmri data
    sct.printv('\n-------------------------------------------------------------------------------', param.verbose)
    sct.printv('  Apply moco', param.verbose)
    sct.printv('-------------------------------------------------------------------------------', param.verbose)
    param_moco.file_data = 'fmri'
    param_moco.file_target = file_data+'_mean_'+str(0)
    param_moco.path_out = ''
    param_moco.mat_moco = mat_final
    param_moco.todo = 'apply'
    moco.moco(param_moco)

    # copy geometric information from header
    # NB: this is required because WarpImageMultiTransform in 2D mode wrongly sets pixdim(3) to "1".
    copy_header('fmri.nii', 'fmri_moco.nii')

    # Average volumes
    sct.printv('\nAveraging data...', param.verbose)
    sct.run('sct_maths -i fmri_moco.nii -o fmri_moco_mean.nii -mean t')
def main():

    # Initialization
    fname_anat = ''
    fname_point = ''
    slice_gap = param.gap
    remove_tmp_files = param.remove_tmp_files
    gaussian_kernel = param.gaussian_kernel
    start_time = time.time()
    verbose = 1

    # get path of the toolbox
    status, path_sct = commands.getstatusoutput('echo $SCT_DIR')
    path_sct = sct.slash_at_the_end(path_sct, 1)

    # Parameters for debug mode
    if param.debug == 1:
        sct.printv('\n*** WARNING: DEBUG MODE ON ***\n\t\t\tCurrent working directory: '+os.getcwd(), 'warning')
        status, path_sct_testing_data = commands.getstatusoutput('echo $SCT_TESTING_DATA_DIR')
        fname_anat = path_sct_testing_data+'/t2/t2.nii.gz'
        fname_point = path_sct_testing_data+'/t2/t2_centerline_init.nii.gz'
        slice_gap = 5

    else:
        # Check input param
        try:
            opts, args = getopt.getopt(sys.argv[1:],'hi:p:g:r:k:')
        except getopt.GetoptError as err:
            print str(err)
            usage()
        if not opts:
            usage()
        for opt, arg in opts:
            if opt == '-h':
                usage()
            elif opt in ('-i'):
                fname_anat = arg
            elif opt in ('-p'):
                fname_point = arg
            elif opt in ('-g'):
                slice_gap = int(arg)
            elif opt in ('-r'):
                remove_tmp_files = int(arg)
            elif opt in ('-k'):
                gaussian_kernel = int(arg)

    # display usage if a mandatory argument is not provided
    if fname_anat == '' or fname_point == '':
        usage()

    # check existence of input files
    sct.check_file_exist(fname_anat)
    sct.check_file_exist(fname_point)

    # extract path/file/extension
    path_anat, file_anat, ext_anat = sct.extract_fname(fname_anat)
    path_point, file_point, ext_point = sct.extract_fname(fname_point)

    # extract path of schedule file
    # TODO: include schedule file in sct
    # TODO: check existence of schedule file
    file_schedule = path_sct + param.schedule_file

    # Get input image orientation
    input_image_orientation = get_orientation(fname_anat)

    # Display arguments
    print '\nCheck input arguments...'
    print '  Anatomical image:     '+fname_anat
    print '  Orientation:          '+input_image_orientation
    print '  Point in spinal cord: '+fname_point
    print '  Slice gap:            '+str(slice_gap)
    print '  Gaussian kernel:      '+str(gaussian_kernel)
    print '  Degree of polynomial: '+str(param.deg_poly)

    # create temporary folder
    print('\nCreate temporary folder...')
    path_tmp = 'tmp.'+time.strftime("%y%m%d%H%M%S")
    sct.create_folder(path_tmp)
    print '\nCopy input data...'
    sct.run('cp '+fname_anat+ ' '+path_tmp+'/tmp.anat'+ext_anat)
    sct.run('cp '+fname_point+ ' '+path_tmp+'/tmp.point'+ext_point)

    # go to temporary folder
    os.chdir(path_tmp)

    # convert to nii
    convert('tmp.anat'+ext_anat, 'tmp.anat.nii')
    convert('tmp.point'+ext_point, 'tmp.point.nii')

    # Reorient input anatomical volume into RL PA IS orientation
    print '\nReorient input volume to RL PA IS orientation...'
    #sct.run(sct.fsloutput + 'fslswapdim tmp.anat RL PA IS tmp.anat_orient')
    set_orientation('tmp.anat.nii', 'RPI', 'tmp.anat_orient.nii')
    # Reorient binary point into RL PA IS orientation
    print '\nReorient binary point into RL PA IS orientation...'
    # sct.run(sct.fsloutput + 'fslswapdim tmp.point RL PA IS tmp.point_orient')
    set_orientation('tmp.point.nii', 'RPI', 'tmp.point_orient.nii')

    # Get image dimensions
    print '\nGet image dimensions...'
    nx, ny, nz, nt, px, py, pz, pt = Image('tmp.anat_orient.nii').dim
    print '.. matrix size: '+str(nx)+' x '+str(ny)+' x '+str(nz)
    print '.. voxel size:  '+str(px)+'mm x '+str(py)+'mm x '+str(pz)+'mm'

    # Split input volume
    print '\nSplit input volume...'
    split_data('tmp.anat_orient.nii', 2, '_z')
    file_anat_split = ['tmp.anat_orient_z'+str(z).zfill(4) for z in range(0, nz, 1)]
    split_data('tmp.point_orient.nii', 2, '_z')
    file_point_split = ['tmp.point_orient_z'+str(z).zfill(4) for z in range(0, nz, 1)]

    # Extract coordinates of input point
    # sct.printv('\nExtract the slice corresponding to z='+str(z_init)+'...', verbose)
    #
    data_point = Image('tmp.point_orient.nii').data
    x_init, y_init, z_init = unravel_index(data_point.argmax(), data_point.shape)
    sct.printv('Coordinates of input point: ('+str(x_init)+', '+str(y_init)+', '+str(z_init)+')', verbose)

    # Create 2D gaussian mask
    sct.printv('\nCreate gaussian mask from point...', verbose)
    xx, yy = mgrid[:nx, :ny]
    mask2d = zeros((nx, ny))
    radius = round(float(gaussian_kernel+1)/2)  # add 1 because the radius includes the center.
    sigma = float(radius)
    mask2d = exp(-(((xx-x_init)**2)/(2*(sigma**2)) + ((yy-y_init)**2)/(2*(sigma**2))))

    # Save mask to 2d file
    file_mask_split = ['tmp.mask_orient_z'+str(z).zfill(4) for z in range(0,nz,1)]
    nii_mask2d = Image('tmp.anat_orient_z0000.nii')
    nii_mask2d.data = mask2d
    nii_mask2d.setFileName(file_mask_split[z_init]+'.nii')
    nii_mask2d.save()
    #
    # # Get the coordinates of the input point
    # print '\nGet the coordinates of the input point...'
    # data_point = Image('tmp.point_orient.nii').data
    # x_init, y_init, z_init = unravel_index(data_point.argmax(), data_point.shape)
    # print '('+str(x_init)+', '+str(y_init)+', '+str(z_init)+')'

    # x_init, y_init, z_init = (data > 0).nonzero()
    # x_init = x_init[0]
    # y_init = y_init[0]
    # z_init = z_init[0]
    # print '('+str(x_init)+', '+str(y_init)+', '+str(z_init)+')'
    #
    # numpy.unravel_index(a.argmax(), a.shape)
    #
    # file = nibabel.load('tmp.point_orient.nii')
    # data = file.get_data()
    # x_init, y_init, z_init = (data > 0).nonzero()
    # x_init = x_init[0]
    # y_init = y_init[0]
    # z_init = z_init[0]
    # print '('+str(x_init)+', '+str(y_init)+', '+str(z_init)+')'
    #
    # # Extract the slice corresponding to z=z_init
    # print '\nExtract the slice corresponding to z='+str(z_init)+'...'
    # file_point_split = ['tmp.point_orient_z'+str(z).zfill(4) for z in range(0,nz,1)]
    # nii = Image('tmp.point_orient.nii')
    # data_crop = nii.data[:, :, z_init:z_init+1]
    # nii.data = data_crop
    # nii.setFileName(file_point_split[z_init]+'.nii')
    # nii.save()
    #
    # # Create gaussian mask from point
    # print '\nCreate gaussian mask from point...'
    # file_mask_split = ['tmp.mask_orient_z'+str(z).zfill(4) for z in range(0,nz,1)]
    # sct.run(sct.fsloutput+'fslmaths '+file_point_split[z_init]+' -s '+str(gaussian_kernel)+' '+file_mask_split[z_init])
    #
    # # Obtain max value from mask
    # print '\nFind maximum value from mask...'
    # file = nibabel.load(file_mask_split[z_init]+'.nii')
    # data = file.get_data()
    # max_value_mask = numpy.max(data)
    # print '..'+str(max_value_mask)
    #
    # # Normalize mask beween 0 and 1
    # print '\nNormalize mask beween 0 and 1...'
    # sct.run(sct.fsloutput+'fslmaths '+file_mask_split[z_init]+' -div '+str(max_value_mask)+' '+file_mask_split[z_init])

    ## Take the square of the mask
    #print '\nCalculate the square of the mask...'
    #sct.run(sct.fsloutput+'fslmaths '+file_mask_split[z_init]+' -mul '+file_mask_split[z_init]+' '+file_mask_split[z_init])

    # initialize variables
    file_mat = ['tmp.mat_z'+str(z).zfill(4) for z in range(0,nz,1)]
    file_mat_inv = ['tmp.mat_inv_z'+str(z).zfill(4) for z in range(0,nz,1)]
    file_mat_inv_cumul = ['tmp.mat_inv_cumul_z'+str(z).zfill(4) for z in range(0,nz,1)]

    # create identity matrix for initial transformation matrix
    fid = open(file_mat_inv_cumul[z_init], 'w')
    fid.write('%i %i %i %i\n' %(1, 0, 0, 0) )
    fid.write('%i %i %i %i\n' %(0, 1, 0, 0) )
    fid.write('%i %i %i %i\n' %(0, 0, 1, 0) )
    fid.write('%i %i %i %i\n' %(0, 0, 0, 1) )
    fid.close()

    # initialize centerline: give value corresponding to initial point
    x_centerline = [x_init]
    y_centerline = [y_init]
    z_centerline = [z_init]
    warning_count = 0

    # go up (1), then down (2) in reference to the binary point
    for iUpDown in range(1, 3):

        if iUpDown == 1:
            # z increases
            slice_gap_signed = slice_gap
        elif iUpDown == 2:
            # z decreases
            slice_gap_signed = -slice_gap
            # reverse centerline (because values will be appended at the end)
            x_centerline.reverse()
            y_centerline.reverse()
            z_centerline.reverse()

        # initialization before looping
        z_dest = z_init # point given by user
        z_src = z_dest + slice_gap_signed

        # continue looping if 0 < z < nz
        while 0 <= z_src and z_src <= nz-1:

            # print current z:
            print 'z='+str(z_src)+':'

            # estimate transformation
            sct.run(fsloutput+'flirt -in '+file_anat_split[z_src]+' -ref '+file_anat_split[z_dest]+' -schedule '+file_schedule+ ' -verbose 0 -omat '+file_mat[z_src]+' -cost normcorr -forcescaling -inweight '+file_mask_split[z_dest]+' -refweight '+file_mask_split[z_dest])

            # display transfo
            status, output = sct.run('cat '+file_mat[z_src])
            print output

            # check if transformation is bigger than 1.5x slice_gap
            tx = float(output.split()[3])
            ty = float(output.split()[7])
            norm_txy = linalg.norm([tx, ty],ord=2)
            if norm_txy > 1.5*slice_gap:
                print 'WARNING: Transformation is too large --> using previous one.'
                warning_count = warning_count + 1
                # if previous transformation exists, replace current one with previous one
                if os.path.isfile(file_mat[z_dest]):
                    sct.run('cp '+file_mat[z_dest]+' '+file_mat[z_src])

            # estimate inverse transformation matrix
            sct.run('convert_xfm -omat '+file_mat_inv[z_src]+' -inverse '+file_mat[z_src])

            # compute cumulative transformation
            sct.run('convert_xfm -omat '+file_mat_inv_cumul[z_src]+' -concat '+file_mat_inv[z_src]+' '+file_mat_inv_cumul[z_dest])

            # apply inverse cumulative transformation to initial gaussian mask (to put it in src space)
            sct.run(fsloutput+'flirt -in '+file_mask_split[z_init]+' -ref '+file_mask_split[z_init]+' -applyxfm -init '+file_mat_inv_cumul[z_src]+' -out '+file_mask_split[z_src])

            # open inverse cumulative transformation file and generate centerline
            fid = open(file_mat_inv_cumul[z_src])
            mat = fid.read().split()
            x_centerline.append(x_init + float(mat[3]))
            y_centerline.append(y_init + float(mat[7]))
            z_centerline.append(z_src)
            #z_index = z_index+1

            # define new z_dest (target slice) and new z_src (moving slice)
            z_dest = z_dest + slice_gap_signed
            z_src = z_src + slice_gap_signed


    # Reconstruct centerline
    # ====================================================================================================

    # reverse back centerline (because it's been reversed once, so now all values are in the right order)
    x_centerline.reverse()
    y_centerline.reverse()
    z_centerline.reverse()

    # fit centerline in the Z-X plane using polynomial function
    print '\nFit centerline in the Z-X plane using polynomial function...'
    coeffsx = polyfit(z_centerline, x_centerline, deg=param.deg_poly)
    polyx = poly1d(coeffsx)
    x_centerline_fit = polyval(polyx, z_centerline)
    # calculate RMSE
    rmse = linalg.norm(x_centerline_fit-x_centerline)/sqrt( len(x_centerline) )
    # calculate max absolute error
    max_abs = max( abs(x_centerline_fit-x_centerline) )
    print '.. RMSE (in mm): '+str(rmse*px)
    print '.. Maximum absolute error (in mm): '+str(max_abs*px)

    # fit centerline in the Z-Y plane using polynomial function
    print '\nFit centerline in the Z-Y plane using polynomial function...'
    coeffsy = polyfit(z_centerline, y_centerline, deg=param.deg_poly)
    polyy = poly1d(coeffsy)
    y_centerline_fit = polyval(polyy, z_centerline)
    # calculate RMSE
    rmse = linalg.norm(y_centerline_fit-y_centerline)/sqrt( len(y_centerline) )
    # calculate max absolute error
    max_abs = max( abs(y_centerline_fit-y_centerline) )
    print '.. RMSE (in mm): '+str(rmse*py)
    print '.. Maximum absolute error (in mm): '+str(max_abs*py)

    # display
    if param.debug == 1:
        import matplotlib.pyplot as plt
        plt.figure()
        plt.plot(z_centerline,x_centerline,'.',z_centerline,x_centerline_fit,'r')
        plt.legend(['Data','Polynomial Fit'])
        plt.title('Z-X plane polynomial interpolation')
        plt.show()

        plt.figure()
        plt.plot(z_centerline,y_centerline,'.',z_centerline,y_centerline_fit,'r')
        plt.legend(['Data','Polynomial Fit'])
        plt.title('Z-Y plane polynomial interpolation')
        plt.show()

    # generate full range z-values for centerline
    z_centerline_full = [iz for iz in range(0, nz, 1)]

    # calculate X and Y values for the full centerline
    x_centerline_fit_full = polyval(polyx, z_centerline_full)
    y_centerline_fit_full = polyval(polyy, z_centerline_full)

    # Generate fitted transformation matrices and write centerline coordinates in text file
    print '\nGenerate fitted transformation matrices and write centerline coordinates in text file...'
    file_mat_inv_cumul_fit = ['tmp.mat_inv_cumul_fit_z'+str(z).zfill(4) for z in range(0,nz,1)]
    file_mat_cumul_fit = ['tmp.mat_cumul_fit_z'+str(z).zfill(4) for z in range(0,nz,1)]
    fid_centerline = open('tmp.centerline_coordinates.txt', 'w')
    for iz in range(0, nz, 1):
        # compute inverse cumulative fitted transformation matrix
        fid = open(file_mat_inv_cumul_fit[iz], 'w')
        fid.write('%i %i %i %f\n' %(1, 0, 0, x_centerline_fit_full[iz]-x_init) )
        fid.write('%i %i %i %f\n' %(0, 1, 0, y_centerline_fit_full[iz]-y_init) )
        fid.write('%i %i %i %i\n' %(0, 0, 1, 0) )
        fid.write('%i %i %i %i\n' %(0, 0, 0, 1) )
        fid.close()
        # compute forward cumulative fitted transformation matrix
        sct.run('convert_xfm -omat '+file_mat_cumul_fit[iz]+' -inverse '+file_mat_inv_cumul_fit[iz])
        # write centerline coordinates in x, y, z format
        fid_centerline.write('%f %f %f\n' %(x_centerline_fit_full[iz], y_centerline_fit_full[iz], z_centerline_full[iz]) )
    fid_centerline.close()


    # Prepare output data
    # ====================================================================================================

    # write centerline as text file
    for iz in range(0, nz, 1):
        # compute inverse cumulative fitted transformation matrix
        fid = open(file_mat_inv_cumul_fit[iz], 'w')
        fid.write('%i %i %i %f\n' %(1, 0, 0, x_centerline_fit_full[iz]-x_init) )
        fid.write('%i %i %i %f\n' %(0, 1, 0, y_centerline_fit_full[iz]-y_init) )
        fid.write('%i %i %i %i\n' %(0, 0, 1, 0) )
        fid.write('%i %i %i %i\n' %(0, 0, 0, 1) )
        fid.close()

    # write polynomial coefficients
    savetxt('tmp.centerline_polycoeffs_x.txt',coeffsx)
    savetxt('tmp.centerline_polycoeffs_y.txt',coeffsy)

    # apply transformations to data
    print '\nApply fitted transformation matrices...'
    file_anat_split_fit = ['tmp.anat_orient_fit_z'+str(z).zfill(4) for z in range(0,nz,1)]
    file_mask_split_fit = ['tmp.mask_orient_fit_z'+str(z).zfill(4) for z in range(0,nz,1)]
    file_point_split_fit = ['tmp.point_orient_fit_z'+str(z).zfill(4) for z in range(0,nz,1)]
    for iz in range(0, nz, 1):
        # forward cumulative transformation to data
        sct.run(fsloutput+'flirt -in '+file_anat_split[iz]+' -ref '+file_anat_split[iz]+' -applyxfm -init '+file_mat_cumul_fit[iz]+' -out '+file_anat_split_fit[iz])
        # inverse cumulative transformation to mask
        sct.run(fsloutput+'flirt -in '+file_mask_split[z_init]+' -ref '+file_mask_split[z_init]+' -applyxfm -init '+file_mat_inv_cumul_fit[iz]+' -out '+file_mask_split_fit[iz])
        # inverse cumulative transformation to point
        sct.run(fsloutput+'flirt -in '+file_point_split[z_init]+' -ref '+file_point_split[z_init]+' -applyxfm -init '+file_mat_inv_cumul_fit[iz]+' -out '+file_point_split_fit[iz]+' -interp nearestneighbour')

    # Merge into 4D volume
    print '\nMerge into 4D volume...'
    # sct.run(fsloutput+'fslmerge -z tmp.anat_orient_fit tmp.anat_orient_fit_z*')
    # sct.run(fsloutput+'fslmerge -z tmp.mask_orient_fit tmp.mask_orient_fit_z*')
    # sct.run(fsloutput+'fslmerge -z tmp.point_orient_fit tmp.point_orient_fit_z*')
    concat_data(glob.glob('tmp.anat_orient_fit_z*.nii'), 'tmp.anat_orient_fit.nii', dim=2)
    concat_data(glob.glob('tmp.mask_orient_fit_z*.nii'), 'tmp.mask_orient_fit.nii', dim=2)
    concat_data(glob.glob('tmp.point_orient_fit_z*.nii'), 'tmp.point_orient_fit.nii', dim=2)

    # Copy header geometry from input data
    print '\nCopy header geometry from input data...'
    copy_header('tmp.anat_orient.nii', 'tmp.anat_orient_fit.nii')
    copy_header('tmp.anat_orient.nii', 'tmp.mask_orient_fit.nii')
    copy_header('tmp.anat_orient.nii', 'tmp.point_orient_fit.nii')

    # Reorient outputs into the initial orientation of the input image
    print '\nReorient the centerline into the initial orientation of the input image...'
    set_orientation('tmp.point_orient_fit.nii', input_image_orientation, 'tmp.point_orient_fit.nii')
    set_orientation('tmp.mask_orient_fit.nii', input_image_orientation, 'tmp.mask_orient_fit.nii')

    # Generate output file (in current folder)
    print '\nGenerate output file (in current folder)...'
    os.chdir('..')  # come back to parent folder
    #sct.generate_output_file('tmp.centerline_polycoeffs_x.txt','./','centerline_polycoeffs_x','.txt')
    #sct.generate_output_file('tmp.centerline_polycoeffs_y.txt','./','centerline_polycoeffs_y','.txt')
    #sct.generate_output_file('tmp.centerline_coordinates.txt','./','centerline_coordinates','.txt')
    #sct.generate_output_file('tmp.anat_orient.nii','./',file_anat+'_rpi',ext_anat)
    #sct.generate_output_file('tmp.anat_orient_fit.nii', file_anat+'_rpi_align'+ext_anat)
    #sct.generate_output_file('tmp.mask_orient_fit.nii', file_anat+'_mask'+ext_anat)
    fname_output_centerline = sct.generate_output_file(path_tmp+'/tmp.point_orient_fit.nii', file_anat+'_centerline'+ext_anat)

    # Delete temporary files
    if remove_tmp_files == 1:
        print '\nRemove temporary files...'
        sct.run('rm -rf '+path_tmp)

    # print number of warnings
    print '\nNumber of warnings: '+str(warning_count)+' (if >10, you should probably reduce the gap and/or increase the kernel size'

    # display elapsed time
    elapsed_time = time.time() - start_time
    print '\nFinished! \n\tGenerated file: '+fname_output_centerline+'\n\tElapsed time: '+str(int(round(elapsed_time)))+'s\n'
def register_images(
        fname_source,
        fname_dest,
        mask='',
        paramreg=Paramreg(step='0',
                          type='im',
                          algo='Translation',
                          metric='MI',
                          iter='5',
                          shrink='1',
                          smooth='0',
                          gradStep='0.5'),
        ants_registration_params={
            'rigid': '',
            'affine': '',
            'compositeaffine': '',
            'similarity': '',
            'translation': '',
            'bspline': ',10',
            'gaussiandisplacementfield': ',3,0',
            'bsplinedisplacementfield': ',5,10',
            'syn': ',3,0',
            'bsplinesyn': ',1,3'
        },
        remove_tmp_folder=1):
    """Slice-by-slice registration of two images.

    We first split the 3D images into 2D images (and the mask if inputted). Then we register slices of the two images
    that physically correspond to one another looking at the physical origin of each image. The images can be of
    different sizes but the destination image must be smaller thant the input image. We do that using antsRegistration
    in 2D. Once this has been done for each slices, we gather the results and return them.
    Algorithms implemented: translation, rigid, affine, syn and BsplineSyn.
    N.B.: If the mask is inputted, it must also be 3D and it must be in the same space as the destination image.

    input:
        fname_source: name of moving image (type: string)
        fname_dest: name of fixed image (type: string)
        mask[optional]: name of mask file (type: string) (parameter -x of antsRegistration)
        paramreg[optional]: parameters of antsRegistration (type: Paramreg class from sct_register_multimodal)
        ants_registration_params[optional]: specific algorithm's parameters for antsRegistration (type: dictionary)

    output:
        if algo==translation:
            x_displacement: list of translation along x axis for each slice (type: list)
            y_displacement: list of translation along y axis for each slice (type: list)
        if algo==rigid:
            x_displacement: list of translation along x axis for each slice (type: list)
            y_displacement: list of translation along y axis for each slice (type: list)
            theta_rotation: list of rotation angle in radian (and in ITK's coordinate system) for each slice (type: list)
        if algo==affine or algo==syn or algo==bsplinesyn:
            creation of two 3D warping fields (forward and inverse) that are the concatenations of the slice-by-slice
            warps.
    """
    # Extracting names
    path_i, root_i, ext_i = sct.extract_fname(fname_source)
    path_d, root_d, ext_d = sct.extract_fname(fname_dest)

    # set metricSize
    if paramreg.metric == 'MI':
        metricSize = '32'  # corresponds to number of bins
    else:
        metricSize = '4'  # corresponds to radius (for CC, MeanSquares...)

    # Get image dimensions and retrieve nz
    print '\nGet image dimensions of destination image...'
    nx, ny, nz, nt, px, py, pz, pt = Image(fname_dest).dim
    print '.. matrix size: ' + str(nx) + ' x ' + str(ny) + ' x ' + str(nz)
    print '.. voxel size:  ' + str(px) + 'mm x ' + str(py) + 'mm x ' + str(
        pz) + 'mm'

    # Define x and y displacement as list
    x_displacement = [0 for i in range(nz)]
    y_displacement = [0 for i in range(nz)]
    theta_rotation = [0 for i in range(nz)]

    # create temporary folder
    print('\nCreate temporary folder...')
    path_tmp = 'tmp.' + time.strftime("%y%m%d%H%M%S")
    sct.create_folder(path_tmp)
    print '\nCopy input data...'
    sct.run('cp ' + fname_source + ' ' + path_tmp + '/' + root_i + ext_i)
    sct.run('cp ' + fname_dest + ' ' + path_tmp + '/' + root_d + ext_d)
    if mask:
        sct.run('cp ' + mask + ' ' + path_tmp + '/mask.nii.gz')

    # go to temporary folder
    os.chdir(path_tmp)

    # Split input volume along z
    print '\nSplit input volume...'
    from sct_split_data import split_data
    split_data(fname_source, 2, '_z')

    # Split destination volume along z
    print '\nSplit destination volume...'
    split_data(fname_dest, 2, '_z')

    # Split mask volume along z
    if mask:
        print '\nSplit mask volume...'
        split_data('mask.nii.gz', 2, '_z')

    im_dest_img = Image(fname_dest)
    im_input_img = Image(fname_source)
    coord_origin_dest = im_dest_img.transfo_pix2phys([[0, 0, 0]])
    coord_origin_input = im_input_img.transfo_pix2phys([[0, 0, 0]])
    coord_diff_origin = (asarray(coord_origin_dest[0]) -
                         asarray(coord_origin_input[0])).tolist()
    [x_o, y_o, z_o] = [
        coord_diff_origin[0] * 1.0 / px, coord_diff_origin[1] * 1.0 / py,
        coord_diff_origin[2] * 1.0 / pz
    ]

    if paramreg.algo == 'BSplineSyN' or paramreg.algo == 'SyN' or paramreg.algo == 'Affine':
        list_warp_x = []
        list_warp_x_inv = []
        list_warp_y = []
        list_warp_y_inv = []
        name_warp_final = 'Warp_total'  #if modified, name should also be modified in msct_register (algo slicereg2d_bsplinesyn and slicereg2d_syn)

    # loop across slices
    for i in range(nz):
        # set masking
        num = numerotation(i)
        num_2 = numerotation(int(num) + int(z_o))
        if mask:
            masking = '-x mask_z' + num + '.nii'
        else:
            masking = ''

        cmd = (
            'isct_antsRegistration '
            '--dimensionality 2 '
            '--transform ' + paramreg.algo + '[' + str(paramreg.gradStep) +
            ants_registration_params[paramreg.algo.lower()] + '] '
            '--metric ' + paramreg.metric + '[' + root_d + '_z' + num +
            '.nii' + ',' + root_i + '_z' + num_2 + '.nii' + ',1,' +
            metricSize +
            '] '  #[fixedImage,movingImage,metricWeight +nb_of_bins (MI) or radius (other)
            '--convergence ' + str(paramreg.iter) + ' '
            '--shrink-factors ' + str(paramreg.shrink) + ' '
            '--smoothing-sigmas ' + str(paramreg.smooth) + 'mm '
            #'--restrict-deformation 1x1x0 '    # how to restrict? should not restrict here, if transform is precised...?
            '--output [transform_' + num + ',' + root_i + '_z' + num_2 +
            'reg.nii] '  #--> file.mat (contains Tx,Ty, theta)
            '--interpolation BSpline[3] ' + masking)

        try:
            sct.run(cmd)

            if paramreg.algo == 'Rigid' or paramreg.algo == 'Translation':
                f = 'transform_' + num + '0GenericAffine.mat'
                matfile = loadmat(f, struct_as_record=True)
                array_transfo = matfile['AffineTransform_double_2_2']
                x_displacement[i] = array_transfo[4][
                    0]  # Tx in ITK'S coordinate system
                y_displacement[i] = array_transfo[5][
                    0]  # Ty  in ITK'S and fslview's coordinate systems
                theta_rotation[i] = asin(
                    array_transfo[2]
                )  # angle of rotation theta in ITK'S coordinate system (minus theta for fslview)

            if paramreg.algo == 'Affine':
                # New process added for generating total nifti warping field from mat warp
                name_dest = root_d + '_z' + num + '.nii'
                name_reg = root_i + '_z' + num + 'reg.nii'
                name_output_warp = 'warp_from_mat_' + num_2 + '.nii.gz'
                name_output_warp_inverse = 'warp_from_mat_' + num + '_inverse.nii.gz'
                name_warp_null = 'warp_null_' + num + '.nii.gz'
                name_warp_null_dest = 'warp_null_dest' + num + '.nii.gz'
                name_warp_mat = 'transform_' + num + '0GenericAffine.mat'
                # Generating null nifti warping fields
                nx, ny, nz, nt, px, py, pz, pt = Image(name_reg).dim
                nx_d, ny_d, nz_d, nt_d, px_d, py_d, pz_d, pt_d = Image(
                    name_dest).dim
                x_trans = [0 for i in range(nz)]
                x_trans_d = [0 for i in range(nz_d)]
                y_trans = [0 for i in range(nz)]
                y_trans_d = [0 for i in range(nz_d)]
                generate_warping_field(name_reg,
                                       x_trans=x_trans,
                                       y_trans=y_trans,
                                       fname=name_warp_null,
                                       verbose=0)
                generate_warping_field(name_dest,
                                       x_trans=x_trans_d,
                                       y_trans=y_trans_d,
                                       fname=name_warp_null_dest,
                                       verbose=0)
                # Concatenating mat wrp and null nifti warp to obtain equivalent nifti warp to mat warp
                sct.run('isct_ComposeMultiTransform 2 ' + name_output_warp +
                        ' -R ' + name_reg + ' ' + name_warp_null + ' ' +
                        name_warp_mat)
                sct.run('isct_ComposeMultiTransform 2 ' +
                        name_output_warp_inverse + ' -R ' + name_dest + ' ' +
                        name_warp_null_dest + ' -i ' + name_warp_mat)
                # Split the warping fields into two for displacement along x and y before merge
                sct.run('isct_c3d -mcs ' + name_output_warp +
                        ' -oo transform_' + num + '0Warp_x.nii.gz transform_' +
                        num + '0Warp_y.nii.gz')
                sct.run('isct_c3d -mcs ' + name_output_warp_inverse +
                        ' -oo transform_' + num +
                        '0InverseWarp_x.nii.gz transform_' + num +
                        '0InverseWarp_y.nii.gz')
                # List names of warping fields for futur merge
                list_warp_x.append('transform_' + num + '0Warp_x.nii.gz')
                list_warp_x_inv.append('transform_' + num +
                                       '0InverseWarp_x.nii.gz')
                list_warp_y.append('transform_' + num + '0Warp_y.nii.gz')
                list_warp_y_inv.append('transform_' + num +
                                       '0InverseWarp_y.nii.gz')

            if paramreg.algo == 'BSplineSyN' or paramreg.algo == 'SyN':
                # Split the warping fields into two for displacement along x and y before merge
                # Need to separate the merge for x and y displacement as merge of 3d warping fields does not work properly
                sct.run('isct_c3d -mcs transform_' + num +
                        '0Warp.nii.gz -oo transform_' + num +
                        '0Warp_x.nii.gz transform_' + num + '0Warp_y.nii.gz')
                sct.run('isct_c3d -mcs transform_' + num +
                        '0InverseWarp.nii.gz -oo transform_' + num +
                        '0InverseWarp_x.nii.gz transform_' + num +
                        '0InverseWarp_y.nii.gz')
                # List names of warping fields for futur merge
                list_warp_x.append('transform_' + num + '0Warp_x.nii.gz')
                list_warp_x_inv.append('transform_' + num +
                                       '0InverseWarp_x.nii.gz')
                list_warp_y.append('transform_' + num + '0Warp_y.nii.gz')
                list_warp_y_inv.append('transform_' + num +
                                       '0InverseWarp_y.nii.gz')
        # if an exception occurs with ants, take the last value for the transformation
        except:
            if paramreg.algo == 'Rigid' or paramreg.algo == 'Translation':
                x_displacement[i] = x_displacement[i - 1]
                y_displacement[i] = y_displacement[i - 1]
                theta_rotation[i] = theta_rotation[i - 1]

            if paramreg.algo == 'BSplineSyN' or paramreg.algo == 'SyN' or paramreg.algo == 'Affine':
                print 'Problem with ants for slice ' + str(
                    i) + '. Copy of the last warping field.'
                sct.run('cp transform_' + numerotation(i - 1) +
                        '0Warp.nii.gz transform_' + num + '0Warp.nii.gz')
                sct.run('cp transform_' + numerotation(i - 1) +
                        '0InverseWarp.nii.gz transform_' + num +
                        '0InverseWarp.nii.gz')
                # Split the warping fields into two for displacement along x and y before merge
                sct.run('isct_c3d -mcs transform_' + num +
                        '0Warp.nii.gz -oo transform_' + num +
                        '0Warp_x.nii.gz transform_' + num + '0Warp_y.nii.gz')
                sct.run('isct_c3d -mcs transform_' + num +
                        '0InverseWarp.nii.gz -oo transform_' + num +
                        '0InverseWarp_x.nii.gz transform_' + num +
                        '0InverseWarp_y.nii.gz')
                # List names of warping fields for futur merge
                list_warp_x.append('transform_' + num + '0Warp_x.nii.gz')
                list_warp_x_inv.append('transform_' + num +
                                       '0InverseWarp_x.nii.gz')
                list_warp_y.append('transform_' + num + '0Warp_y.nii.gz')
                list_warp_y_inv.append('transform_' + num +
                                       '0InverseWarp_y.nii.gz')

    if paramreg.algo == 'BSplineSyN' or paramreg.algo == 'SyN' or paramreg.algo == 'Affine':
        print '\nMerge along z of the warping fields...'
        # from sct_concat_data import concat_data
        sct.run('sct_concat_data -i ' + ','.join(list_warp_x) + ' -o ' +
                name_warp_final + '_x.nii.gz -dim z')
        sct.run('sct_concat_data -i ' + ','.join(list_warp_x_inv) + ' -o ' +
                name_warp_final + '_x_inverse.nii.gz -dim z')
        sct.run('sct_concat_data -i ' + ','.join(list_warp_y) + ' -o ' +
                name_warp_final + '_y.nii.gz -dim z')
        sct.run('sct_concat_data -i ' + ','.join(list_warp_y_inv) + ' -o ' +
                name_warp_final + '_y_inverse.nii.gz -dim z')
        # concat_data(','.join(list_warp_x), name_warp_final+'_x.nii.gz', 2)
        # concat_data(','.join(list_warp_x_inv), name_warp_final+'_x_inverse.nii.gz', 2)
        # concat_data(','.join(list_warp_y), name_warp_final+'_y.nii.gz', 2)
        # concat_data(','.join(list_warp_y_inv), name_warp_final+'_y_inverse.nii.gz', 2)
        # sct.run('fslmerge -z ' + name_warp_final + '_x ' + " ".join(list_warp_x))
        # sct.run('fslmerge -z ' + name_warp_final + '_x_inverse ' + " ".join(list_warp_x_inv))
        # sct.run('fslmerge -z ' + name_warp_final + '_y ' + " ".join(list_warp_y))
        # sct.run('fslmerge -z ' + name_warp_final + '_y_inverse ' + " ".join(list_warp_y_inv))
        print '\nChange resolution of warping fields to match the resolution of the destination image...'
        from sct_copy_header import copy_header
        copy_header(fname_dest, name_warp_final + '_x.nii.gz')
        copy_header(fname_source, name_warp_final + '_x_inverse.nii.gz')
        copy_header(fname_dest, name_warp_final + '_y.nii.gz')
        copy_header(fname_source, name_warp_final + '_y_inverse.nii.gz')
        print '\nMerge translation fields along x and y into one global warping field '
        sct.run('isct_c3d ' + name_warp_final + '_x.nii.gz ' +
                name_warp_final + '_y.nii.gz -omc 2 ' + name_warp_final +
                '.nii.gz')
        sct.run('isct_c3d ' + name_warp_final + '_x_inverse.nii.gz ' +
                name_warp_final + '_y_inverse.nii.gz -omc 2 ' +
                name_warp_final + '_inverse.nii.gz')
        print '\nCopy to parent folder...'
        sct.run('cp ' + name_warp_final + '.nii.gz ../')
        sct.run('cp ' + name_warp_final + '_inverse.nii.gz ../')

    #Delete tmp folder
    os.chdir('../')
    if remove_tmp_folder:
        print('\nRemove temporary files...')
        sct.run('rm -rf ' + path_tmp)
    if paramreg.algo == 'Rigid':
        return x_displacement, y_displacement, theta_rotation
    if paramreg.algo == 'Translation':
        return x_displacement, y_displacement